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Clouds	are	complex	so	they	fail
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These	faults	can	stop	services,	corrupt	state	
and	execution:	Byzantine/malicious	faults
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Cloud-of-Clouds

• Consumer	runs	service	on	a	set	of	clouds	forming	a	
virtual	cloud,	what	we	call	a	cloud-of-clouds

• Related	to	the	notion	of	federation	of	clouds
– Federation	of	clouds	– a	virtual	cloud	created	by	cloud	
providers;	requires	cooperation	between	providers

– Cloud-of-clouds – an	ad-hoc	virtual	cloud	created	by	
consumers;	no	cooperation	between	clouds	needed
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User

Cloud-of-Clouds	dependability+security

• There	is	redundancy	and	diversity between	clouds
• so	even	if	some	clouds	fail	a	cloud-of-clouds that	
implements	replication can	still	guarantee:
– Availability – if	some	stop,	the	others	are	still	there
– Integrity – if	some	corrupt	data,	data	is	still	at	the	others
– Disaster-tolerance	– clouds	can	be	geographically	far
– No	vendor	lock-in	– several	clouds	anyway

• plus,	although,	not	specific	to	cloud-of-clouds:
– Confidentiality (from	clouds)	– encryption	
– Confidentiality/integrity (from	users)	– access	control

4
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Outline

• DepSky – file	storage in	clouds-of-clouds

• SCFS – file	system in	clouds-of-clouds

• SafeCloud-FS	– file	system in	clouds-of-clouds
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DEPSKY:	FILE	STORAGE	IN	CLOUDS-
OF-CLOUDS
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DepSky

• Client-side	library	for	cloud-of-clouds	storage
– File	storage,	similar	to	Amazon	S3:	read/write	files,	etc.

• Use	storage	cloud	services (S3,	etc.) as	they	are:	
– All	code	at	the	client

• Data	is	updatable
– Requires	Byzantine	
quorum	replication	
protocols	for	
consistency
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Read	protocol
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DepSky-A:	limitations
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Data
• Data	is	accessible	

by	cloud	providers
• Requires	n×|Data|	

storage	space

Data Data DataData
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Cloud A Cloud B Cloud C Cloud D

DepSky-CA:	combining erasure	codes	
and	secret	sharing
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Inverse	process	for	reading	
from	f+1 shares/fragmentsEncrypted	so	data	can’t	be	read	at	a	cloud!

Only	~2x	the	size	of	storage,	not	4x!

Only	for	data,	
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Consistency	proportionality

• The	consistency	provided	by	DepSky is	the	same	as	
the	base	storage	clouds
– If	the	weakest	consistency	cloud	provides	eventual	
consistency,	DepSky provides	eventual	consistency

– If	the	weakest	consistency	cloud	provides	regular	storage,	
DepSky provides	regular	storage

– …
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DepSky latency	
100KB	files,	clients	in	PlanetLab nodes
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DepSky’s read latency	is	close	to	the	cloud	with	the	best latency

DepSky’s write latency	is	close	to	the	cloud	with	the	worst latency

DepSky perceived	availability
• perceived	availability	=	n.	of	files	read	/	n.	of	read	attempts
• impacted	by	the	cloud	and	Internet	availability

14
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SCFS:	FILE	SYSTEM	IN	CLOUDS-OF-
CLOUDS
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Storage	vs.	File	System
(DepSky vs.	SCFS)

• Storage	(DepSky)
– API:	simple	operations	
over	data	blocks

– same	consistency	as	clouds

– create(id)
– read(fd)
– write(fd,block)
– delete(fd)
– lock(fd)
– unlock(fd)
– setACL(fd)

• File	system	(SCFS)
– API:	~POSIX,	so	it’s	mounted	
and	unmodified	apps	can	use	it	
(uses	FUSE)

– strong	consistency

– open(path,flags)
– read(fd,buffer,length,offset)
– write(fd,buffer,length,offset)
– chmod(path,mode)
– mkdir(path,mode)
– flush, fsync, link, rmdir, 

symlink, chown,...

16
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Shared	Cloud-backed	File	System-SCFS
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Features

• Data	layout/access	pattern
– Each	file	is	an	object	(single-block	file)
– Multiple	versions	of	the	files	are	maintained
– Always	write,	avoid	reading	(exploiting	free	writes)

• Caching	
– File	cache:	persistent	(to	avoid	reading)

• Local	storage	is	used	to	hold	copies	of	all	client	files	(that	fit)
• Opened	files	are	also	maintained	in	main-memory

– Metadata	cache:	short-lived,	main-memory	
• To	deal	with	bursts	of	metadata requests

Features

• Consistency
– Consistency-on-close	semantics

• when	user	closes	a	file,	all	updates	he	did	become	observable	by	
the	rest	of	the	users	

– Locks	to	avoid	write-write	conflicts

• Modular	coordination
– Metadata	is	stored	in	a	coordination	service

• e.g.,	Apache	Zookeeper	(crash	fault-tolerant),	
our	own	DepSpace (Byzantine/intrusion-tolerant)

– Also	used	for	managing	file	locks
– Separate	data	from	metadata
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• Problem:	How	to	provide	strong	consistency	on	top	of	weak	
consistency	storage	clouds? (typically	eventual	consistency)

• Key	property:	the	composite	storage’	consistency	is	the	same	of	the	
consistency	anchor	(typ.	atomic	consistency)

• Coordination	service	serves	as	consistency	anchor	

Consistency	anchor

Storage
Service

Consistency
Anchor

Algorithm
write

read

Composite
Storage

strong	consistency

strong	consistency

weak	consistency
write

read

write

read

• SCFS	can	use	different	configurations/backends

• Operation:	blocking,	non-blocking	and	non-sharing

With PNSs, the amount of storage used in the coordi-
nation service is proportional to the percentage of shared
files in the system. Previous work show traces with 1 mil-
lion files where only 5% of them are shared [33]. Without
PNSs, the metadata for these files would require 1 million
tuples of around 1KB, for a total size of 1GB of storage
(the approximate size of a metadata tuple is 1KB, assum-
ing 100B file names). With PNSs, only 50 thousand tuples
plus one PNS tuple per user would be needed, requiring a
little more than 50MB of storage. Even more importantly,
by resorting to PNSs, it is possible to reduce substantially
the number of accesses to the coordination service, allow-
ing more users and files to be served.

3 SCFS Implementation
SCFS is implemented in Linux as a user-space file sys-

tem based on FUSE-J, which is a wrapper to connect the
SCFS Agent to the FUSE library. Overall, the SCFS
implementation comprises 6K lines of commented Java
code, excluding any coordination service or storage back-
end code. We opted to develop SCFS in Java mainly
because most of the backend code (the coordination and
storage services) were written in Java and the high latency
of cloud accesses make the overhead of using a Java-based
file system comparatively negligible.

3.1 Modes of Operation
Our implementation of SCFS supports three modes of

operation, based on the consistency and sharing require-
ments of the stored data.

The first mode, blocking, is the one described up to this
point. The second mode, non-blocking, is a weaker ver-
sion of SCFS in which closing a file does not block until
the file data is on the clouds, but only until it is written
locally and enqueued to be sent to the clouds in back-
ground. In this model, the file metadata is updated and
the associated lock released only after the file contents are
updated to the clouds, and not when the close call returns
(so mutual exclusion is preserved). Naturally, this model
leads to a significant performance improvement at cost of
a reduction of the durability and consistency guarantees.
Finally, the non-sharing mode is interesting for users that
do not need to share files, and represents a design similar
to S3QL [7], but with the possibility of using a cloud-of-
clouds instead of a single storage service. This version
does not require the use of the coordination service, and
all metadata is saved on a PNS.

3.2 Backends
SCFS can be plugged to several backends, including

different coordination and cloud storage services. This pa-
per focuses on the two backends of Figure 5. The first one
is based on Amazon Web Services (AWS), with an EC2
VM running the coordination service and file data being
stored in S3. The second backend makes use of the cloud-

of-clouds (CoC) technology, recently shown to be prac-
tical [9, 12, 15]. A distinct advantage of the CoC back-
end is that it removes any dependence of a single cloud
provider, relying instead on a quorum of providers. It
means that data security is ensured even if f out-of 3f+1
of the cloud providers suffer arbitrary faults, which en-
compasses unavailability and data deletion, corruption or
creation [15]. Although cloud providers have their means
to ensure the dependability of their services, the recurring
occurrence of outages, security incidents (with internal or
external origins) and data corruptions [19, 24] justifies the
need for this sort of backend in several scenarios.
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Figure 5: SCFS with Amazon Web Services (AWS) and Cloud-
of-Clouds (CoC) backends.

Coordination services. The current SCFS prototype sup-
ports two coordination services: Zookeeper [29] and
DepSpace [13] (in particular, its durable version [16]).
These services are integrated at the SCFS Agent with sim-
ple wrappers, as both support storage of small data entries
and can be used for locking. Moreover, these coordina-
tion services can be deployed in a replicated way for fault
tolerance. Zookeeper requires 2f + 1 replicas to tolerate
f crashes through the use of a Paxos-like protocol [30]
while DepSpace uses either 3f + 1 replicas to tolerate
f arbitrary/Byzantine faults or 2f + 1 to tolerate crashes
(like Zookeeper), using the BFT-SMaRt replication en-
gine [17]. Due to the lack of hierarchical data structures in
DepSpace, we had to extend it with support for triggers to
efficiently implement file system operations like rename.
Cloud storage services. SCFS currently supports Ama-
zon S3, Windows Azure Blob, Google Cloud Storage,
Rackspace Cloud Files and all of them forming a cloud-
of-clouds backend. The implementation of single-cloud
backends is simple: we employ the Java library made
available by the providers, which accesses the cloud stor-
age service using a REST API over SSL. To implement
the cloud-of-clouds backend, we resort to an extended
version of DepSky [15] that supports a new operation,
which instead of reading the last version of a data unit,
reads the version with a given hash, if available (to imple-
ment the consistency anchor algorithm - see §2.4). The
hashes of all versions of the data are stored in DepSky’s
internal metadata object, stored in the clouds.

SCFS	configurations

Intrusion-tolerant	configuration
(uses	DepSky)
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Sharing	latency:	SCFS	vs DropBox

Amazon S3
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Storage
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Files

Windows 
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DATA

DATA

DATA

DATA

Non-blocking

Blocking

Cloud-of-clouds	doesn’t	increase	latency
Blocking good for 

latency (in this sense)

SCFS	slightly
better	than
Dropbox

SCFS	

Benchmarking	unmodified	desktop	
applications

OpenOffice
Writer

Micro-benchmark #Operations File size SCFS-AWS SCFS-CoC S3FS S3QL LocalFSNS NB B NS NB B
sequential read 1 4MB 1 1 1 1 1 1 6 1 1
sequential write 1 4MB 1 1 1 1 1 1 2 1 1
random 4KB-read 256k 4MB 11 11 15 11 11 11 15 11 11
random 4KB-write 256k 4MB 35 39 39 35 35 36 52 152 37
create files 200 16KB 1 102 229 1 95 321 596 1 1
copy files 100 16KB 1 137 196 1 94 478 444 1 1

Table 3: Latency of several Filebench micro-benchmarks for SCFS (six variants), S3QL, S3FS and LocalFS (in seconds).

The benchmark follows the behavior observed in traces
of a real system, which are similar to other modern desk-
top applications [25]. Typically, the files managed by the
cloud-backed file system are just copied to a temporary
directory on the local file system where they are manipu-
lated as described in [25]. Nonetheless, as can be seen in
the benchmark definition (Figure 7), these actions (espe-
cially save) still impose a lot of work on the file system.

Open Action: 1 open(f,rw), 2 read(f), 3-5 open-write-close(lf1), 6-8
open-read-close(f), 9-11 open-read-close(lf1)

Save Action: 1-3 open-read-close(f), 4 close(f), 5-7 open-read-
close(lf1), 8 delete(lf1), 9-11 open-write-close(lf2), 12-14 open-
read-close(lf2), 15 truncate(f,0), 16-18 open-write-close(f), 19-
21 open-fsync-close(f), 22-24 open-read-close(f), 25 open(f,rw)

Close Action: 1 close(f), 2-4 open-read-close(lf2), 5 delete(lf2)

Figure 7: File system operations invoked in the file synchro-
nization benchmark, simulating an OpenOffice document open,
save and close actions (f is the odt file and lf is a lock file).

Figure 8 shows the average latency of each of the three
actions of our benchmark for SCFS, S3QL and S3FS, con-
sidering a file of 1.2MB, which corresponds to the aver-
age file size observed in 2004 (189KB) scaled-up 15% per
year to reach the expected value for 2013 [11].
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Figure 8: Latency of file synchronization benchmark actions
(see Figure 7) with a file of 1.2MB. The (L) variants maintain
lock files in the local file system. All labels starting with CoC or
AWS represent SCFS variants.

Figure 8(a) shows that SCFS-CoC-NS and S3QL ex-
hibit the best performance among the evaluated file sys-
tems, having latencies similar to a local file system (where
a save takes around 100 ms). This shows that the added
dependability of a cloud-of-clouds storage backend does
not prevent a cloud-backed file system to behave similarly
to a local file system, if the correct design is employed.

Our results show that SCFS-*-NB requires substan-
tially more time for each phase due to the number of ac-

cesses to the coordination service, especially to deal with
the lock files used in this workload. Nonetheless, saving a
file in this system takes around 1.2 s, which is acceptable
from the usability point of view. A much slower behavior
is observed in the SCFS-*-B variants, where the creation
of a lock file makes the system block waiting for this small
file to be pushed to the clouds.

We observed that most of the latency comes from the
manipulation of lock files. However, the files accessed did
not need to be stored in the SCFS partition, since the lock-
ing service already prevents write-write conflicts between
concurrent clients. We modified the benchmark to repre-
sent an application that writes lock files locally (in /tmp),
just to avoid conflicts between applications in the same
machine. The (L) variants in Figure 8 represent results
with such local lock files. These results show that remov-
ing the lock files makes the cloud-backed system much
more responsive. The takeaway here is that the usability
of blocking cloud-backed file systems could be substan-
tially improved if applications take into consideration the
limitations of accessing remote services.
Sharing files. Personal cloud storage services are of-
ten used for sharing files in a controlled and convenient
way [20]. We designed an experiment for comparing
the time it takes for a shared file written by a client to
be available for reading by another client, using SCFS-
*-{NB,B}. We did the same experiment considering a
Dropbox shared folder (creating random files to avoid
deduplication). We acknowledge that the Dropbox de-
sign [20] is quite different from SCFS, but we think it is
illustrative to show how a cloud-backed file system com-
pares with a popular file synchronization service.

The experiment considers two clients A and B deployed
in our cluster. We measured the elapsed time between the
instant client A closes a variable-size file that it wrote to a
shared folder and the instant it receives an UDP ACK from
client B informing the file was available. Clients A and B
are Java programs running in the same LAN, with a ping
latency of around 0.2 ms, which is negligible considering
the latencies of reading and writing. Figure 9 shows the
results of this experiment for different file sizes.

The results show that the latency of sharing in SCFS-*-
B is much smaller than what people experience in current
personal storage services. These results do not consider

AWS AWS CoC S3FS
Non-blocking Blocking

CoC
(Non-Sharing)

CoC S3QL

80%

40%

55%
lock file
ops; may
be done
locally

1.2	MB	file

Doing locks locally reduces much the latency

Lots	of	operations;	doing	this	remotely...

Cloud-of-clouds	per	se	doesn’t	increase	latency	much
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SAFECLOUD-FS	– AN	ENHANCED	
CLOUD-OF-CLOUDS	FILE	SYSTEM

25

SCFS:	opportunities

• Coordination	service stores	metadata	(e.g.,	
filenames,	directories)	in	clear

• Integrity	verification of	data	stored	in	a	cloud	
requires	first	downloading	the	data	

• Intrusion	recovery	– when	a	user	account	is	
compromised	and	data	corrupted,	recovery	has	to	be	
done	manually

26
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SafeCloud-FS
• Based	on	SCFS,	with	the	features	just	explained,	but:
• Coordination	service HomomorphicSpace

– Based	on	DepSpace but	supports	homomorphic	operations
– Based	on	the	MorphicLib library	(Java)

• Operations:	searchable,	order	preserving,	summable,	multipliable
– Stores	file	metadata	encrypted	

• Integrity	verification:	SafeAudit
– integrity	verification	of	stored	data	without	downloading	
it,	using	homomorphic	signatures

• Intrusion	recovery	automatically	with	SafeRCloud

27

WRAP-UP

28
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Conclusions
• Masking	faults	/	intrusions	using	clouds-of-clouds
• DepSky:	storage	clouds-of-clouds	

– Availability,	integrity,	disaster-tolerance,	no	vendor	lock-in,	
confidentiality

– Faults	in	clouds	+	versions,	so	Byzantine	quorum	system	
protocols	

– Same	consistency	as	the	storage	clouds
– Erasure	codes	to	reduce	the	size	of	data	stored
– Secret	sharing	to	store	cryptographic	keys	in	clouds	

29

Conclusions

• SCFS:	a	cloud-backed	file	system
– Based	on	DepSky and	providing	similar	guarantees	but	
near-POSIX	API

– so	it	needs	strong	consistency	provided	by	coordination	
service

– caching	and	careful	design	allows	good	performance

• SafeCloud-FS:	an	enhanced	cloud-backed	file	system
– Encrypted	metadata
– Integrity	verification
– Intrusion	removal

30
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Thank you
• Papers:

– DepSky:	Dependable	and	Secure	Storage	in	a	Cloud-of-Clouds.	
ACM	Transactions	on	Storage,	2013	(also	EuroSys 2010)

– SCFS:	a	Shared	Cloud-backed	File	System.	
Usenix Annual	Technical	Conference	(ATC),	2014

• Code:	
– DepSky:	http://cloud-of-clouds.github.io/depsky/
– SCFS:	http://cloud-of-clouds.github.io/SCFS/

• My web:	http://www.gsd.inesc-id.pt/~mpc/	


