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Cloud-of-Clouds

• Consumer	runs	service	on	a	set	of	clouds	forming	a	
virtual	cloud,	what	we	call	a	cloud-of-clouds

• Related	to	the	notion	of	federation	of	clouds
– Federation	of	clouds	– a	virtual	cloud	created	by	cloud	
providers;	requires	cooperation	between	providers

– Cloud-of-clouds – an	ad-hoc	virtual	cloud	created	by	
consumers;	no	cooperation	between	clouds	needed
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Cloud-of-Clouds	dependability+security

• There	is	redundancy	and	diversity between	clouds
• so	even	if	some	clouds	fail	a	cloud-of-clouds that	
implements	replication can	still	guarantee:
– Availability – if	some	stop,	the	others	are	still	there
– Integrity – if	some	corrupt	data,	data	is	still	at	the	others
– Disaster-tolerance	– clouds	can	be	geographically	far
– No	vendor	lock-in	– several	clouds	anyway

• plus,	although,	not	specific	to	cloud-of-clouds:
– Confidentiality (from	clouds)	– encryption	
– Confidentiality/integrity (from	users)	– access	control
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Outline

• DepSky – file	storage in	clouds-of-clouds

• SCFS – file	system in	clouds-of-clouds

• SafeCloud-FS	– file	system in	clouds-of-clouds
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DEPSKY:	FILE	STORAGE	IN	CLOUDS-
OF-CLOUDS
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DepSky

• Client-side	library	for	cloud-of-clouds	storage
– File	storage,	similar	to	Amazon	S3:	read/write	files,	etc.

• Use	storage	cloud	services (S3,	etc.) as	they	are:	
– All	code	at	the	client

• Data	is	updatable
– Byzantine	quorum	
replication	
protocols	for	
consistency
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Write	protocol
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Read	protocol
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Cloud A Cloud B Cloud C Cloud D

DepSky-A:	limitations
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Data
• Data	is	accessible	

by	cloud	providers
• Requires	n×|Data|	

storage	space

Data Data DataData

Cloud A Cloud B Cloud C Cloud D

DepSky-CA:	combining erasure	codes	
and	secret	sharing
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Inverse	process	for	reading	
from	f+1 shares/fragmentsEncrypted	so	data	can’t	be	read	at	a	cloud!

Only	2x	the	size	of	storage,	not	4x!

Only	for	data,	
not	metadata
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DepSky latency	
100KB	files,	clients	in	PlanetLab nodes
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DepSky’s read latency	is	close	to	the	cloud	with	the	best latency

DepSky’s write latency	is	close	to	the	cloud	with	the	worst latency

SCFS:	FILE	SYSTEM	IN	CLOUDS-OF-
CLOUDS
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Storage	vs.	File	System
(DepSky vs.	SCFS)

• Storage	(DepSky)
– API:	simple	operations	
over	data	blocks

– same	consistency	as	clouds

– create(id)
– read(fd)
– write(fd,block)
– delete(fd)
– lock(fd)
– unlock(fd)
– setACL(fd)

• File	system	(SCFS)
– API:	~POSIX,	so	unmodified	apps	
can	use	it	(uses	FUSE)

– strong	consistency

– open(path,flags)
– read(fd,buffer,length,offset)
– write(fd,buffer,length,offset)
– chmod(path,mode)
– mkdir(path,mode)
– flush, fsync, link, rmdir, 

symlink, chown,...
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Features

• Data	layout/access	pattern
– Each	file	is	an	object	(single-block	file)
– Multiple	versions	of	the	files	are	maintained
– Always	write,	avoid	reading	(exploiting	free	writes)

• Caching	
– File	cache:	persistent	(to	avoid	reading)

• Local	storage	is	used	to	hold	copies	of	all/most	client	files
• Opened	files	are	also	maintained	in	main-memory

– Metadata	cache:	short-lived,	main-memory	
• To	deal	with	bursts	of	metadata requests

Features

• Consistency
– Consistency-on-close	semantics

• when	user	closes	a	file,	all	updates	he	did	become	observable	by	
the	rest	of	the	users	

– Locks	to	avoid	write-write	conflicts

• Modular	coordination
– Metadata	is	stored	in	a	coordination	service

• e.g.,	Apache	Zookeeper	(crash	fault-tolerant),	
our	own	DepSpace (Byzantine/intrusion-tolerant)

– Also	used	for	managing	file	locks
– Separate	data	from	metadata



6/15/17

9

La
te
nc
y	
(s
)

fr
om

	in
st
an

t	h
os
t	A

	c
lo
se
s	

fil
e	
un

til
	h
os
t	B

	se
es
	it

Sharing	latency:	SCFS	vs DropBox
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SCFS	slightly
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Dropbox

SCFS	

SAFECLOUD-FS	– AN	ENHANCED	
CLOUD-OF-CLOUDS	FILE	SYSTEM
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SCFS:	opportunities

• Coordination	service stores	metadata	(e.g.,	
filenames,	directories)	in	clear

• Integrity	verification of	data	stored	in	a	cloud	
requires	first	downloading	the	data	

• Intrusion	recovery	– when	a	user	account	is	
compromised	and	data	corrupted,	recovery	has	to	be	
done	manually

26

SafeCloud-FS
• Based	on	SCFS,	with	the	features	just	explained,	but:
• Coordination	service HomomorphicSpace

– Based	on	DepSpace but	supports	homomorphic	operations
– Based	on	the	MorphicLib library	(Java)

• Operations:	searchable,	order	preserving,	summable,	multipliable
– Stores	file	metadata	encrypted	

• Integrity	verification:	SafeAudit
– integrity	verification	of	stored	data	without	downloading	
it,	using	homomorphic	signatures

• Intrusion	recovery	automatically	with	SafeRCloud
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WRAP-UP
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Conclusions
• Masking	faults	/	intrusions	using	clouds-of-clouds
• DepSky:	storage	clouds-of-clouds	

– Availability,	integrity,	disaster-tolerance,	no	vendor	lock-in,	
confidentiality

• SCFS:	a	cloud-backed	file	system
– Based	on	DepSky and	providing	similar	guarantees	but	
near-POSIX	API

• SafeCloud-FS:	an	enhanced	cloud-backed	file	system
– Ongoing	work
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Thank you
• Papers:

– DepSky:	Dependable	and	Secure	Storage	in	a	Cloud-of-Clouds.	
ACM	Transactions	on	Storage,	2013	(also	EuroSys 2010)

– SCFS:	a	Shared	Cloud-backed	File	System.	
Usenix Annual	Technical	Conference	(ATC),	2014

• Code:	
– DepSky:	http://cloud-of-clouds.github.io/depsky/
– SCFS:	http://cloud-of-clouds.github.io/SCFS/

• My web:	http://www.gsd.inesc-id.pt/~mpc/	


