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Motivation

• Networks	are	complex,	many	attacks	happen,	how	to	
know	if	there	are	compromised	hosts?
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Motivation

• What	do	compromised	hosts	do?
– Distributed	denial	of	service	attacks
– Exfiltrating confidential	data
– Sending	spam
– Mapping	the	network
– Contact	bot	command&control centers
– etc.
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The	Problem

• How	to	discover	malicious	hosts?
• Information	can	be	extracted	from	logs	
– files	with	data	about	events

• but	in	complex	networks:
– Logs	are	huge:	big	data
– Logs	are	heterogeneous:	DHCP	servers,	
authentication	servers,	firewalls,	etc.,	etc.

• so	data	mining is	needed
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The	Problem
• Problem	may	be	considered	intrusion	detection

1. Misuse-based	detection
• looking	for	bad	patterns	(signatures)

2. Anomaly-based	detection
• looking	for	deviations	from	good	patterns	(models)

3. Policy-based	detection
• looking	for	violations	of	good	patterns	

• but
– 1.	and	3.	require	defining	what	is	bad/good	behavior
– 2.	requires	large	dataset	with	good	behavior
– Where	to	get	them	with	evolving	threats?
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Solution	in	a	Nutshell	(I)

1. Extract	features	from	the	logs	using	MapReduce
– Features:	characteristics,	attributes,	e.g.,	num.	bytes	sent
– MapReduce allows	parallelism,	using	several	servers/cores

2. Obtain	automatically groups	of	hosts	with	similar	
behavior	using	clustering
– unsupervised	machine	learning
– reduces	the	size	of	what	needs	to	be	classified:	clusters
– condenses	the	relevant	data
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Solution	in	a	Nutshell	(II)

3. Detect	misbehavior	automatically using	classifiers
– supervised	machine	learning

4. Classify	manually the	missing	clusters
– Humans	must	be	kept	in	the	loop	due	to	the	evolving	
nature	of	threats

• Repeat,	e.g.,	daily

7

Extract

Cluster

Classify	
automatically

Classify	
manually

THE	APPROACH:	PREPARATION
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Two	Phases	of	the	Approach

• Preparation:	definition	and	configuration	of	the	
detection	mechanism	

• Runtime:	Execution	of	the	detection	mechanism	in	
runtime	
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Data	Normalization

• How	to	identify	hosts?	Name,	IP,	MAC?
– We	used:	MAC	and	name
– Dynamic	IPs	translated	to	MACs	using	DHCP	log

• Repeated	entries	in	logs?
– Remove	copies

• Dates	in	different	time	zones?
– Translate	to	a	single	one
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Feature	Selection

• Feature	engineering	is	critical	in	DM	/	ML;	we	need:
– features	that	allow	distinguishing	good	from	bad	behavior
– without	knowing	which	=>	use	a	superset,	no	assumptions

• Types	of	features	and	examples	(for	Tf =	1	day)
– Session-based,	e.g.,	Number	of	long	sessions
– Authentication-based,	e.g.,	Number	of	authentication	tries
– Connection-based,	e.g.,	Num.	of	TCP	packets	sent	blocked
– Endpoint-based,	e.g.,	Number	of	IP	addresses	with	bad	
reputation	contacted
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Features
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THE	APPROACH:	RUNTIME
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Feature	Extraction

• MapReduce framework	(Hadoop)
– allows	parallelizing	log	processing:

• one	mapper per	file	extracts	features
• reducer provides	a	single	output

– allows	taking	computation	to	the	nodes	that	keep	the	logs	
• if	they	allow	it

• Caches	for	external	data
– Autonomous	System	Numbers
– Suspicious	IP,	subnets
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Clustering

• Means	creating	groups	of	entities	(hosts)	that	are	
similar	in	terms	of	features
– features	are	normalized	to	the	interval	[0,1]	

• We	use	a	probabilistic	clustering	algorithm:	
Expectation-Maximization	(EM)
– doesn’t	need	prior	knowledge	of	the	feature	distribution	
– appropriate	to	cluster	large	data	sets	
– num.	of	clusters	is	an	input:	small	percentage	of	hosts	per	
cluster,	except	clusters	that	represent	common	behaviors

15

Cluster	Classification

• Manual	– first	time	and	for	unclassifiable	clusters
– small	number	of	clusters,	so	feasible	(not	thousands	of	hosts)
– features	marked	as	primary,	secondary,	low-relevance
– feature	values	classified	as	VH,	H,	M,	L,	VL
– clusters	are	assigned	a	class	

• Automatic	
– based	on	a	Naive	Bayes	algorithm
– assigns	clusters	to	classes	automatically
– typ.	several	classes:	normal	server,	normal	PC,...
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EXPERIMENTAL	EVALUATION
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Overview

• Time	period	=	1	day	
• ~300	GB	logs	for	5	consecutive	days	
• logs	of	firewalls,	DHCP	and	authentication	servers
• Code	in	Java
• Hadoop for	data	processing
• WEKA	for	machine	learning	algorithms
• Data	processed	in	a	32-core	server	
• Number	of	clusters	fixed	to	23
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Data	Processing
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Log	size	per	day	per	log	source	

Time	for	feature	extraction	

versus	size	of	the	logs

Classifying	the	Clusters	Manually
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Cluster	description	in	terms	of	hosts	it	contains	

(total	4265)	and	primary	features
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Classifying	the	Clusters	Manually
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Cluster	description	in	terms	of	hosts	it	contains	

(total	4265)	and	primary	features

Cluster	13	– 53	hosts:
• problematic	features	with	VH:	

• num.	of	packets	sent	
• bursts	of	packets	sent
• num.	of	external	IPs	

contacted	in	malicious	ASs	
• and	in	spam	AS	lists

• all	the	other	clusters	have	VL	in	
the	last	2	features!

Suspicious	clusters	– bots

• Cluster	15	– 54	hosts	
– problematic	features	VH:	

• num.	of	authentication	tries
• num.	of	packets	sent	blocked	by	the	firewall
• bursts	of	packets	sent
• num.	of	UDP	packets	sent	blocked	by	the	firewall	

• Cluster	20	– 35	hosts
– problematic	features	VH:	

• num.	of	packets	sent	blocked	by	the	firewall	and	
• TCP	packets	sent	blocked	by	the	firewall	
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Conclusions

• Our	approach	allows	identifying	malicious	entities	in	a	semi-
automatic	way	based	on	large	logs...

• ...without	having	to	say	how	entities	misbehave

• Uses	clustering	(unsupervised	ML)	to	reduce	the	size	of	the	
problem	and

• a	classifier	(supervised	ML)	to	automatize	classification

• Keeps	humans	in	the	loop;	mandatory	
due	to	the	evolving	nature	of	threats
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