
6/15/17

1

Using	Several	Clouds	to	Improve	
Storage	Dependability:	

From	DepSky to	SCFS	and	Beyond
Miguel	P.	Correia

11th	Cloud Control Workshop	– June 2017
Joint	work with Alysson	Bessani,	B.	Quaresma,	F.	André,	P.	Sousa,	R.	Mendes,	T.	Oliveira,	

N.	Neves,	M.	Pasin,	P.	Verissimo,	M.	Pardal,	E.	Silva,	F.	Apolinário,	D.	Matos

Cloud-of-Clouds

• Consumer	runs	service	on	a	set	of	clouds	forming	a	
virtual	cloud,	what	we	call	a	cloud-of-clouds

• Related	to	the	notion	of	federation	of	clouds
– Federation	of	clouds	– a	virtual	cloud	created	by	cloud	
providers;	requires	cooperation	between	providers

– Cloud-of-clouds – an	ad-hoc	virtual	cloud	created	by	
consumers;	no	cooperation	between	clouds	needed

3

User

6/15/17

2

Cloud-of-Clouds	dependability+security

• There	is	redundancy	and	diversity between	clouds
• so	even	if	some	clouds	fail	a	cloud-of-clouds that	
implements	replication can	still	guarantee:
– Availability – if	some	stop,	the	others	are	still	there
– Integrity – if	some	corrupt	data,	data	is	still	at	the	others
– Disaster-tolerance	– clouds	can	be	geographically	far
– No	vendor	lock-in	– several	clouds	anyway

• plus,	although,	not	specific	to	cloud-of-clouds:
– Confidentiality (from	clouds)	– encryption	
– Confidentiality/integrity (from	users)	– access	control

4

Outline

• DepSky – file	storage in	clouds-of-clouds

• SCFS – file	system in	clouds-of-clouds

• SafeCloud-FS	– file	system in	clouds-of-clouds

5

6/15/17

3

DEPSKY:	FILE	STORAGE	IN	CLOUDS-
OF-CLOUDS

6

DepSky

• Client-side	library	for	cloud-of-clouds	storage
– File	storage,	similar	to	Amazon	S3:	read/write	files,	etc.

• Use	storage	cloud	services (S3,	etc.) as	they	are:	
– All	code	at	the	client

• Data	is	updatable
– Byzantine	quorum	
replication	
protocols	for	
consistency

7

Amazon S3

Nirvanix

Rackspace

Windows
Azure

6/15/17

4

Cloud A

Cloud B

Cloud C

Cloud D

Write	protocol

8

WRITE
FILE

D

ACK

D

D

D

D

WRITE
METADATA

qwjda
sjkhd
ahsd

ACK

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

time

Cloud A

Cloud B

Cloud C

Cloud D

Read	protocol

9

REQUEST
FILE

D

FILE

D

D

D

D

REQUEST
METADATA

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

METADATA

qwjda
sjkhd
ahsd

File	is	fetched	from	other	clouds	if	signature	doesn’t	match	the	file

highest	version	number
(+fastest	or	cheapest	cloud)

time

6/15/17

5

Cloud A Cloud B Cloud C Cloud D

DepSky-A:	limitations

10

Data
• Data	is	accessible	

by	cloud	providers
• Requires	n×|Data|	

storage	space

Data Data DataData

Cloud A Cloud B Cloud C Cloud D

DepSky-CA:	combining erasure	codes	
and	secret	sharing

11

S1 S2 S3 S4

share

K keyData

disperse

F1 F2 F3 F4

F1 S1 F2 S2 F3 S3 F4 S4

encrypt

Inverse	process	for	reading	
from	f+1 shares/fragmentsEncrypted	so	data	can’t	be	read	at	a	cloud!

Only	2x	the	size	of	storage,	not	4x!

Only	for	data,	
not	metadata

6/15/17

6

DepSky latency	
100KB	files,	clients	in	PlanetLab nodes

13

DepSky’s read latency	is	close	to	the	cloud	with	the	best latency

DepSky’s write latency	is	close	to	the	cloud	with	the	worst latency

SCFS:	FILE	SYSTEM	IN	CLOUDS-OF-
CLOUDS

15

6/15/17

7

Storage	vs.	File	System
(DepSky vs.	SCFS)

• Storage	(DepSky)
– API:	simple	operations	
over	data	blocks

– same	consistency	as	clouds

– create(id)
– read(fd)
– write(fd,block)
– delete(fd)
– lock(fd)
– unlock(fd)
– setACL(fd)

• File	system	(SCFS)
– API:	~POSIX,	so	unmodified	apps	
can	use	it	(uses	FUSE)

– strong	consistency

– open(path,flags)
– read(fd,buffer,length,offset)
– write(fd,buffer,length,offset)
– chmod(path,mode)
– mkdir(path,mode)
– flush, fsync, link, rmdir,

symlink, chown,...

16

Storage
clouds

Coordination
Service

Cloud storageCache

Cache

Cache

Lock
Service

Access
Control

Metadata

Computing
cloudsSCFS

Agent

SCFS
Agent

SCFS
Agent

SCFS	architecture

6/15/17

8

Features

• Data	layout/access	pattern
– Each	file	is	an	object	(single-block	file)
– Multiple	versions	of	the	files	are	maintained
– Always	write,	avoid	reading	(exploiting	free	writes)

• Caching	
– File	cache:	persistent	(to	avoid	reading)

• Local	storage	is	used	to	hold	copies	of	all/most	client	files
• Opened	files	are	also	maintained	in	main-memory

– Metadata	cache:	short-lived,	main-memory	
• To	deal	with	bursts	of	metadata requests

Features

• Consistency
– Consistency-on-close	semantics

• when	user	closes	a	file,	all	updates	he	did	become	observable	by	
the	rest	of	the	users	

– Locks	to	avoid	write-write	conflicts

• Modular	coordination
– Metadata	is	stored	in	a	coordination	service

• e.g.,	Apache	Zookeeper	(crash	fault-tolerant),	
our	own	DepSpace (Byzantine/intrusion-tolerant)

– Also	used	for	managing	file	locks
– Separate	data	from	metadata

6/15/17

9

La
te
nc
y	
(s
)

fr
om

	in
st
an

t	h
os
t	A

	c
lo
se
s	

fil
e	
un

til
	h
os
t	B

	se
es
	it

Sharing	latency:	SCFS	vs DropBox

Amazon S3

Google
Storage

Rackspace
Files

Windows
Azure Blob

DATA

DATA

DATA

DATA

Non-blocking

Blocking

Cloud-of-clouds	doesn’t	increase	latency
Blocking good for

latency (in this sense)

SCFS	slightly
better	than
Dropbox

SCFS	

SAFECLOUD-FS	– AN	ENHANCED	
CLOUD-OF-CLOUDS	FILE	SYSTEM

25

6/15/17

10

SCFS:	opportunities

• Coordination	service stores	metadata	(e.g.,	
filenames,	directories)	in	clear

• Integrity	verification of	data	stored	in	a	cloud	
requires	first	downloading	the	data	

• Intrusion	recovery	– when	a	user	account	is	
compromised	and	data	corrupted,	recovery	has	to	be	
done	manually

26

SafeCloud-FS
• Based	on	SCFS,	with	the	features	just	explained,	but:
• Coordination	service HomomorphicSpace

– Based	on	DepSpace but	supports	homomorphic	operations
– Based	on	the	MorphicLib library	(Java)

• Operations:	searchable,	order	preserving,	summable,	multipliable
– Stores	file	metadata	encrypted	

• Integrity	verification:	SafeAudit
– integrity	verification	of	stored	data	without	downloading	
it,	using	homomorphic	signatures

• Intrusion	recovery	automatically	with	SafeRCloud

27

6/15/17

11

WRAP-UP

28

Conclusions
• Masking	faults	/	intrusions	using	clouds-of-clouds
• DepSky:	storage	clouds-of-clouds	

– Availability,	integrity,	disaster-tolerance,	no	vendor	lock-in,	
confidentiality

• SCFS:	a	cloud-backed	file	system
– Based	on	DepSky and	providing	similar	guarantees	but	
near-POSIX	API

• SafeCloud-FS:	an	enhanced	cloud-backed	file	system
– Ongoing	work

29

6/15/17

12

Thank you
• Papers:

– DepSky:	Dependable	and	Secure	Storage	in	a	Cloud-of-Clouds.	
ACM	Transactions	on	Storage,	2013	(also	EuroSys 2010)

– SCFS:	a	Shared	Cloud-backed	File	System.	
Usenix Annual	Technical	Conference	(ATC),	2014

• Code:	
– DepSky:	http://cloud-of-clouds.github.io/depsky/
– SCFS:	http://cloud-of-clouds.github.io/SCFS/

• My web:	http://www.gsd.inesc-id.pt/~mpc/	

