6/20/2013

BFT State Machine Replication with

2f+1 Replicas

What good are hybrid models and
what hybrid models are good

Miguel Correia

joint work with Paulo Verissimo, Nuno Neves,
Alysson Bessani, Giuliana Veronese, Lau C. Lung

TECNICO 5%(”
W LISBOA oy

Outline

e 2002: Wormholes, TTCB, BRM

e 2004: BFT-TO and TOW

e 2007: A2M-PBFT-EA

e 2008-...: MIN-BFT, EBAWA, USIG
e 2010: 2f+1 Consensus

6/20/2013

2002: WORMHOLES, TTCB, BRM

M. Correia, P. Verissimo, Nuno F. Neves. The Design of a COTS Real-Time Distributed Security Kernel. In
Proceedings of the Fourth European Dependable Computing Conference. Toulouse, France, pages 234--
252, October 2002.

M. Correia and L. C. Lung and N. F. Neves and P. Verissimo. Efficient Byzantine-Resilient Reliable
Multicast on a Hybrid Failure Model. /n Proceedings of the 21th IEEE Symposium on Reliable Distributed
Systems. Suita, Japan, pages 2--11, October 2002.

P. Verissimo. Uncertainty and predictability: Can they be reconciled? In Future Directions in Distributed
Computing, volume 2584 of Lecture Notes in Computer Science, pages 108-113. Springer-Verlag, 2003
P. Verissimo. Travelling through Wormbholes: a new look at Distributed Systems Models. ACM SIGACT
News, vol. 37, no. 1, pages 66-81, 2006.

Wormhole model / hybrid fault model

* Most of the system has weak guarantees
— e.g., asynchronous, Byzantine faults

* Wormhole: a subsystem built to provide stronger properties
(aka trusted component), e.g., partial synchronous, crash faults

wormhole channel
Payload Network

Optional, only for
distributed wormhales

Why hybrid system models?

* Expressive models w.r.t. reality
¢ Sound theoretical basis for proofs of correctness

* Naturally supported by hybrid architectures
(like the wormholes architecture)

e Enablers of concepts for building totally new algorithms

TTCB

e TTCB —a wormhole to support the execution of intrusion-
tolerant algorithms/applications
— They run mostly in the payload system that can be attacked
— They use the TTCB to execute some critical steps securely

Host 1 Host 2 Host n
@ Processes @ Processes @ Processes
(] e 0o® o o °

N -

TTCB Control Channel

Payload Network

6/20/2013

BRM - 2f+1 BFT reliable multicast

* BRM = Byzantine-resilient Reliable Multicast

— Based on the TTCB agreement service that runs inside the TTCB (crash
faults, better synch)

— The service tells which one is the correct hash

T je}

B O
/7
N

/

\\\A

P2 — k&: . Y
P3— V. : .
Y HOW) o
Lo ! HMW), |
TTCB — — agreement -

2004: BFT-TO AND TOW

M. Correia and N. F. Neves and P. Verissimo. How to Tolerate Half Less One Byzantine
Nodes in Practical Distributed Systems. In Proceedings of the 23rd IEEE Symposium on
Reliable Distributed Systems. Florianopolis, Brasil, pages 174-183, October 2004.

M. Correia, N. F. Neves, P. Verissimo. BFT-TO: Intrusion Tolerance with Less Replicas.
Computer Journal, Accepted for publication. (extended version of the previous paper)

6/20/2013

BFT-TO - 2f+1 BFT SMR

¢ Wormhole = TOW (Trusted Ordering Wormhole)
— distributed like the TTCB, only in the servers (not clients)
e Basic algorithm:

— Client sends request to one server, which sends to the rest

When getting the request, serves tell the TOW about it

TOW runs internally an agreement and tells servers the order in which
they must run it

When a server processes the request, sends reply to client

Client picks the reply most voted

BFT-TO execution

n=3 f=1

B
o

o
=
7
=

)

1

1

! B

T N E

1 .]

i

| \:/

P2 : —=t m

1 —I1 - 1 -

] o= ==
= 2.3 2
S I:”v I:Ig
I -CI::I 'CI:I

1 Qi 5 [
= 20,9 21,9
S o2 [T
b3l KRR AR

TTCB) L¢|L'U [o]
tmo R

f+1 processes have M1
order=1 I message delivery

10

6/20/2013

A2M-PBFT-EA - 2f+1 BFT SMR

e Chun et al. 2007

e Wormhole: A2M (Attested Append-only Memory)
— equips a host with set of trusted, undeniable, ordered logs
— interface with several ops: append, lookup, end, truncate, advance
— local, not distributed (unlike the TTCB)

e A2M-PBFT-EA: first 2f+1 BFT SMR with a local wormhole

request . "™ prepare | commit | reply request . ™ prepare . commit | reply frequest . ™ prepare commit | reply

Client - — ; o .‘wwu:‘ .p“wu:'
Primary ‘l‘
Replica 1 :
Replica 2 | " ¥ / [i i
Replica 3 1I - .I .ul Message attested by AZM
(a) PBFT | (b) AZM-PBFT-E () AZM-PBFT-EA

11

2008-...: MIN-BFT, EBAWA, USIG

Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk

Lung. Highly-Resilient Services for Critical Infrastructures. In Proceedings of the
Workshop on Embedded Systems and Communications Security (ESCS). September
2009

G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung. EBAWA: Efficient Byzantine
Agreement for Wide-Area Networks. In Proceedings of the 12th IEEE International
High Assurance Systems Engineering Symposium (HASE). November 2010

G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, P. Verissimo. Efficient Byzantine
Fault Tolerance. IEEE Transactions on Computers, vol. 62, n. 1, pp. 16-30, Jan. 2013

12

6/20/2013

Simpler wormhole: USIG

e TOW is complex (distributed, agreement); A2M has complex
API, memory grows

e USIG: local wormhole, one service, one call, simple

— Single call: createUl (m) — assigns a unique ID to a message m

— Includes only (monotonic) counter + signature function

* How does it help?

— Faulty server can’t send two messages with the same ID
— Faulty server can’t “go back” and use/reuse “old” IDs

— ...because the service won’t return such IDs signed

13

USIG

¢ Optionally: counter + MAC function
— faster
— but verification must also be part of the wormhole (a 2" call)
¢ Local service means it can be some hardware chip in server

— We've implemented it on top of the Trusted Platform Module (TPM),
“a commercial wormhole”

e Very similar to Trinc, developed in parallel (1% pub. 2009)

14

6/20/2013

MinBFT - 2f+1 BFT SMR

* Wormhole: USIG
e Message pattern similar to Castro&Liskov’s PBFT...

e ..butless freplicas, 1 communication step less:

Client

Server 0

Request Pre-prepare Prepare

Commit

Reply

Ty

(primary]

Server 1

Server 2

Server

L} LV

(a) PBFT normal operation

Client

Server 0

Request

A

Frepare

Commit Reply

(primary)

Server 1

Server 2

(b) MinBFT normal operation

15
~
MinBFT throughput (~2009)
36000 T T T T
PBFT ——
39000 |- et finet a 7
MinZyzzyva-Sign &
30000 Al
& -8
-0

27000 -8 -
2 24000 .B e el *
2 R T
g =0 //,/‘*‘ I RS
% 18000 X -
5 4
g 12000 , B

9000 ‘/' i

6000 -

3000 _'J'J 4

0 1 1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 920 100 110 120
Number of Clients
e MinZyzzyva: a similar algorithm but based on Zyzzyva (speculative)
16

6/20/2013

EBAWA - 2f+1 BFT SMR for WANs

* Wormhole: USIG

* Rotating primary: the primary only orders a batch of reqgs
— performance attacks / load balancing (we did it before in the Spinning alg)
— Merge operation provides liveness when the primary is faulty

e Asynchronous views:

— aserver starts an agreement as soon as it receives a client request by
sending a prepare message

* Servers without pending client requests skip their turn
— by sending a special message

¢ Measurements in LAN / PlanetLab / emulated WAN ...
— competitive in LANs, outperforms all in several WAN settings

17

CheapBFT — f+1 BFT SMR

e Kapitzaetal., 2012

e Wormhole: USIG
— Implemented USIG in hardware (FPGA)

* CheapBFT
— Runs CheapTiny with f+1 replicas in the normal case
— Falls back to MinBFT

REQUEST | PREPARE CoMMIT REPLY
Client
Lenderl“
Active {
replicas

Passive ”777777777777777,,:!:,,&,

replica
P UPDATE
— Remote messages -----3 Internal messages

18

6/20/2013

2010: 2F+1 CONSENSUS

Miguel Correia, Giuliana Santos Veronese, Lau Cheuk Lung,
Asynchronous Byzantine Consensus with 2f+1 Processes, In Proceedings
of the 25th Annual ACM Symposium on Applied Computing, March 2010.

19

Byzantine Consensus with 2f+1 Processes

Question: how to do BFT consensus with 2f+1 replicas? Who's
the culprit behind 3f+17?

Reliable multicast needs 3f+1 but if we use USIG (or TTCB or
TOW or A2M), then f+1 are enough

We have shown that (f+1) reliable multicast is enough to solve
2f+1 consensus (with a few tricks more)...

...by giving a methodology to transform CFT consensus
algorithms into BFT consensus algorithms

20

6/20/2013

10

Transforming CFT->BFT consensus

Four steps:

1. reliable channels = authenticated reliable channels
2. broadcast - reliable broadcast

3. message reception = message reception +validation
4

Wait for messages from N-f processes 2>
same thing + wait for either messages or suspicions of the
other f processes (using special muteness failure detector)

21

Transforming Mostefaoui/Raynal’s
CFT consensus algorithm

1. estimate € proposal

2. loop

3. coordinator = round mod N

4, // phase 1

5. if coordinator then reliable broadcast message (phasel, estimate, round)

6. wait until valid phasel message is received from the coordinator or the coordinator is
suspected

7. if message received then estimate = estimate in message

8. // phase 2

9. reliable broadcast message (phase2, estimate, round)

10. wait until valid phase2 messages received from at least N-f processes and the rest (if
any) are suspected

11. if same estimate in N-f messages then broadcast decision message and decide

12. if same estimate in N-2f messages then set estimate to that one

13. endloop

14. upon valid decision message received, broadcast decision msg. and decide

22

6/20/2013

11

Summary

2f+1 BFT SMR, 10+ years of research

Based on a well-defined hybrid fault model
Distributed vs local wormholes

USIG: as simple as it can be?

MinBFT: as simple/efficient as CFT SMR?

23

6/20/2013

12

