
6/25/17

1

Big	Data	Analytics	for	
Host	Misbehavior	Detection

Miguel	Pupo Correia
joint	work with Daniel	Gonçalves,	João	Bota	(Vodafone	PT)

2016	European Security	Conference
June 2016

Motivation

• Networks	are	complex,	many	attacks	happen,	how	to	
know	if	there	are	compromised	hosts?

2



6/25/17

2

Motivation

• What	do	compromised	hosts	do?
– Distributed	denial	of	service	attacks
– Exfiltrating confidential	data
– Sending	spam
– Mapping	the	network
– Contact	bot	command&control centers
– etc.

3

The	Problem

• How	to	discover	malicious	hosts?
• Information	can	be	extracted	from	logs	
– files	with	data	about	events

• but	in	complex	networks:
– Logs	are	huge:	big	data
– Logs	are	heterogeneous:	DHCP	servers,	
authentication	servers,	firewalls,	etc.,	etc.

• so	data	mining is	needed

4



6/25/17

3

The	Problem
• Problem	may	be	considered	intrusion	detection

1. Misuse-based	detection
• looking	for	bad	patterns	(signatures)

2. Anomaly-based	detection
• looking	for	deviations	from	good	patterns	(models)

3. Policy-based	detection
• looking	for	violations	of	good	patterns	

• but
– 1.	and	3.	require	defining	what	is	bad/good	behavior
– 2.	requires	large	dataset	with	good	behavior
– Where	to	get	them	with	evolving	threats?

5

Solution	in	a	Nutshell	(I)

1. Extract	features	from	the	logs	using	MapReduce
– Features:	characteristics,	attributes,	e.g.,	num.	bytes	sent
– MapReduce allows	parallelism,	using	several	servers/cores

2. Obtain	automatically groups	of	hosts	with	similar	
behavior	using	clustering
– unsupervised	machine	learning
– reduces	the	size	of	what	needs	to	be	classified:	clusters
– condenses	the	relevant	data

6



6/25/17

4

Solution	in	a	Nutshell	(II)

3. Detect	misbehavior	automatically using	classifiers
– supervised	machine	learning

4. Classify	manually the	missing	clusters
– Humans	must	be	kept	in	the	loop	due	to	the	evolving	
nature	of	threats

• Repeat,	e.g.,	daily

7

Extract

Cluster

Classify	
automatically

Classify	
manually

THE	APPROACH:	PREPARATION

8



6/25/17

5

Two	Phases	of	the	Approach

• Preparation:	definition	and	configuration	of	the	
detection	mechanism	

• Runtime:	Execution	of	the	detection	mechanism	in	
runtime	

9

Data	Normalization

• How	to	identify	hosts?	Name,	IP,	MAC?
– We	used:	MAC	and	name
– Dynamic	IPs	translated	to	MACs	using	DHCP	log

• Repeated	entries	in	logs?
– Remove	copies

• Dates	in	different	time	zones?
– Translate	to	a	single	one

10



6/25/17

6

Feature	Selection

• Feature	engineering	is	critical	in	DM	/	ML;	we	need:
– features	that	allow	distinguishing	good	from	bad	behavior
– without	knowing	which	=>	use	a	superset,	no	assumptions

• Types	of	features	and	examples	(for	Tf =	1	day)
– Session-based,	e.g.,	Number	of	long	sessions
– Authentication-based,	e.g.,	Number	of	authentication	tries
– Connection-based,	e.g.,	Num.	of	TCP	packets	sent	blocked
– Endpoint-based,	e.g.,	Number	of	IP	addresses	with	bad	
reputation	contacted

11

Features

12



6/25/17

7

THE	APPROACH:	RUNTIME

13

Feature	Extraction

• MapReduce framework	(Hadoop)
– allows	parallelizing	log	processing:

• one	mapper per	file	extracts	features
• reducer provides	a	single	output

– allows	taking	computation	to	the	nodes	that	keep	the	logs	
• if	they	allow	it

• Caches	for	external	data
– Autonomous	System	Numbers
– Suspicious	IP,	subnets

14



6/25/17

8

Clustering

• Means	creating	groups	of	entities	(hosts)	that	are	
similar	in	terms	of	features
– features	are	normalized	to	the	interval	[0,1]	

• We	use	a	probabilistic	clustering	algorithm:	
Expectation-Maximization	(EM)
– doesn’t	need	prior	knowledge	of	the	feature	distribution	
– appropriate	to	cluster	large	data	sets	
– num.	of	clusters	is	an	input:	small	percentage	of	hosts	per	
cluster,	except	clusters	that	represent	common	behaviors

15

Cluster	Classification

• Manual	– first	time	and	for	unclassifiable	clusters
– small	number	of	clusters,	so	feasible	(not	thousands	of	hosts)
– features	marked	as	primary,	secondary,	low-relevance
– feature	values	classified	as	VH,	H,	M,	L,	VL
– clusters	are	assigned	a	class	

• Automatic	
– based	on	a	Naive	Bayes	algorithm
– assigns	clusters	to	classes	automatically
– typ.	several	classes:	normal	server,	normal	PC,...

16



6/25/17

9

EXPERIMENTAL	EVALUATION

17

Overview

• Time	period	=	1	day	
• ~300	GB	logs	for	5	consecutive	days	
• logs	of	firewalls,	DHCP	and	authentication	servers
• Code	in	Java
• Hadoop for	data	processing
• WEKA	for	machine	learning	algorithms
• Data	processed	in	a	32-core	server	
• Number	of	clusters	fixed	to	23

18



6/25/17

10

Data	Processing

19

Log	size	per	day	per	log	source	

Time	for	feature	extraction	

versus	size	of	the	logs

Classifying	the	Clusters	Manually

20

Cluster	description	in	terms	of	hosts	it	contains	

(total	4265)	and	primary	features



6/25/17

11

Classifying	the	Clusters	Manually

21

Cluster	description	in	terms	of	hosts	it	contains	

(total	4265)	and	primary	features

Cluster	13	– 53	hosts:
• problematic	features	with	VH:	

• num.	of	packets	sent	
• bursts	of	packets	sent
• num.	of	external	IPs	

contacted	in	malicious	ASs	
• and	in	spam	AS	lists

• all	the	other	clusters	have	VL	in	
the	last	2	features!

Suspicious	clusters	– bots

• Cluster	15	– 54	hosts	
– problematic	features	VH:	

• num.	of	authentication	tries
• num.	of	packets	sent	blocked	by	the	firewall
• bursts	of	packets	sent
• num.	of	UDP	packets	sent	blocked	by	the	firewall	

• Cluster	20	– 35	hosts
– problematic	features	VH:	

• num.	of	packets	sent	blocked	by	the	firewall	and	
• TCP	packets	sent	blocked	by	the	firewall	

22



6/25/17

12

Conclusions

• Our	approach	allows	identifying	malicious	entities	in	a	semi-
automatic	way	based	on	large	logs...

• ...without	having	to	say	how	entities	misbehave

• Uses	clustering	(unsupervised	ML)	to	reduce	the	size	of	the	
problem	and

• a	classifier	(supervised	ML)	to	automatize	classification

• Keeps	humans	in	the	loop;	mandatory	
due	to	the	evolving	nature	of	threats

23

Thank you

Learn more:	
Big	Data	Analytics for	Detecting Host	Misbehavior in	Large Logs

Daniel	Gonçalves,	João	Bota,	Miguel	Correia
14th	TrustCom,	Aug.	2015

Miguel	Pupo Correia	
miguel.p.correia@tecnico.ulisboa.pt
http://www.gsd.inesc-id.pt/~mpc/	


