

Detecting Malicious Hosts Using Traffic Flows

Miguel Pupo Correia joint work with Luís Sacramento NavTalks, Lisboa, June 2017

FCT Fundação para a Ciência e a Tecnologia

Outline

- Motivation
- Approach
- Evaluation
- Conclusion

- Motivation
- Approach
- Evaluation
- Conclusion

3

Motivation

- Scenario:
 - Large national telco/ISP connected to its own provider
 - Huge amount of traffic in/out, much is encrypted
 - Possibly new attacks / new variants

Motivation

- Compromised hosts do attacks such as:
 - Distributed denial of service attacks
 - Exfiltrating confidential data
 - Sending spam
 - Mapping the network
 - Contact bot command&control centers
 - etc.

5

Network Intrusion Detection Systems

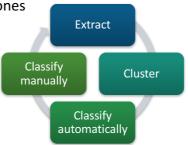
- Traditional NIDSs:
- Knowledge-based: require signatures of attacks
 - Not good for new attacks
- Behavior-based: require clean traffic for training
 - Where to get it with our scenario?
- Most do deep packet inspection, unfeasible with too much traffic

- Motivation
- Approach
- Evaluation
- Conclusion

7

Our approach

- Detection framework to <u>detect malicious hosts</u> based on real traffic
- Not knowledge-based, to avoid need for signatures
- Not behavior-based, as no training traffic exists
- No deep packet inspection, as it is slow
- Detects hots doing new attacks or new variants


Key ideas

- Collect traffic data summarized as network flows
- Extract data about hosts from flows
- Use unsupervised machine learning / clustering to
 - get information that humans can understand without previous knowledge about attacks
- Use supervised machine learning / classifier to automatically assign clusters to classes/categories
 - ex: web servers, mail servers, hosts sending spam, hosts doing distributed denial of service,...
- Manually label new clusters

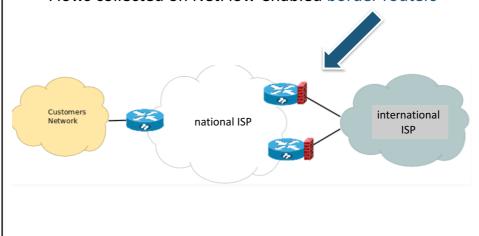
9

The approach

- Loop:
 - Collect flows for a period of time (e.g., 1 day)
 - Extract from the flows data about hosts with MapReduce
 - Use clustering to create groups of hosts
 - Use classifier to automatically classify hosts
 - Manually label remaining ones
 - Repeat for next period

The approach

- Loop:
 - Collect flows for a period of time (e.g., 1 day)

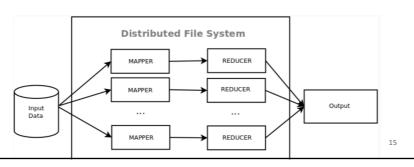

1:

Flows

- Flow: sequence of related packets observed during an interval of time
 - A flow is defined in terms of a subset of src IP, dest IP, protocol, src port, dest port; ex: (*, 1.2.3.4, TCP, *, 80)
- Netflow: monitoring approach created by Cisco
 - Idea is to capture data about network flows
 - Data: begin/end of flow timestamps, n. packets, n. bytes
 - Variants: IPFIX (standard based on Netflow 9), sFlow,...

Flow collection

• Flows collected on NetFlow-enabled border routers



The approach

- Loop:
 - Collect flows for a period of time (e.g., 1 day)
 - Extract from the flows data about hosts with MapReduce

Host data extraction

- Flow format:
 - <Source IP, Destination IP, Source Port, Destination Port, Protocol, TCP Flags, #Bytes, #Packets, Duration>
- Use MapReduce for extracting data per host (IP)
 - aggregated by source or destination IP address

Host data extraction

• Host features (data) extracted by MapReduce:

Feature	Description	
Aggregation Key	The IP address that will be used as an identifier, to which the below features relate to	
NumSIPs / NumDIPs	The number of IP addresses contacted	
NumSports	The number of different source ports contacted	
NumDport	The number of different source ports contacted The number of different destination ports contacted The number of packets to/from port 80 (HTTP) The number of packets to/from ports 194 or 6667 (IRC) The number of packets to/from port 25 (SMTP) The number of packets to/from port 22 (SSH)	
textbfNumHTTP	The number of packets to/from port 80 (HTTP)	
NumIRC	The number of packets to/from ports 194 or 6667 (IRC)	
NumSMTP	The number of packets to/from port 25 (SMTP)	
NumSSH	The number of packets to/from port 22 (SSH)	
TotalNumPkts	The total number of packets exchanged	
PktRate	The ratio of the number of packets sent and its duration	
ICMPRate	The ratio of ICMP packets, and total number of packets	
SynRate	SynRate The ratio of packets with a SYN flag and the total number of packets	
TotalNumBytes	The overall sum of bytes	
AvgPktSize	The average packet size	
BadSubnet	This field expresses whether the IP address belongs to a blacklisted subnet	
MaliciousIP	This field expresses whether the IP address is blacklisted	
OpenVaultBlacklistedIP	This field expresses whether the IP address belongs to a blacklisted subnet This field expresses whether the IP address is blacklisted Same as the above, but checked from a trusted and well know threat database This field shows if the IP address belongs to a blacklisted ASN Code for the country associated with the address	
MaliciousASN	This field shows if the IP address belongs to a blacklisted ASN	
LocationCode	Code for the country associated with the address	

The approach

- Loop:
 - Collect flows for a period of time (e.g., 1 day)
 - Extract from the flows data about hosts with MapReduce
 - Use clustering to create groups of hosts

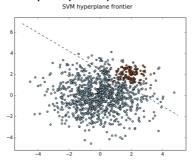
17

Unsupervised ML / clustering

- Idea: group similar hosts in clusters (sets)
- Why? Humans can understand and classify a few clusters, not zillions of hosts
- How?
 - Normalize every feature into range [0,1]
 - Run clustering algorithm, e.g., K-Means, to get k clusters
 - k can be defined, e.g., with the elbow method (finds the "elbow", i.e., when adding more clusters does not improve the modelling of the data)

The approach

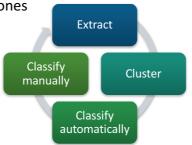
- Loop:
 - Collect flows for a period of time (e.g., 1 day)
 - Extract from the flows data about hosts with MapReduce
 - Use clustering to create groups of hosts
 - Use classifier to automatically classify hosts
 - Manually label remaining ones


19

Intrusion detection with flows

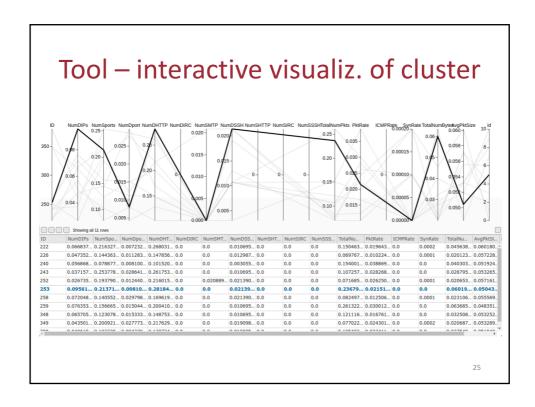
- · Each cluster contains hosts with similar behavior
 - ex: web servers, mail servers, hosts sending spam, hosts doing denial of service,...
- What to do with them? (at cruise speed)
- Already seen? Use classifier to classify automatically
- Never seen?
 - Label manually, with help of the features' values
 - Focus attention on smaller clusters with odd feature distribution; often malicious
 - Retrain classifier

Supervised ML / classification

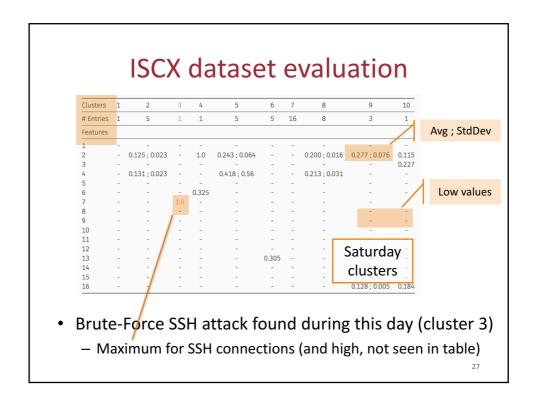

- Naïve solution: use labelled hosts to train a Binary Support Vector Machine (SVM) classifier
 - Samples/hosts classified as benign or malicious
 - Finds an hyperplane that separates samples
 - Classifies new samples (hosts)

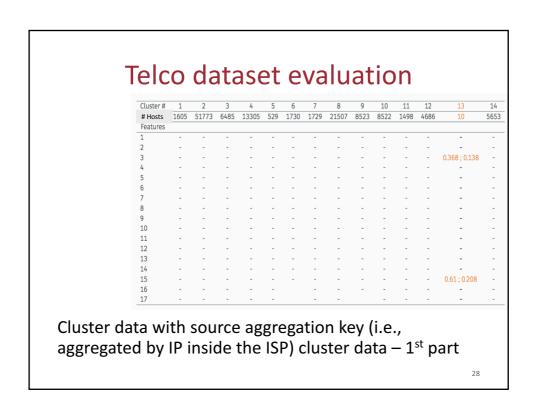
21

The approach


- Loop:
 - Collect flows for a period of time (e.g., 1 day)
 - Extract from the flows data about hosts with MapReduce
 - Use clustering to create groups of hosts
 - Use classifier to automatically classify hosts
 - Manually label remaining ones
 - Repeat for next period

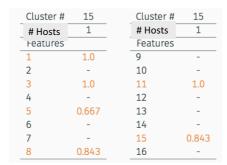
- Motivation
- Approach
- Evaluation
- Conclusion


23


Tool – interface

Evaluation

- Two parts:
- Synthetic dataset (ISCX)
 - Designed for IDSs
 - Flows are labelled
 - Allows validating the approach
- · Real dataset collected at the telco
 - No ground truth



el	4.0		47	4.0	40	0.0				0.1	0.5	0.6	0.77			
Cluster #	15	16 824	17	18	19 1864	20 1676	21 12	22 107	23 13	24	25 2233	26 8091	27	28 13897	29 16843	30
# Hosts Features	1	824	5	4606	1864	16/6	12	107	13	2233	2233	8091	10	13897	16843	35
	1.0															
1 2	1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	1.0		-		-	-	-	-	-				-	-	-	
4	1.0			-	-	-		-	-	-	-	-	-	-	-	
5	0.667								0.384 : 0.184							
6	0.007								0.364, 0.164							0.237 ; 0.158
7																0.237 ; 0.136
8	1.0															
9	1.0						0.542 : 0.18									
10			0.626 : 0.21				0.342 , 0.16									_
11	1.0		0.020,0.21													
12	1.0							_	_					_		
13		_		_	_	_		_	_		_	_	_	_	_	
14					_			_	_		_		_	-		
15	0.843	_	-	_	_	_	-	_	_		_	_	_	_	-	_
16	-	_		_	_		0.261 ; 0.06	_	_	_	_	_	_	_	-	
17	-	_	_	-			-	-					-	_	-	_

Source aggregation key – cluster 15

i.e., aggregated by IP inside the ISP

- Spammer or denial of service (?)
 - High connectivity to various users, many ports, receiving communication on IRC port, communication through HTTP, high number of packets sent, high number of bytes

30

Source aggregation - Cluster 21

Cluster#	21	Cluster#	21
# Hosts	12	# Hosts	12
Features		Features	
1	-	9	0.541; 0.181
2	-	10	-
3	-	11	-
4	-	12	-
5	-	13	-
6	-	14	-
7	-	15	-
8	-	16	0.261; 0.026

- Bot communicating with C&C server
 - High IRC communication + high average packet size
 - Confirmed by accessing the IP of the C&C server

3

Telco dataset evaluation summary

Cluster #	Aggregation Key	Highlighted Features	Type of Attack
15	Source	1, 3, 5, 8, 11, 15	Spam / DoS
16	Destination	1, 3, 6	DoS
17	Source	10	Brute-Force SSH
20	Destination	1, 2, 15	Network Scan
21	Source	9, 16	Botnet Communication
22	Destination	1, 3, 8, 15	Web Application Probing
27	Source	1, 2, 5, 8, 11, 15	DDoS IRC Botnet
29	Destination	1, 2, 4, 11, 15	DDoS Botnet

- Motivation
- Approach
- Evaluation
- Conclusion

33

Conclusion

- Network Intrusion Detection for identifying malicious hosts using flows
- ...without having to say how entities misbehave
- Use clustering (unsupervised ML) to reduce the size of the problem and
- a classifier (supervised ML) to automatize classification
- Keep humans in the loop; mandatory w/evolving threats
- Detects attacks involving many packets, not low traffic attacks like buffer overflows or SQL injection

Thanks! Questions?

This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013 (INESC-ID)

FCT Fundação para a Ciência e a Tecnologia

