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Clouds	are	complex	so	they	fail	

3	

These	faults	can	stop	services,	corrupt	state		
and	execu]on:	Byzan]ne/malicious	faults	

Outline	

•  Masking	faults	
– DepSky	–	file	storage	

– SCFS	–	file	system	

•  Recovering	from	faults	
– Shufle	–	recovery	system	
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DEPSKY:	MASKING	FAULTS	IN		
STORAGE	CLOUDS-OF-CLOUDS	

5	

Cloud-of-Clouds	

•  Consumer	runs	service	on	a	set	of	clouds	forming	a	
virtual	cloud,	what	we	call	a	cloud-of-clouds	

•  Related	to	the	no]on	of	federa]on	of	clouds	
–  Federa]on	of	clouds	suggests	a	virtual	cloud	created	by	
providers;	some	level	of	coopera]on	between	clouds	

–  Cloud-of-clouds	suggests	an	ad-hoc	virtual	cloud	created	
by	consumers;	no	coopera]on	between	clouds	
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Cloud-of-Clouds	dependability+security	

•  There	is	redundancy	and	diversity	between	clouds	
•  so	even	if	some	clouds	fail	a	cloud-of-clouds	that	
implements	replica]on	can	s]ll	guarantee:	
–  Availability	–	if	some	stop,	the	others	are	s]ll	there	
–  Integrity	–	if	some	corrupt	data,	data	is	s]ll	at	the	others	
–  Disaster-tolerance	–	clouds	can	be	geographically	far	
–  No	vendor	lock-in	–	several	clouds	anyway	

•  plus,	although,	not	specific	to	cloud-of-clouds:	
–  Confiden]ality	(from	clouds)	–	encryp]on		
–  Confiden]ality/integrity	(from	users)	–	access	control	

7	

DepSky	

•  Client-side	library	for	cloud-of-clouds	storage	
–  File	storage,	similar	to	Amazon	S3:	read/write	files,	etc.	

•  Use	storage	clouds	as	they	are:		
–  All	code	at	the	client	

•  Data	is	updatable	
–  Byzan]ne	quorum		
replica]on		
protocols	for		
consistency	

8	
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Cloud	A	

Cloud	B	

Cloud	C	

Cloud	D	

Write	protocol	
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Read	protocol	
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Cloud	A	 Cloud	B	 Cloud	C	 Cloud	D	

DepSky-A:	limita]ons	

11	

Data	

•  Data	is	accessible	
by	cloud	providers	

•  Requires	n×|Data|	
storage	space	

Data	 Data	 Data	Data	

Cloud	A	 Cloud	B	 Cloud	C	 Cloud	D	

DepSky-CA:	combining	erasure	codes	
and	secret	sharing	

12	

S1	 S2	 S3	 S4	

share	

K	

	
key	Data	

disperse	

F1	 F2	 F3	 F4	

F1	 S1	 F2	 S2	 F3	 S3	 F4	 S4	

encrypt	

Inverse	process	for	reading	
from	f+1	shares/fragments	Encrypted	so	data	can’t	be	read	at	a	cloud!	

Only	twice	the	size	of	storage,	not	4	]mes!	

Only	for	data,	
not	metadata	
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Consistency	propor]onality	

•  The	consistency	provided	by	DepSky	is	the	same	as	
the	base	storage	clouds	
–  If	the	weakest	consistency	cloud	provides	eventual	
consistency,	DepSky	provides	eventual	consistency	

–  If	the	weakest	consistency	cloud	provides	read	your	
writes,	DepSky	provides	read	your	writes	

–  If	the	weakest	consistency	cloud	provides	regular	storage,	
DepSky	provides	regular	storage	

13	

DepSky	latency		
100KB	files,	clients	in	PlanetLab	nodes	

14	

DepSky’s	read	latency	is	close	to	the	cloud	with	the	best	latency	

DepSky’s	write	latency	is	close	to	the	cloud	with	the	worst	latency	
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DepSky	perceived	availability	
•  perceived	availability	=	n.	of	files	read	/	n.	of	tries	
•  impacted	by	the	cloud	and	Internet	availability	

15	

SCFS:	MASKING	FAULTS	IN	A	
CLOUD-OF-CLOUDS	FILE	SYSTEM	

16	
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Storage	vs.	File	System	
(DepSky	vs.	SCFS)	

•  Storage	(DepSky)	
–  API:	simple	opera]ons		
over	data	blocks	

–  same	consistency	as	clouds	

–  create(id)
–  read(fd)
–  write(fd,block)
–  delete(fd)
–  lock(fd)
–  unlock(fd)
–  setACL(fd)

•  File	system	(SCFS)	
–  API:	~POSIX,	so	unmodified	apps	
can	use	it	(uses	FUSE)	

–  strong	consistency	

–  open(path,flags)
–  read(fd,buffer,length,offset)
–  write(fd,buffer,length,offset)
–  chmod(path,mode)
–  mkdir(path,mode)
–  flush, fsync, link, rmdir, 

symlink, chown,...

17	

Shared	Cloud-backed	File	System-SCFS	

Cloud Storage 

SCFS 
Agent 

SCFS 
Agent 

SCFS 
Agent 

DATA	 DATA	

Client-based: 
Uses existing 
cloud storage 
services 

Controlled sharing: 
Access control for 
security and concurrency 

Pay-per ownership: 
Each client pays 
for its own files 

Strong Consistency 
Redundant 
Cloud Services 
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Features	

•  Data	layout/access	pafern	
–  Each	file	is	an	object	(single-block	file)	
– Mul]ple	versions	of	the	files	are	maintained	
–  Always	write,	avoid	reading	(exploi]ng	free	writes)	

•  Caching		
–  File	cache:	persistent	(to	avoid	reading)	

•  Local	storage	is	used	to	hold	copies	of	all/most	client	files	
•  Opened	files	are	also	maintained	in	main-memory	

– Metadata	cache:	short-lived,	main-memory		
•  To	deal	with	bursts	of	metadata	requests	

Features	

•  Consistency	
–  Consistency-on-close	seman]cs	

•  when	user	closes	a	file,	all	updates	he	did	become	observable	by	
the	rest	of	the	users		

–  Locks	to	avoid	write-write	conflicts	
•  Modular	coordina]on	

– Metadata	is	stored	in	a	coordina]on	service	
•  e.g.,	Zookeeper	(crash	fault-tolerant),	DepSpace	(intrusion-
tolerant)	

–  Also	used	for	managing	file	locks	
–  Separate	data	from	metadata	
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Storage  
clouds 

Coordination 
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Cloud storage Cache 
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SCFS	architecture	

•  Problem:	How	to	provide	strong	consistency	on	top	of	weak	
consistent	storage	clouds?	(typ.	eventual	consistency)	

•  Key	property:	the	composite	storage’	consistency	is	the	same	
of	the	consistency	anchor	(typ.	atomic	consistency)	

Consistency	anchor	

Storage	
Service	

Consistency	
Anchor	

Algorithm	
write	

read	

Composite	
Storage	

strong	consistency	

strong	consistency	

weak	consistency	
write	

read	

write	

read	
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•  SCFS	can	use	different	configura]ons/backends	

•  Opera]on:	blocking,	non-blocking	and	non-sharing	

With PNSs, the amount of storage used in the coordi-
nation service is proportional to the percentage of shared
files in the system. Previous work show traces with 1 mil-
lion files where only 5% of them are shared [33]. Without
PNSs, the metadata for these files would require 1 million
tuples of around 1KB, for a total size of 1GB of storage
(the approximate size of a metadata tuple is 1KB, assum-
ing 100B file names). With PNSs, only 50 thousand tuples
plus one PNS tuple per user would be needed, requiring a
little more than 50MB of storage. Even more importantly,
by resorting to PNSs, it is possible to reduce substantially
the number of accesses to the coordination service, allow-
ing more users and files to be served.

3 SCFS Implementation
SCFS is implemented in Linux as a user-space file sys-

tem based on FUSE-J, which is a wrapper to connect the
SCFS Agent to the FUSE library. Overall, the SCFS
implementation comprises 6K lines of commented Java
code, excluding any coordination service or storage back-
end code. We opted to develop SCFS in Java mainly
because most of the backend code (the coordination and
storage services) were written in Java and the high latency
of cloud accesses make the overhead of using a Java-based
file system comparatively negligible.

3.1 Modes of Operation
Our implementation of SCFS supports three modes of

operation, based on the consistency and sharing require-
ments of the stored data.

The first mode, blocking, is the one described up to this
point. The second mode, non-blocking, is a weaker ver-
sion of SCFS in which closing a file does not block until
the file data is on the clouds, but only until it is written
locally and enqueued to be sent to the clouds in back-
ground. In this model, the file metadata is updated and
the associated lock released only after the file contents are
updated to the clouds, and not when the close call returns
(so mutual exclusion is preserved). Naturally, this model
leads to a significant performance improvement at cost of
a reduction of the durability and consistency guarantees.
Finally, the non-sharing mode is interesting for users that
do not need to share files, and represents a design similar
to S3QL [7], but with the possibility of using a cloud-of-
clouds instead of a single storage service. This version
does not require the use of the coordination service, and
all metadata is saved on a PNS.

3.2 Backends
SCFS can be plugged to several backends, including

different coordination and cloud storage services. This pa-
per focuses on the two backends of Figure 5. The first one
is based on Amazon Web Services (AWS), with an EC2
VM running the coordination service and file data being
stored in S3. The second backend makes use of the cloud-

of-clouds (CoC) technology, recently shown to be prac-
tical [9, 12, 15]. A distinct advantage of the CoC back-
end is that it removes any dependence of a single cloud
provider, relying instead on a quorum of providers. It
means that data security is ensured even if f out-of 3f+1
of the cloud providers suffer arbitrary faults, which en-
compasses unavailability and data deletion, corruption or
creation [15]. Although cloud providers have their means
to ensure the dependability of their services, the recurring
occurrence of outages, security incidents (with internal or
external origins) and data corruptions [19, 24] justifies the
need for this sort of backend in several scenarios.
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DepSky*
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AWS%Backend% CoC%Backend%

S3(
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Figure 5: SCFS with Amazon Web Services (AWS) and Cloud-
of-Clouds (CoC) backends.

Coordination services. The current SCFS prototype sup-
ports two coordination services: Zookeeper [29] and
DepSpace [13] (in particular, its durable version [16]).
These services are integrated at the SCFS Agent with sim-
ple wrappers, as both support storage of small data entries
and can be used for locking. Moreover, these coordina-
tion services can be deployed in a replicated way for fault
tolerance. Zookeeper requires 2f + 1 replicas to tolerate
f crashes through the use of a Paxos-like protocol [30]
while DepSpace uses either 3f + 1 replicas to tolerate
f arbitrary/Byzantine faults or 2f + 1 to tolerate crashes
(like Zookeeper), using the BFT-SMaRt replication en-
gine [17]. Due to the lack of hierarchical data structures in
DepSpace, we had to extend it with support for triggers to
efficiently implement file system operations like rename.
Cloud storage services. SCFS currently supports Ama-
zon S3, Windows Azure Blob, Google Cloud Storage,
Rackspace Cloud Files and all of them forming a cloud-
of-clouds backend. The implementation of single-cloud
backends is simple: we employ the Java library made
available by the providers, which accesses the cloud stor-
age service using a REST API over SSL. To implement
the cloud-of-clouds backend, we resort to an extended
version of DepSky [15] that supports a new operation,
which instead of reading the last version of a data unit,
reads the version with a given hash, if available (to imple-
ment the consistency anchor algorithm - see §2.4). The
hashes of all versions of the data are stored in DepSky’s
internal metadata object, stored in the clouds.
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Sharing	latency:	SCFS	vs	DropBox	
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Benchmarking	unmodified	desktop	
applica]ons	

OpenOffice 
Writer 

Micro-benchmark #Operations File size SCFS-AWS SCFS-CoC S3FS S3QL LocalFSNS NB B NS NB B
sequential read 1 4MB 1 1 1 1 1 1 6 1 1
sequential write 1 4MB 1 1 1 1 1 1 2 1 1
random 4KB-read 256k 4MB 11 11 15 11 11 11 15 11 11
random 4KB-write 256k 4MB 35 39 39 35 35 36 52 152 37
create files 200 16KB 1 102 229 1 95 321 596 1 1
copy files 100 16KB 1 137 196 1 94 478 444 1 1

Table 3: Latency of several Filebench micro-benchmarks for SCFS (six variants), S3QL, S3FS and LocalFS (in seconds).

The benchmark follows the behavior observed in traces
of a real system, which are similar to other modern desk-
top applications [25]. Typically, the files managed by the
cloud-backed file system are just copied to a temporary
directory on the local file system where they are manipu-
lated as described in [25]. Nonetheless, as can be seen in
the benchmark definition (Figure 7), these actions (espe-
cially save) still impose a lot of work on the file system.

Open Action: 1 open(f,rw), 2 read(f), 3-5 open-write-close(lf1), 6-8
open-read-close(f), 9-11 open-read-close(lf1)

Save Action: 1-3 open-read-close(f), 4 close(f), 5-7 open-read-
close(lf1), 8 delete(lf1), 9-11 open-write-close(lf2), 12-14 open-
read-close(lf2), 15 truncate(f,0), 16-18 open-write-close(f), 19-
21 open-fsync-close(f), 22-24 open-read-close(f), 25 open(f,rw)

Close Action: 1 close(f), 2-4 open-read-close(lf2), 5 delete(lf2)

Figure 7: File system operations invoked in the file synchro-
nization benchmark, simulating an OpenOffice document open,
save and close actions (f is the odt file and lf is a lock file).

Figure 8 shows the average latency of each of the three
actions of our benchmark for SCFS, S3QL and S3FS, con-
sidering a file of 1.2MB, which corresponds to the aver-
age file size observed in 2004 (189KB) scaled-up 15% per
year to reach the expected value for 2013 [11].

 0
 0.5

 1
 1.5

 2
 2.5

AW
S-N

B

AW
S-N

B(L)

. C
oC

-N
B

C
oC

-N
B(L)

. C
oC

-N
S

C
oC

-N
S(L)

. S3Q
L

S3Q
L(L)

L
a

te
n

cy
 (

s)

Close
Save
Open

(a) Non-blocking.

 0
 5

 10
 15
 20
 25

AW
S-B

AW
S-B(L)

. C
oC

-B

C
oC

-B(L)

. S3FS

S3FS(L)

L
a
te

n
cy

 (
s)

Close
Save
Open

(b) Blocking.

Figure 8: Latency of file synchronization benchmark actions
(see Figure 7) with a file of 1.2MB. The (L) variants maintain
lock files in the local file system. All labels starting with CoC or
AWS represent SCFS variants.

Figure 8(a) shows that SCFS-CoC-NS and S3QL ex-
hibit the best performance among the evaluated file sys-
tems, having latencies similar to a local file system (where
a save takes around 100 ms). This shows that the added
dependability of a cloud-of-clouds storage backend does
not prevent a cloud-backed file system to behave similarly
to a local file system, if the correct design is employed.

Our results show that SCFS-*-NB requires substan-
tially more time for each phase due to the number of ac-

cesses to the coordination service, especially to deal with
the lock files used in this workload. Nonetheless, saving a
file in this system takes around 1.2 s, which is acceptable
from the usability point of view. A much slower behavior
is observed in the SCFS-*-B variants, where the creation
of a lock file makes the system block waiting for this small
file to be pushed to the clouds.

We observed that most of the latency comes from the
manipulation of lock files. However, the files accessed did
not need to be stored in the SCFS partition, since the lock-
ing service already prevents write-write conflicts between
concurrent clients. We modified the benchmark to repre-
sent an application that writes lock files locally (in /tmp),
just to avoid conflicts between applications in the same
machine. The (L) variants in Figure 8 represent results
with such local lock files. These results show that remov-
ing the lock files makes the cloud-backed system much
more responsive. The takeaway here is that the usability
of blocking cloud-backed file systems could be substan-
tially improved if applications take into consideration the
limitations of accessing remote services.
Sharing files. Personal cloud storage services are of-
ten used for sharing files in a controlled and convenient
way [20]. We designed an experiment for comparing
the time it takes for a shared file written by a client to
be available for reading by another client, using SCFS-
*-{NB,B}. We did the same experiment considering a
Dropbox shared folder (creating random files to avoid
deduplication). We acknowledge that the Dropbox de-
sign [20] is quite different from SCFS, but we think it is
illustrative to show how a cloud-backed file system com-
pares with a popular file synchronization service.

The experiment considers two clients A and B deployed
in our cluster. We measured the elapsed time between the
instant client A closes a variable-size file that it wrote to a
shared folder and the instant it receives an UDP ACK from
client B informing the file was available. Clients A and B
are Java programs running in the same LAN, with a ping
latency of around 0.2 ms, which is negligible considering
the latencies of reading and writing. Figure 9 shows the
results of this experiment for different file sizes.

The results show that the latency of sharing in SCFS-*-
B is much smaller than what people experience in current
personal storage services. These results do not consider

AWS AWS CoC S3FS 

Non-blocking Blocking 

CoC 
(Non-Sharing) 

CoC S3QL 

80% 

40% 

55% 
lock file 
ops; may 
be done 
locally 

1.2	MB	file	

Doing locks locally  
reduces much the latency	

Lots	of	opera]ons;	doing	this	remotely...	

Cloud-of-clouds	per	se	doesn’t	increase	latency	

SHUTTLE:	RECOVERING	FROM	
INTRUSIONS	IN	PAAS	CLOUDS	

26	
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Plavorm	as	a	Service	(PaaS)	

•  PaaS	services	allow	running	applica]ons	
•  Consumer	develops	applica]on	to	run	in	that	
environment,	using	
–  Supported	languages,	e.g.,	Java,	Python,	Go,	PHP	
–  Supported	components,	e.g.,	SQL/noSQL	databases,	load	
balancers	

–  Examples:	Google	App	Engine,	Windows	Azure	Cloud	
Services,	Salesforce	Force.com,...	

27	

Shufle	

•  Recovers	PaaS	applica]ons’	state	integrity	when	
there	are	intrusions	

•  Isn’t	it	what	backups	do?	
–  Backups:	remove	both	bad	and	good	opera]ons	
–  Shufle:	removes	bad	opera]ons	but	keeps	good	ones	

28	
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Features	

•  Supported	by	the	cloud:	available	without	consumer	
setup		

•  Supports	applica]ons	deployed	in	various	instances	
•  Avoids	applica]on	down]me	as	no	need	to	stop	the	
applica]on	during	recovery	

•  Leverage	elas]city	to	make	recovery	faster	

29	

Shufle	architecture	
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30	
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Replay	Process	

1.  Detect/iden]fy	the	malicious	opera]ons	(not	Shufle)	

2.  Start	new	instances	of	the	applica]on	and	database	
3.  Load	a	snapshot	previous	to	intrusion	instant;	create	

a	new	branch	(applica]on	stays	running	in	previous	branch)	

4.  Replay	requests	in	new	branch	
5.  Block	incoming	requests;	replay	last	requests	

6.  Change	to	new	branch;	shutdown	unnecessary	
instances	

	

31	

Replay	Modes	
•  Full-Replay:	Replay	every	opera]on	axer	snapshot	
•  Selec]ve-Replay:	Replay	only	affected	(tainted)	opera]ons	

•  Serial:	Replay	all	dependency	graph	sequen]ally	
•  Clustered:	Independent	clusters	can	be	replayed	

concurrently;	allowed	by	the	cloud	elas]city	

•  Modes	supported:	

32	

Full-Replay	 Selec]ve-Replay	
1	Cluster	(Serial)	 ✔	 ✔	
Clustered	 ✔	 ✗	
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Evalua]on	Environment	

•  Amazon	EC2,	c3.xlarge	instances,	Gb	Ethernet	

•  WildFly	(formely	JBoss)	applica]on	servers	
•  Voldemort	database		

•  Ask	Q&A	applica]on;	data	from	Stack	Exchange	

33	

Performance	overhead	

•  in	normal	execu]on	

Workload A Workload B
Shuttle 6325 ops/sec [5.78 ms] 15346 ops/sec [3.62 ms]
No Shuttle 7148 ops/sec [5.07 ms] 17821 ops/sec [3.01 ms]
overhead 13% [14%] 16% [20%]

Table II
OVERHEAD IN THROUGHPUT (OPS/SEC) AND RESPONSE LATENCY (MS).

full replay. The attack effects are removed because Shuttle loads
a database snapshot instead of undoing every operation. As the
malicious actions were not logged, they are not replayed and
Shuttle recovers the application consistency.

The number of requests to replay is defined by the snapshot
instant: on full replay Shuttle replays all requests performed
after the intrusion instant, while on selective replay Shuttle
replays the requests necessary to read the values of the entries
before the intrusion and the tainted requests. While selective
replay seems to have a big advantage comparing with full
replay, which performs, in these scenarios, at least 38 620
requests, some applications have more dependencies thus the
number of tainted requests is bigger. For instance, if the
order between questions with the same tag is considered as
a dependency, the number of dependencies rises from 92 939
to 109 118 and the number of independent clusters decreases
from 6992 to 56.

C. Performance
We evaluate Shuttle’s performance considering the through-

put of the application, the size of the logs and the recovery time.
We also estimate the cost of deployment of Shuttle on a public
cloud provider, Amazon Web Services (AWS). We run 6 AWS
c3.xlarge instances (14 ECUs, 4 vCPUs, 2.8 GHz, Intel Xeon
E5-2680v2, 7.5 GB of memory, 2 x 40 GB storage capacity)
connected by gigabit ethernet (780Mbps measured with iperf,
0.176ms round-trip time measured with ping). We use one
client, one instance with Shuttle proxy and a load balancer
(HAProxy), three WildFly (formerly JBoss) application servers
and one Voldemort database. We consider a large data sample
from the data of Stack Exchange with 50 000 requests (1432
questions, 3399 answers, 8335 comments, 36834 votes, 950
000 question views). We do not consider a particular scenario
or replay scheme (full/selective), but define instead the number
of requests recovered per experiment.

Performance overhead. We evaluate the overhead of Shuttle
by measuring the throughput of the Ask application with and
without Shuttle (Table II). We considered two workloads: (A)
50% reads, 50% writes; (B) 95% reads, 5% writes. Write
operations insert questions, answers, comments and votes of the
data sample, while the read operations access the latest inserted
questions. Table II shows that Shuttle imposes an overhead
of 13-20%, which seems reasonable considering its benefits.
We believe the main cause of overhead is the current proxy
implementation, which is not very efficient. The current version
written in Java performs considerably better than a previous
version in Python, but we expect to improve it further by
rewriting it in C.

In order to measure Shuttle’s overhead on the database ac-
cesses, we used the Yahoo! Cloud Serving Benchmark (YCSB)
framework [25]. We considered two workloads: (A) 50% reads,
50% updates; (B) 95% reads, 5% updates. Operations access
1KB records following a Zipfian distribution (Figure 6). Results

show Shuttle has small impact on the latency of database
accesses.
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Figure 6. Performance overhead on database.

Recovery. We measured the recovery time using Shuttle to
replay the sample of 1 million requests. While serial replay (1
cluster) takes approximately 30 minutes (1717s), recovery with
clusters takes only 9 minutes (544s) (Figure 7a).

We measured the recovery period with different numbers of
instances on clustered mode (Figure 7b). The figure shows that
Shuttle is scalable, in the sense that adding more servers allow
reducing the time of recovery (3 servers allowed recovery in
half the time of 1, ⇠750s versus ⇠400s).
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Figure 7. Recovery time and scalability.

We measured the duration of the restrain period considering
two clients with a constant throughput of 400 requests/sec.
The serial replay mode is not capable of fully exploring the
application servers so it takes almost one hour to recover
(2953s total, 1100s in restrain mode) (Fig. 8a). The clustered
mode takes 10 minutes (635s), from which the restrain period
represents 46 seconds. (Fig. 8b).
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Figure 8. Restrain period in serial and clustered recovery (Restrain indicates
the beggining of the period that ends at the end of the graphic).

Space overhead. We measured the memory and storage
overhead of 1 million requests, from which 95% were requests
for reading questions. Table III presents the size of each
component in memory. Requests and keys are stored in the
external database while the dependency graph and the accesses
are kept in the manager and database instances. No snapshot
has been taken and the data is not compressed. In the current
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implementation, the SRD represents a fixed overhead of 35
bytes per request.

# objects size (MB)
Shuttle Storage:
Request 1 million 212
Response 1 million 8 967
Start/end timestamps 2 million 16
Keys 137 million 488
Total 9 684
Database node:
Version List 14 593 1.4
Operation list 9 million 277
Total 282
Manager:
Graph 1 million 718

Table III
STORAGE USED BY SHUTTLE (1 MILLION REQUESTS).

The main overhead are the responses, as we are storing them
complete (full HTML pages), although Shuttle has to store
them only if the tenant uses the API to solve inconsistencies
(Section V-F). The size of the list of keys accessed by the
request depends on the key length and the number of keys
accessed. Each access implies an overhead of 13 bytes to
record the request ID and the operation type in the version
list. The snapshot does not impact the throughput but requires
to track the new version, which implies a storage overhead
of 10 bytes for each data item when it is written by the
first time after a snapshot. This overhead can be reduced
implementing the version list as a bitmap. The total database
storage overhead encompasses synchronization mechanisms.
Since the dependency graph is implemented as a double-linked
graph, each entry in the dependency graph has 765 bytes to
store not only the start/end instant of the request but also
the requests which this request depends from and to (10 on
average). Serialization mechanisms and compression techniques
can reduce the storage overhead. For instance, Cassandra’s lz4
reduces the size of the Shuttle Storage on disk to 4.9 GB.

Monetary cost. Since the replay instances are allocated on
demand and paid per use, the cost of Shuttle is dominated by the
storage. For instance, consider the extreme case of 20 million
requests/day with overhead proportional to the values in Table
III to show that the costs are not high. To store it Shuttle would
need 1.432 TB in Shuttle Storage, 1.436 TB for the graph and
564 GB in the database. To reduce this cost in AWS, we could
combine DynamoDB with Glacier, a high latency / low cost
storage service. Shuttle might store the last 24 hours of requests
on DynamoDB and the rest on Glacier. In this scenario, Shuttle
generates 35 GB per day (except the responses), which costs
$8.75 per month to store in DynamoDB and $4.83 per-month
for the provisioned capacity. Glacier would store 3.433 TB with
a cost of $34.33 per month. Since Shuttle performs snapshots,
tenants can remove old snapshots tacking into account that
Shuttle needs only a snapshot previous to the intrusion instant
to recover the application.

Shuttle requires an extra instance to deploy the Shuttle
manager. To recover the application, we used one c3.xlarge
virtual machine as replay instance and two c3.xlarge instances
to run the application servers to replay 1 million requests during
544 seconds. Considering a full-hour, these instances have a
cost of $0.239 per instance-hour, which means a cost of less

than $1 for the recovery. In this manner, Shuttle leverages
the elasticity and pay-per-usage model of cloud computing to
provide a cost-efficient intrusion recovery solution.

VII. CONCLUSION

The paper presented Shuttle, an intrusion recovery service for
PaaS, with several instances and database servers. We described
the design of a new architecture where a snapshot-based recov-
ery system is provided as a service for PaaS tenants. Shuttle
relies on a distributed database and the resource elasticity of
PaaS environments to reduce the recovery time and costs. We
introduce a novel dependency mechanism based on request start
and end instants and list of accesses to order the requests during
replay. Shuttle uses a branching mechanism to avoid service
downtime during the recovery phase and permits to undo a
recovery process. Our evaluation shows that Shuttle can replay
1 million requests in 10 minutes, with a cost of less than $1.
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Conclusions	
•  Masking	/	recovering	faults	/	intrusions	in	the	cloud	
•  DepSky:	storage	clouds-of-clouds		

–  Availability,	integrity,	disaster-tolerance,	no	vendor	lock-
in,	confiden]ality	

–  Faults	in	clouds	+	versions,	so	Byzan]ne	quorum	system	
protocols		

–  Same	consistency	as	the	storage	clouds	
–  Erasure	codes	to	reduce	the	size	of	data	stored	
–  Secret	sharing	to	store	cryptographic	keys	in	clouds		

38	
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Conclusions	

•  SCFS:	a	cloud-backed	file	system	
–  Based	on	DepSky	and	providing	similar	guarantees	but	
near-POSIX	API	

–  so	it	needs	strong	consistency	provided	by	coordina]on	
service	

–  caching	and	careful	design	allows	good	performance	

•  Shufle:	a	recovery	service	for	PaaS	offerings	
–  Supports	applica]ons	running	in	mul]ple	instances		
–  Leverages	elas]city/pay-per-use	to	reduce	the	recovery	
]me	and	costs	

39	

Thank	you	
•  Papers:	

–  DepSky:	Dependable	and	Secure	Storage	in	a	Cloud-of-Clouds.		
ACM	Transac]ons	on	Storage,	2013	(also	at	EuroSys	2010)	

–  SCFS:	a	Shared	Cloud-backed	File	System.		
Usenix	Annual	Technical	Conference	(ATC),	2014	

–  Shufle:	Intrusion	Recovery	for	PaaS.		
Interna]onal	Conference	on	Distributed	Compu]ng	Systems	(ICDCS),	2015	

•  Code:		
–  DepSky:	hfp://cloud-of-clouds.github.io/depsky/	
–  SCFS:	hfp://cloud-of-clouds.github.io/SCFS/	
–  Shufle:	hfps://github.com/dnascimento/shufle	

•  My	web:	hfp://www.gsd.inesc-id.pt/~mpc/		


