U

Cloud Service Dependability:
Masking and Recovering

Miguel P. Correia
15th MDPS Workshop
Lyon, France — Nov. 2015

Joint work with Alysson Bessani, Dario Nascimento, B. Quaresma, F.
André, P. Sousa, R. Mendes, T. Oliveira, N. Neves, M. Pasin, P. Verissimo

~

TECNICO . .
LISBOA % nescid
03 *égi}

ULisboa / IST / INESC-ID

* Universidade de Lisboa

— largest univ. in Portugal; ~50K students; ~460 programs; 18 schools
* Instituto Superior Técnico

— largest engineering school in Portugal; ~12K students; 80 programs

* INESC-ID

— large lab in computer science and electrical engineering; 100+ PhDs
(most IST faculty); hundreds of PhD and Master students; many
research groups

20/01/16

Clouds are complex so they fail

|Ma.gnolia Suffers Major Data Loss, Site Taken Offline

Uncategorized

Cloud computing takes hit in Sidekick data loss

By Robert Johnson on Tharscay, September 23, 2010 at 5:29pm

r . More Details on Today's Outage
£d Window

EJ share | & B3 G0 [}
Facebook helps you connect and share with the people in your life.
The "cloud"” tumned stor no 1: l
A .
nsole | iy Creat N

Windo ~ng

29 Feb 201

Now that we have fully restored fu

Ilead the engineering organization resplevents that occurred with the Ama GOOgle App Engine Downtime

¥ o = Noti
Stalked Teens, Spied . fy : P
M from d App Engine Datastore age - May
Chats (Updated) > App Engine Team Vieworotie More o)

. . May 25th Datastore Outage Post-mortem
(We entrust Google with our most private pnd

- deliberately destro;

communications because we assume the v Summary
‘On May 25th, App Engine’s Datastore experienced a failure causing an
unexpected read-only period while traffic moved to the secondary data
center. The outage affected all App Engine applications using the 3

company takes every precaution to safeguard

our data. It doesn't. A Google engineer spied on
four underage teens for months before the

Outline

* Masking faults
— DepSky — file storage
— SCFS — file system

* Recovering from faults

— Shuttle — recovery system

20/01/16

DEPSKY: MASKING FAULTS IN
STORAGE CLOUDS-OF-CLOUDS

Cloud-of-Clouds

* Consumer runs service on a set of clouds forming a
virtual cloud, what we call a cloud-of-clouds

* Related to the notion of federation of clouds

— Federation of clouds suggests a virtual cloud created by
providers; some level of cooperation between clouds

— Cloud-of-clouds suggests an ad-hoc virtual cloud created
by consumers; no cooperation between clouds

20/01/16

Cloud-of-Clouds dependability+security

There is redundancy and diversity between clouds
so even if some clouds fail a cloud-of-clouds that
implements replication can still guarantee:

— Availability — if some stop, the others are still there

— Integrity — if some corrupt data, data is still at the others
— Disaster-tolerance — clouds can be geographically far

— No vendor lock-in — several clouds anyway
plus, although, not specific to cloud-of-clouds:

— Confidentiality (from clouds) — encryption

— Confidentiality/integrity (from users) — access control

DepSky

* Client-side library for cloud-of-clouds storage

— File storage, similar to Amazon S3: read/write files, etc.
* Use storage clouds as they are:

— All code at the client
« Data is updatable -

— Byzantine quorum g \
replication g X

(
protocols for \

. \ o
consistency {‘ “‘
Ey \\\\77 < Windows

\\ Azure

20/01/16

Werite protocol

time

WRITE WRITE
FILE ACK METADATA ACK

\WI-\\
~—=aTERNNG ol A

Read protocol

REQUEST
METADATA REQUEST FILE

METADATA FILE

[File is fetched from other clouds if signature doesn’t match the file] i,

20/01/16

DepSky-A: limitations

* Datais accessible
(Data] by cloud providers
Requires nx|Datal|

storage space

11

DepSky-CA: combining erasure codes

and secret sharing
Only for data,

) encrypt

Encrypted so data can’t be read at a cloud!

Only twice the size of storage, not 4 times!

20/01/16

Consistency proportionality

* The consistency provided by DepSky is the same as
the base storage clouds

— If the weakest consistency cloud provides eventual
consistency, DepSky provides eventual consistency

— If the weakest consistency cloud provides read your
writes, DepSky provides read your writes

— If the weakest consistency cloud provides regular storage,
DepSky provides regular storage

13

Read Latency (seconds)

Write Latency (seconds)

DepSky latency

100KB files, clients in PlanetLab nodes

[DepSky’s read latency is close to the cloud with the best latency

US-CA New Zealand Japan

Brazil Us-PA US-CA New Zealand Japan China Spain

[DepSky’s write latency is close to the cloud with the worst latency

14

20/01/16

DepSky perceived availability

* perceived availability = n. of files read / n. of tries

* impacted by the cloud and Internet availability

[Location || Reads Tried || DEPSKY-A | DEPSKY-CA || Amazon S3 | Rackspace | Azure | Nirvanix |
Brazil 8428 1.0000 0.9998 1.0000 0.9997 0.9793 0.9986
US-PA 5113 1.0000 1.0000 0.9998 1.0000 1.0000 0.9880
US-CA 8084 1.0000 1.0000 0.9998 1.0000 1.0000 0.9996
New Zealand 8545 1.0000 1.0000 0.9998 1.0000 0.9542 0.9996
Japan 8392 1.0000 1.0000 0.9997 0.9998 0.9996 0.9997
China 8594 1.0000 1.0000 0.9997 1.0000 0.9994 1.0000
Spain 6550 1.0000 1.0000 1.0000 1.0000 0.9796 0.9995
UK 7069 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000

15

SCFS: MASKING FAULTSIN A
CLOUD-OF-CLOUDS FILE SYSTEM

16

20/01/16

Storage vs. File System
(DepSky vs. SCFS)

» Storage (DepSky)

* File system (SCFS)
— API: ~POSIX, so unmodified apps

— API: simple operations

over data blocks

— same consistency as clouds

— create(id)

— read(fd)

— write(fd,block)
— delete(£fd)

— lock(fd)

— unlock(fd)

— setACL(fd)

can use it (uses FUSE)
strong consistency

open(path, flags)

read(fd,buffer,length,offset)

write(fd,buffer,length,offset)

chmod (path,mode)
mkdir (path,mode)

flush, fsync, link, rmdir,

symlink, chown,...

Shared Cloud-backed File System-SCFS

Client-based:
Uses existing
cloud storage
services

Strong Consistency

Cloud Storage

DATA DATA

Controlled sharing:
Access control for

Pay-per ownership:
Each client pays
for its own files

SCFS
Agent

N5y

Redundant
Cloud Services

security and concurrency

20/01/16

Features

» Data layout/access pattern
— Each file is an object (single-block file)
— Multiple versions of the files are maintained
— Always write, avoid reading (exploiting free writes)

* Caching
— File cache: persistent (to avoid reading)
* Local storage is used to hold copies of all/most client files
* Opened files are also maintained in main-memory
— Metadata cache: short-lived, main-memory

* To deal with bursts of metadata requests

Features

* Consistency

— Consistency-on-close semantics

* when user closes a file, all updates he did become observable by
the rest of the users

— Locks to avoid write-write conflicts

* Modular coordination

— Metadata is stored in a coordination service

* e.g., Zookeeper (crash fault-tolerant), DepSpace (intrusion-
tolerant)

— Also used for managing file locks
— Separate data from metadata

20/01/16

10

SCFS architecture

Coordination

Consistency anchor

* Problem: How to provide strong consistency on top of weak
consistent storage clouds? (typ. eventual consistency)

Composite weak consistency

Storage write S

strong consistency Service

read
write
Algorithm |

rong consistency,
read

rite .
Consistency
Anchor
ead

* Key property: the composite storage’ consistency is the same
of the consistency anchor (typ. atomic consistency)

20/01/16

11

SCFS configurations

* SCFS can use different configurations/backends

Intrusion-tolerant configuration
(uses DepSky)

EC2

(
BFT-SMaRt’
SCFS SCFS
Agent Agent

AWS Backend CoC Backend

DepSky*\ 7 .

* Operation: blocking, non-blocking and non-sharing

Sharing latency: SCFS vs DropBox

had

?

Rackspace
Files
Rem— oogle
torage

indows

120 : — SCFS slightly
2 <100 90°/o value I:I o 8 |Dbetterthan
S 50% value I 2 §° | Dropbox
iy] L Q 4
v§ @ 80 8 ¢ Non-blocking
>0 o
SS% 60
TS
mTEE 40+
—£3 Blocking
s 20! oo
=4
0

. 16M Blocking good for
Cloud-of-clouds doesn’t increase latency Data Size latency (in this sense)

20/01/16

12

Benchmarking unmodified desktop
applications

1.2 MB file

Open Action: 1 open(f,rw), 2 read(f), 3-5 open-write-close(lf1); 6-8 55%

open-read-close(f), 9-11 open-read-close(Ifl) lock fil
Save Action: 1-3 open-read-close(f), 4 close(f), 5-7 open-read- 0C X e
closclfi). 8 delete{If1): 9-11 open-write-close({f2), 12-14 open- | 490/ ggs donr]wgy
. read-close(1f2); 15 truncate(f,0), 16-18 open-write-close(f), 19-
OpenOffice 21 open-fsync-close(f), 22-24 open-read-close(f), 25 open(f,rw) 80% Iocally
(o]

Writer Close Action: 1 close(f), 2-4 open-read-close(1f2), 5 delete(1f2)

Lots of operations; doing this remotely...

25 25
» Open m —
“ 2 Sve = | B o0 |See s |
&> 1.5 Close = - > 15 [Close = \ \ |
g 1 | §10f :
c 05+ iy ® 5} N i
AWS COC(:NOHQSOhgrlng)SSQL AWS CoC S3FS
Non-blocking Blocking

Doing locks locally

Cloud-of-clouds per se doesn’t increase latency reduces much the latency

SHUTTLE: RECOVERING FROM
INTRUSIONS IN PAAS CLOUDS

26

20/01/16

13

Platform as a Service (PaaS)

* PaaS services allow running applications

* Consumer develops application to run in that
environment, using
— Supported languages, e.g., Java, Python, Go, PHP

— Supported components, e.g., SQL/noSQL databases, load
balancers

— Examples: Google App Engine, Windows Azure Cloud
Services, Salesforce Force.com,...

27

Shuttle

* Recovers Paa$ applications’ state integrity when
there are intrusions

* Isn’t it what backups do?
— Backups: remove both bad and good operations
— Shuttle: removes bad operations but keeps good ones

Malicious
User operation | ©Peration

Backu
P 28

20/01/16

14

Features

Supported by the cloud: available without consumer
setup

Supports applications deployed in various instances

Avoids application downtime as no need to stop the
application during recovery

Leverage elasticity to make recovery faster

29

Shuttle architecture

User requests

Legend:
| Load |
| Balancer |
—_—
. User Requests
,_IML Interceptor : a
I Application ',_l____-_-___ >
<] "Server ! A"S"ij‘e"f“ ! : Replay Requests
I RS, -
\4 Control Messages
[DBProy_] [DBProxy_]

- 1
Database | i Database
I Instance : ! Instance !

30

20/01/16

15

Replay Process

. Detect/identify the malicious operations (not Shuttle)
of the application and database

. Load a snapshot previous to intrusion instant; create
a new branch (application stays running in previous branch)

in new branch
. Block incoming requests; replay last requests

; shutdown unnecessary
instances

31

Replay Modes

Full-Replay: Replay every operation after snapshot
Selective-Replay: Replay only affected (tainted) operations

Serial: Replay all dependency graph sequentially
Clustered: Independent clusters can be replayed

concurrently; allowed by the cloud elasticity Q_,Q_,O
Modes supported: O-)O-)O

Full-Replay | Selective-Replay

1 Cluster (Serial) | v/ v

Clustered v X

32

20/01/16

16

20/01/16

Evaluation Environment

Amazon EC2, c3.xlarge instances, Gb Ethernet

WildFly (formely JBoss) application servers

Voldemort database

Ask Q&A application; data from Stack Exchange

33

Performance overhead

* in normal execution

Workload A Workload B
Shuttle 6325 ops/sec [5.78 ms] 15346 ops/sec [3.62 ms]
No Shuttle | 7148 ops/sec [5.07 ms] ' 17821 ops/sec [3.01 ms]
overhead 13% [14%)] 16% [20%]

Overhead seems acceptable; penalty mostly due to single proxy

34

17

Recovery time

e for 1 million requests

2500 ‘ , |
serial replay -->¢-
2 2000 clustered replay ——
S
()
2 1500
2 X
21000
5
E‘ 500 [= \ % ; 5¢ - |

(%:00 05:‘00 10:00 15:00 20:00 25:00 30:0
Time (minutes:seconds)

Clustering greatly reduces recovery time 35

Storage overhead

e for 1 million requests

objects size (MB)
Shuttle Storage:
Request 1 million 212
Response 1 million
Start/end timestamps 2 million 16
Keys 137 million 488
Total 9 684
Database node:
Version List 14 593 1.4
Operation list 9 million 277
Total 282
Manager:
Graph 1 million 718

Storage is considerable but mostly due to storing full responses .

20/01/16

18

20/01/16

WRAP-UP

37

Conclusions

* Masking / recovering faults / intrusions in the cloud

* DepSky: storage clouds-of-clouds

— Availability, integrity, disaster-tolerance, no vendor lock-
in, confidentiality

— Faults in clouds + versions, so Byzantine quorum system
protocols

— Same consistency as the storage clouds
— Erasure codes to reduce the size of data stored
— Secret sharing to store cryptographic keys in clouds

38

19

20/01/16

Conclusions

: a cloud-backed file system

Based on DepSky and providing similar guarantees but
near-POSIX API

so it needs strong consistency provided by coordination
service

caching and careful design allows good performance

: a recovery service for PaaS offerings

Supports applications running in multiple instances

Leverages elasticity/pay-per-use to reduce the recovery
time and costs

39

Thank you

* Papers:

— DepSky: Dependable and Secure Storage in a Cloud-of-Clouds.
ACM Transactions on Storage, 2013 (also at EuroSys 2010)

— SCFS: a Shared Cloud-backed File System.
Usenix Annual Technical Conference (ATC), 2014

— Shuttle: Intrusion Recovery for PaaS.
International Conference on Distributed Computing Systems (ICDCS), 2015

* Code:
— DepSky: http://cloud-of-clouds.github.io/depsky/
— SCFS: http://cloud-of-clouds.github.io/SCFS/
— Shuttle: https://github.com/dnascimento/shuttle
* My web: http://www.gsd.inesc-id.pt/~mpc/

TECNICO
LISBOA

20

