BFT State Machine Replication with 2f+1 Replicas

What good are hybrid models and what hybrid models are good

Miguel Correia

joint work with Paulo Veríssimo, Nuno Neves, Alysson Bessani, Giuliana Veronese, Lau C. Lung

Outline

• 2002: Wormholes, TTCB, BRM

2004: BFT-TO and TOW

• 2007: A2M-PBFT-EA

2008-...: MIN-BFT, EBAWA, USIG

• 2010: 2f+1 Consensus

2002: WORMHOLES, TTCB, BRM

M. Correia, P. Veríssimo, Nuno F. Neves. **The Design of a COTS Real-Time Distributed Security Kernel**. *In Proceedings of the Fourth European Dependable Computing Conference*. Toulouse, France, pages 234-252, October 2002.

M. Correia and L. C. Lung and N. F. Neves and P. Veríssimo. **Efficient Byzantine-Resilient Reliable Multicast on a Hybrid Failure Model**. *In Proceedings of the 21th IEEE Symposium on Reliable Distributed Systems*. Suita, Japan, pages 2–11, October 2002.

P. Verissimo. Uncertainty and predictability: Can they be reconciled? In Future Directions in Distributed Computing, volume 2584 of Lecture Notes in Computer Science, pages 108–113. Springer-Verlag, 2003 P. Verissimo. Travelling through Wormholes: a new look at Distributed Systems Models. ACM SIGACT News, vol. 37, no. 1, pages 66-81, 2006.

3

Wormhole model / hybrid fault model

- Most of the system has weak guarantees
 - e.g., asynchronous, Byzantine faults
- <u>Wormhole</u>: a subsystem built to provide stronger properties (aka <u>trusted component</u>), e.g., partial synchronous, crash faults

Why hybrid system models?

- Expressive models w.r.t. reality
- Sound theoretical basis for proofs of correctness
- Naturally supported by hybrid architectures (like the wormholes architecture)
- Enablers of concepts for building totally new algorithms

5

TTCB

- TTCB a wormhole to support the execution of intrusiontolerant algorithms/applications
 - They run mostly in the payload system that can be attacked
 - They use the TTCB to execute some critical steps securely

BRM – 2f+1 BFT reliable multicast

- BRM = Byzantine-resilient Reliable Multicast
 - Based on the TTCB <u>agreement service</u> that runs inside the TTCB (crash faults, better synch)
 - The service tells which one is the correct hash

2004: BFT-TO AND TOW

M. Correia and N. F. Neves and P. Veríssimo. **How to Tolerate Half Less One Byzantine Nodes in Practical Distributed Systems**. *In Proceedings of the 23rd IEEE Symposium on Reliable Distributed Systems*. Florianopolis, Brasil, pages 174-183, October 2004.

M. Correia, N. F. Neves, P. Verissimo. **BFT-TO: Intrusion Tolerance with Less Replicas**.

Computer Journal, Accepted for publication. (extended version of the previous paper)

BFT-TO – 2f+1 BFT SMR

- Wormhole = TOW (Trusted Ordering Wormhole)
 - distributed like the TTCB, only in the servers (not clients)
- Basic algorithm:
 - Client sends request to one server, which sends to the rest
 - When getting the request, serves tell the TOW about it
 - TOW runs internally an agreement and tells servers the order in which they must run it
 - When a server processes the request, sends reply to client
 - Client picks the reply most voted

ç

A2M-PBFT-EA - 2f+1 BFT SMR

- Chun et al. 2007
- Wormhole: A2M (Attested Append-only Memory)
 - equips a host with set of trusted, undeniable, ordered logs
 - interface with several ops: append, lookup, end, truncate, advance
 - local, not distributed (unlike the TTCB)
- A2M-PBFT-EA: first 2f+1 BFT SMR with a local wormhole

2008-...: MIN-BFT, EBAWA, USIG

Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung. **Highly-Resilient Services for Critical Infrastructures**. *In Proceedings of the Workshop on Embedded Systems and Communications Security (ESCS)*. September 2009

G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung. **EBAWA: Efficient Byzantine Agreement for Wide-Area Networks**. In Proceedings of the 12th IEEE International High Assurance Systems Engineering Symposium (HASE). November 2010

G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, P. Verissimo. **Efficient Byzantine Fault Tolerance**. IEEE Transactions on Computers, vol. 62, n. 1, pp. 16-30, Jan. 2013

Simpler wormhole: USIG

- TOW is complex (distributed, agreement); A2M has complex API, memory grows
- <u>USIG</u>: local wormhole, one service, one call, simple
 - Single call: createUI (m) assigns a unique ID to a message m
 - Includes only (monotonic) counter + signature function
- How does it help?
 - Faulty server can't send two messages with the same ID
 - Faulty server can't "go back" and use/reuse "old" IDs
 - ...because the service won't return such IDs signed

13

USIG

- Optionally: counter + MAC function
 - faster
 - but verification must also be part of the wormhole (a 2nd call)
- Local service means it can be some hardware chip in server
 - We've implemented it on top of the Trusted Platform Module (TPM), "a commercial wormhole"
- Very similar to Trinc, developed in parallel (1st pub. 2009)

MinBFT – 2f+1 BFT SMR

- Wormhole: USIG
- Message pattern similar to Castro&Liskov's PBFT...
- ...but less f replicas, 1 communication step less:

1 =

MinBFT throughput (~2009)

MinZyzzyva: a similar algorithm but based on Zyzzyva (speculative)

EBAWA - 2f+1 BFT SMR for WANs

- Wormhole: USIG
- · Rotating primary: the primary only orders a batch of reqs
 - performance attacks / load balancing (we did it before in the Spinning alg.)
 - Merge operation provides liveness when the primary is faulty
- Asynchronous views:
 - a server starts an agreement as soon as it receives a client request by sending a prepare message
- Servers without pending client requests skip their turn
 - by sending a special message
- Measurements in LAN / PlanetLab / emulated WAN ...
 - competitive in LANs, outperforms all in several WAN settings

17

CheapBFT – f+1 BFT SMR

- Kapitza et al., 2012
- Wormhole: USIG
 - Implemented USIG in hardware (FPGA)
- CheapBFT
 - Runs CheapTiny with f+1 replicas in the normal case
 - Falls back to MinBFT

2010: 2F+1 CONSENSUS

Miguel Correia, Giuliana Santos Veronese, Lau Cheuk Lung, **Asynchronous Byzantine Consensus with 2f+1 Processes**, In Proceedings of the 25th Annual ACM Symposium on Applied Computing, March 2010.

19

Byzantine Consensus with 2f+1 Processes

- Question: how to do BFT consensus with 2f+1 replicas? Who's the culprit behind 3f+1?
- <u>Reliable multicast</u> needs 3f+1 but if we use USIG (or TTCB or TOW or A2M), then f+1 are enough
- We have shown that (f+1) reliable multicast is enough to solve 2f+1 consensus (with a few tricks more)...
- ...by giving a methodology to transform CFT consensus algorithms into BFT consensus algorithms

Transforming CFT->BFT consensus

Four steps:

- reliable channels → authenticated reliable channels
- broadcast → reliable broadcast
- 3. message reception → message reception +validation
- 4. Wait for messages from N-f processes → same thing + wait for either messages or suspicions of the other f processes (using special muteness failure detector)

21

22

Transforming Mostefaoui/Raynal's CFT consensus algorithm

```
1. estimate ← proposal
2. loop
3.
          coordinator = round mod N
          // ----- phase 1 -----
          if coordinator then reliable broadcast message (phase1, estimate, round)
         wait until valid phase1 message is received from the coordinator or the coordinator is
   suspected
7.
         if message received then estimate = estimate in message
8.
          // ----- phase 2 -----
          reliable broadcast message (phase2, estimate, round)
          wait until valid phase2 messages received from at least N-f processes and the rest (if
   any) are suspected
11.
          if same estimate in N-f messages then broadcast decision message and decide
          if same estimate in N-2f messages then set estimate to that one
13. endloop
14. upon valid decision message received, broadcast decision msg. and decide
```

Summary

- 2f+1 BFT SMR, 10+ years of research
- Based on a well-defined hybrid fault model
- Distributed vs local wormholes
- USIG: as simple as it can be?
- MinBFT: as simple/efficient as CFT SMR?