
09/09/16	

1	

Web	Applica0on	Security:		
from	Sta0c	Analysis	to	Dynamic	

Protec0ons	and	Recovery	
Miguel	Correia	

joint	work	with	Ibéria	Medeiros,	Nuno	Neves,	Miguel	Beatriz,	Dário	Nascimento,...	
	

Building	Trust	in	the	Informa0on	Age	–	Summer	School	on	Computer	Security	and	Privacy	–	
Cagliari,	Sep.	2016	

ULisboa	/	IST	/	INESC-ID	
•  Universidade	de	Lisboa	–	Portugal		

–  largest	univ.	in	Portugal;	~50K	students;	~460	programs;	18	schools	
•  Ins0tuto	Superior	Técnico	

–  largest	engineering	school	in	Portugal;	~12K	students;	80	programs		
•  INESC-ID	

–  large	lab	in	computer	science	and	electrical	engineering;	100+	PhDs	
(most	IST	faculty);	~250	PhD/MSc	students;	many	research	groups	

•  Distributed	Systems	Group	(GSD)	
–  12	IST	faculty,	~30	PhD	students,	~40	MSC	students,	3	EC	projects	

2	

09/09/16	

2	

Research	overview	(1)	
Intrusion	Tolerance	

•  To	apply	the	Fault	Tolerance	paradigm	in	the	domain	
of	Security	

•  Do	the	best	we	know	to	protect	systems	…but	
vulnerabili7es	s7ll	remain…	so	tolerate	intrusions	
that	s7ll	occur		

3	

Research	overview	(2)	
Intrusion-Tolerant	Services	

Servers (N)

Clients

I-T Distributed Service

Request Reply

NFS,	DNS,	
on-line	CA,		
Web	server,	
etc.	

0-Day	vulnerability	

Redundancy	
Diversity	 CORR

ECT	

or	accidental	fault	
Byzan0ne	FT	

protocol	

secure	components	

4	

09/09/16	

3	

Research	overview	(3)	
MinBFT	

•  First	efficient	BFT	SMR	
protocol:	PBFT	(1999)	
–  3f+1	replicas	
–  5	communic.	steps	

•  MinBFT	(2009-13)	
–  requires	local	secure	
component:	
monotonic	counter	
(simpler	than	TPM)	

–  2f+1	replicas	
–  4	communic.	steps	

5	

Servers (N)

Clients

I-T Distributed Service

Request Reply

secure	
components	

Byzan0ne	FT	
protocol	

G.	S.	Veronese,	M.	Correia,	A.	N.	Bessani,	L.	C.	Lung,	P.	Verissimo.		
Efficient	Byzan8ne	Fault	Tolerance.	IEEE	Transac0ons	on	Computers	2013.	

Research	overview	(4)	
DepSky	

•  Service:	intrusion-tolerant	cloud	storage	
–  Client-side	sogware	
–  Server-side	are	cloud	storage	services	(diversity!)	

•  Byzan0ne	quorum	protocol	(consistency)	+		
erasure	codes	(space)	+		
symmetric	cripto	(confiden0ality)	

•  Wide-area	experiments:	
+	availability	
+	read	speed	
-	write	speed	

Amazon	
S3	

Nirvanix	

Rackspace	

Windows	
Azure	A.	N.	Bessani,	M.	Correia,	B.	Quaresma,	F.	André,	P.	Sousa,	

DepSky:	Dependable	and	Secure	Storage	in	a	Cloud-of-Clouds.	
EuroSys	2011	and	ACM	Transac0ons	on	Storage	2013.	

6	

09/09/16	

4	

Overview	of	my	research	(5)	
Sogware	Security	

•  Diversity	is	a	means	to	get	different	vulnerabili0es	in	
replicas,	mostly	in	sogware,	but	how?	This	
mo0vated	me	to	understand	sogware	vulnerabili0es	

•  Also	reducing	vulnerabili0es	is	crucial	so	audi0ng,	
sta0c	analysis,	dynamic	protec0on,	secure	coding...	

•  =>	Sogware	Security	that	is	the	major	topic	of	this	
presenta0on	

7	

Overview	of	my	research	(6)	
Sogware	Security	

•  Older	work:	
– Aqack	injec0on	/	fuzzing	
– Vulnerabili0es	in	sogware	ported	from	32	to	64-
bit	CPUs	

– Anomaly-based	intrusion	detec0on	in	web	apps	
•  Teaching	a	course	since	2004	

8	

09/09/16	

5	

OVERVIEW	OF	THE	PRESENTATION	

9	

Outline	

1.  WAP:	vulnerability	detec0on	with	sta0c	analysis	
using	taint	analysis	+	classifier	

2.  DEKANT:	vulnerability	detec0on	with	sta0c	analysis	
using	a	sequence	model	

3.  SEPTIC:	blocking	aqacks	in	the	DBMS	

4.  SHUTTLE:	intrusion	recovery	in	the	cloud	

10	

09/09/16	

6	

Papers	
WAP:	I.	Medeiros,	N.	F.	Neves,	M.	Correia.	Automa8c	Detec8on	and	Correc8on	
of	Web	Applica8on	Vulnerabili8es	using	Data	Mining	to	Predict	False	Posi8ves.	
WWW	2014	

WAP:	___.	Detec8ng	and	Removing	Web	Applica8on	Vulnerabili8es	with	Sta8c	
Analysis	and	Data	Mining.	IEEE	Transac0ons	on	Reliability	2016	

WAP:	___.	Equipping	WAP	with	WEAPONS	to	Detect	Vulnerabili8es.	DSN	2016	

DEKANT:	___.	DEKANT:	A	Sta8c	Analysis	Tool	that	Learns	to	Detect	Web	
Applica8on	Vulnerabili8es.	ISSTA	2016	

SEPTIC:	I.	Medeiros,	M.	Beatriz,	N.	Neves	and	M.	Correia.	Hacking	the	DBMS	to	
Prevent	Injec8on	ASacks.	CODASPY	2016	

SHUTTLE:	D.	Nascimento,	M.	Correia.	ShuSle:	Intrusion	Recovery	for	PaaS.	
ICDCS	2015.	

11	

WAP:	VULNERABILITY	DETECTION	
WITH	STATIC	ANALYSIS		
USING	TAINT	ANALYSIS	+	CLASSIFIER	

1	

12	

09/09/16	

7	

Mo0va0on	

•  Web	applica0ons	are	exposed	to	malicious	user	
inputs;	if	vulnerable,	they	can	be	aqacked	
successfully	

•  “So	why	do	developers	keep	making	the	same	
mistakes?	(…)	Instead	of	relying	on	programmers’	
memories,	we	should	strive	to	produce	tools	that	
codify	what	is	known	about	common	security	
vulnerabili0es	and	integrate	it	directly	into	the	
development	process.”	
–  David	Evans	and	David	Larochelle,	Improving	Security	Using	Extensible	

Lightweight	Sta0c	Analysis,	2002	

13	

Sta0c	(source)	code	analysis	

•  Objec0ve:	to	find	vulnerabili0es	in	the	
applica0ons’	(source)	code	automa0cally	
– Similar	to	compiler’s	error	checking	but	for	
vulnerabili0es	

– Similar	to	manual	code	reviewing	but	
automa0cally	

•  Sta0c	because	the	code	is	not	executed	

14	

09/09/16	

8	

Generic	sta0c	analysis	tool	

15	

WAP:	outline	

•  Overview	
•  Taint	analysis	
•  False	posi0ve	classifica0on	
•  Code	correc0on	
•  The	WAP	tool	
•  Results	

16	

09/09/16	

9	

Vulnerability	example	(SQLI)	

17	

Vulnerability	example	(SQLI)	
PHP	code:	
	
$u	=	$_POST[’user’];	
$p	=	$_POST[’password’];	
$q	=	“SELECT	*	FROM	users		
									WHERE	user='$u'	AND	pass='$p'”;	
$r	=	mysql_query($q);	
	
	
$q	=	“SELECT	*	FROM	users	WHERE	user=''	or	1=1	--	'	AND	pass='any'”;		
$r	=	mysql_query($q);	
	

18	

09/09/16	

10	

Mechanism	1:	Taint	Analysis	

19	

If we could track the user inputs and verify if they reach
sensitive functions, then we could detect vulnerabilities...

...Taint Analysis

● taints all entry points (user inputs, e.g., $_POST)
● follows the code propagating its taintedness
● until it reaches a sensitive sink

(some functions, e.g., mysql_query)

How?

SQL Injection
detected

$u = $_POST[’user’];

$p = $_POST[’password’];

$q = “SELECT * FROM users WHERE user='$u' AND pass='$p'”;

$r = mysql_query($q);

Taint Analysis: vulnerabilities detectedTaint Analysis: vulnerabilities detected

Taint Analysis: untaintednessTaint Analysis: untaintedness

Taint analysis:
 - handles sanitization functions
 - does not propagate the taintedness

$u = $_POST[’user’];

$p = $_POST[’password’];

$uu = mysql_real_escape_string($u);

$pp = mysql_real_escape_string($p);

$q = “SELECT * FROM users WHERE user='$uu' AND pass='$pp'”;

$r = mysql_query($q);

OK!	

Vulnerability!	

•  Analyses	the	source	code,	star0ng	at	every	entry	point,	
propaga0ng	taintedness,	checking	if	a	sensive	sink	is	fed	with	
tainted	data	

some	func0ons	sani0zes,	so	
“untaints”,	the	data	flow	

Challenge:	False	Posi0ves	

•  False	posi0ve:	the	analyzer	says	there’s	a	
vulnerability,	but	that’s	false	

– Cause:	sani0za0on	func0on(s)	missing	from	list	

– Obvious	solu0on:	add	missing	info	to	the	analyzer		

•  How	do	we	know	which	func0ons	untaint	data?	
– Some	are	obvious,	like	mysql_real_escape_string	

– Some	aren’t,	like	substr	or	trim	

20	

09/09/16	

11	

Programming	

•  How	do	computers	“know”	how	to	do	something?	
•  Humans	create	programs,	i.e.,	sequences	of	
instruc0ons	
– Knowledge	is	the	program	plus	data	(config.,	DBs)	
– Our	case:	program	=	analyser;	data	=	sani0za0on	
func0ons,	etc.	

•  Drawback:	humans	have	first	to	synthe0ze	this	
knowledge	in	a	precise	way	

21	

Machine	Learning	

•  Programs	learn	automa0cally	from	data	

– No	need	to	express	knowledge	precisely!	
– Human	effort	can	be	much	smaller	

•  “We	can	think	of	machine	learning	as	the		
inverse	of	programming”	(Pedro	Domingos)	

•  Extensively	used	today	to	solve	complex	problems	

– voice	recogni0on,	natural	language	transla0on,	
playing	Jeopardy...	

22	

09/09/16	

12	

Mechanism	2:	Classifica0on		
•  Key	idea:		

–  for	less	obvious	sani0za0on	func0ons	(or	combina0ons)	
don’t	ask	experts,	let	the	tool	learn	

–  we	let	the	taint	analyzer	produce	false	posi0ves,	but	use	a	
classifier	to	dis0nguish	true	from	false	

•  Classifier	works	based	on	a	set	of	examples	
–  a	user	can	add	more	examples	to	make	the	tool	more	
precise;	no	need	to	program	knowledge	

–  other	tools:	user	learns	func0on	X	sani0zes,	then	codes	X	
–  our	tool:	user	sees	example	Y	not	vulnerable,	then	adds	Y	

23	

Mechanism	3:	Code	Correc0on	

•  Correc0ng	vulnerabili0es	is	0resome	and	they	can	be	
removed	mostly	automa0cally	using	fixes	

•  Let	the	tool	to	do	it	when	it	detects	a	vulnerability	

24	

09/09/16	

13	

WAP:	outline	

•  Overview	
•  Taint	analysis	
•  False	posi0ve	classifica0on	
•  Code	correc0on	
•  The	WAP	tool	
•  Results	

25	

Scheme	

26	

ep:	entry	points	
ss:	sensi0ve	sinks	
san:	sani0za0on	func0ons	

09/09/16	

14	

WAP:	outline	

•  Overview	
•  Taint	analysis	
•  False	posi8ve	classifica8on	
•  Code	correc0on	
•  The	WAP	tool	
•  Results	

29	

Key	idea	

•  Code	slice:	sequence	of	all	instruc0ons	from	an	entry	
point	to	a	sensi0ve	sink	that	affect	data	flow	

•  Key	idea:	given	a	code	slice	in	which	the	taint	
analyzer	detected	a	vulnerability,	classify	it	as	
vulnerable	or	not	
– confirming	the	conclusion	of	the	taint	analyzer	
– or	saying	it	was	a	false	posi0ve	

•  How	to	dis0nguish	vulnerable	from	non-vulnerable	
slices?	Using	symptoms	/	features	

30	

09/09/16	

15	

Features	for	FP	classifica0on	

31	

•  What	are	the	features	of	the	possible	existence	of	a	
false	posi0ve?	A	symptom	exists	when	the	user	input	
is	(examples):	
– changed	

•  string	manipula0on	func0ons	(e.g.,	substr)	
•  concatena0on	opera0ons	

– validated	
•  type	checking	func0ons	(e.g.,	isset,	is_string)	
• white	and	black	lis0ng	

•  Features	are	binary:	presence	or	not	of	one	of	these		

FP	classifica0on:	other	ingredients	

•  What	do	we	need	for	classifica0on?	
•  A	set	of	features	to	characterize	false	posi0ves	
•  Classifica0on	classes;	we	use	two:	

–  is	a	FP	(Y);	is	not	a	FP	(N	=	real	Vulnerability)	
•  Learning	data	set	of	slices	annotated	as	Y	or	N	

– original	set:	76	instances	(32	Y,	44	N)	
– obtained	manually,	tedious	

•  A	classifica0on	algorithm:	we	didn’t	select	one	but	
defined	a	process	to	do	the	selec0on	

32	

09/09/16	

16	

Original	learning	data	set	
•  76	instances:	32	false	posi0ves	+	44	real	vulnerabili0es	
•  15	features,	corresponding	to	24	symptoms	(func0ons)	

33	

Evalua0on	of	classifiers	

•  With	the	WEKA	tool	we:	
•  evaluated	10	machine	learning	classifiers	

–  ID3,	C4.5/J48,	Random	Forest,	Random	Tree,	K-NN,	
Naive	Bayes,	Bayes	Net,	MLP,	SVM,	and	Logis0c	
Regression		

•  tested	the	classifiers	with	10-fold	cross	valida0on	
–  data	set	divided	into	10	buckets,	train	the	classifier	
with	9	of	them	and	test	it	with	the	10th;	repeat	the	
process	with	every	combina0on	(10	0mes)	

•  used	10	metrics	to	evaluate	the	classifiers	performance	

34	

09/09/16	

17	

Evalua0on	of	classifiers	

•  Results	for	Logis0c	Regression	(the	best):	

	
	
	

–  Accuracy	=	(TP+TN)/(P+N)	=	92.1%	(instances	well	classified)	
–  Precision	=		TP/(TP+FP)	=	96.4%	(FP	instances	well	classified)	

•  Later	we	repeated	this	with	much	more	data	

35	

TP	 FP	

FN	 TN	

Classifiers	implemented	

•  First	version:	we	first	implemented	LR	
•  Second	version:	we	implemented	a	combina0on	of	
the	top	3	classifiers	(LR,	RT,	SVM)	(same	data	set)	

36	

09/09/16	

18	

WAP:	outline	

•  Overview	
•  Taint	analysis	
•  False	posi0ve	classifica0on	
•  Code	correc8on	
•  The	WAP	tool	
•  Results	

37	

Code	correc0on	

•  Idea:	when	a	vulnerability	is	found,	insert	a	fix	that	
does	sani0za0on	or	valida0on	of	the	data	
– A	fix	is	just	a	call	to	a	func0on	that	does	it	
– Sani0za0on:	escaping	metacharacters	/	metadata	
– Valida0on:	checking	the	data	and	execu0ng	the	
sensi0ve	sink	or	not	depending	on	this	verifica0on		

•  SQLI	example:		
– fix	calls	a	PHP	sani0za0on	func0on	that	depends	
on	the	DBMS	(e.g.,	pg_escape_string)	

– fix	inserted	in	the	last	write	in	the	query	string	

38	

09/09/16	

19	

Correc0on	of	code	correc0on	(!)	

•  We	never	observed	fixes	breaking	an	applica0on	
func0oning,	but	it’s	not	impossible	

•  Solu0on:	regression	tes0ng	
– consists	in	running	the	same	tests	before	and	
ager	program	modifica0ons		

–  to	check	if	what	was	working	correctly	s0ll	does	
•  We	did	some	simple	experiments	with	Selenium		

39	

WAP:	outline	

•  Overview	
•  Taint	analysis	
•  False	posi0ve	classifica0on	
•  Code	correc0on	
•  The	WAP	tool	
•  Results	

40	

09/09/16	

20	

WAP	-	Web	Applica0on	Protec0on	
•  Does	what	we	saw	for	PHP:	analysis,	classifica0on,	correc0on	
•  Gives	feedback:	

–  reports	vulnerabili0es	detected	and	how	were	corrected		
–  outputs	a	corrected	version	of	the	web	applica0on	
–  reports	the	false	posi0ves	iden0fied	

•  Available	online:	~9000	downloads!	
–  hqp://awap.sourceforge.net/		and	at	OWASP	

41	

WAP	

42	

09/09/16	

21	

Vulnerabili0es	considered	
•  Most	exploited:	

–  SQL	Injec0on	
–  Cross	Site	Scrip0ng	(XSS)	

•  Others:	
–  Remote	file	inclusion	
–  Local	file	inclusion	
– Directory	traversal	/	path	traversal	
–  Source	code	disclosure	
– OS	command	injec0on		
–  PHP	code	injec0on	

43	

Challenges	of	implemen0ng	WAP	

•  PHP	syntax	uncertainty:	PHP	is	not	formally	specified	
and	poorly	documented	features	are	used	ogen	

•  Environment	variables:	resolve	name	of	the	included	
files		

•  Interprocedural,	global,	context-sensi0ve,	class	
analysis	

44	

09/09/16	

22	

WAPe	

•  Extending	sta0c	analysis	tools	to	find	new	
vulnerability	classes	requires	programming,	its	
complex	and	takes	0me	

•  Solu0on:	modify	WAP	to	deal	with	new	vulnerability	
classes	defined	by	the	users	without	programming	

•  “Equipping	WAP	with	WEAPONS”	(WAP	extensions)		

45	

WAPe:	Basic	scheme	

46	

09/09/16	

23	

WAPe:	Classifier	and	data	set	

•  We	increased	the	data	set	and	redone	the	classifier	
study:	

			WAP 	 	 	 	WAPe	

48	

WAP	 WAPe	
15	features		 60	features	
24	symptoms	(func0ons)	 60	symptoms	(func0ons)	
data	set	with	76	instances	 data	set	with	256	instances	
Classifiers:	
Support	Vector	Machine	
Logis0c	Regression	
Random	Tree	

Classifiers:	
Support	Vector	Machine	
Logis0c	Regression	
Random	Forest	

WAPe:	new	vulnerabili0es	

•  LDAP	injec0on	(LDAPi)	
•  XPath	injec0on	(XPathI)	
•  NoSQL	injec0on	(NoSQLi)	
•  Comment	spamming	(CS)		
•  Session	fixa0on	(SF)		
•  Header	injec0on	/	HTTP	response	spli�ng	(HI)	
•  Email	injec0on	(EI)	
•  SQLI	for	WordPress	

52	

09/09/16	

24	

WAP:	outline	

•  Overview	
•  Taint	analysis	
•  False	posi0ve	classifica0on	
•  Code	correc0on	
•  The	WAP	tool	
•  Results	

53	

WAP	vs	Pixy	
•  Pixy	does	taint	analysis	to	detect	SQLI	and	XSS	vulnerabili0es	

54	

09/09/16	

25	

WAP	vs	PhpMinerII	
•  PhpMinerII	predicts	the	presence	of	SQLI/XSS	vulnerabili0es	

in	PHP	code	(in	slices)	using	a	ML	classifier		
•  unlike	WAP,	it	does	not	iden0fy	where	vulnerabili0es	are		
•  also	only	SQLI	and	XSS	

55	

Summary	

56	

09/09/16	

26	

WAP	with	all	vulnerability	classes	

57	

WAP	totals	

58	

1.38	MLOCs	
388	vulnerabili0es	

09/09/16	

27	

WAPe	totals	

59	

WAPe:	0-day	vulnerabili0es	

•  WordPress	is	the	most	popular	CMS;	many	plugins	
•  115	WordPress	plugins	analyzed	

– some	have	more	than	1M	downloads	
– some	are	installed	in	more	than	10K	websites	

•  23	were	found	vulnerable	
– 153	zero-day	vulnerabili0es		
– 16	known	vulnerabili0es		
– 55	SQLI,	71	XSS,	31	DT/RFI/LFI,	etc.	

60	

09/09/16	

28	

WAP	wrap-up	

•  An	approach	and	a	tool	(WAP)	
–  to	automa0cally	iden0fy	and	correct	these	
vulnerabili0es		

– and	to	predict	false	posi0ves	using	data	mining	
–  leveraging	the	idea	of	learning	instead	of	
programing	knowledge	

•  Millions	of	LOCs	analyzed,	many	0-days	found	

61	

WAP:	beqer	input	valida0on	

62	

09/09/16	

29	

DEKANT:	VULNERABILITY	
DETECTION	WITH	STATIC	ANALYSIS	
USING	A	SEQUENCE	MODEL	

2	

63	

Mo0va0on	

•  Typical	sta0c	analysis	tools:		
– detect	vulnerabili0es	they	are	programmed	to	
–  learning	would	be	interes0ng,	as	seen	already	

•  WAP:	limited	capacity	to	learn	
– does	classifica0on	of	FPs	based	on	symptoms	
– does	not	take	into	account	the	order	of	elements	
that	appear	in	the	code		

•  Is	it	possible	to	have	a	tool	that	learns	“everything”?	

64	

09/09/16	

30	

DEKANT:	outline	

•  Overview	
•  Intermediate	slice	language		
•  Sequence	model	
•  The	DEKANT	tool	
•  Results	

65	

DEKANT	

•  No	vulnerability	knowledge	is	programmed	in	the	
tool	
– not	100%	true:	slicing	is	programmed;	expert	
assigns	func0ons	to	classes	

•  The	tool	extracts	knowledge	(learns)	from	a	corpus,	
i.e.,	a	set	of	annotated	source	code	samples	

•  This	knowledge	is	modeled	using	a	sequence	model	
(a	Hidden	Markov	Model	–	HMM)	

66	

09/09/16	

31	

Natural	language	processing	

•  Example:	part-of-speech	(POS)	tagging		
–  Nelson	Évora	is	expected	to	win	tomorrow		
–  Nelson_Évora/NNP	is/VBZ	expected/VBN	to/TO	win/VB	tomorrow/NN		

•  POS	classifies	each	word	(observa0on)	of	a	sentence	
(sequence)	with	a	tag		
–  taking	into	account	the	context	of	the	word	(i.e.,	its	place	
in	the	sentence,	order)	

•  context/order	are	modeled	using	a	HMM	
•  knowledge	about	tags	is	learned	from	a	corpus	

67	

Hidden	Markov	Model	

•  States	are	hidden	and	emit	observa0ons	
•  For	a	sequence	of	observa0ons,	the	HMM	allows	
discovering	the	sequence	of	states	that	emits	that	
sequence		

68	

09/09/16	

32	

Hidden	Markov	Model	

•  Goal:	calculate	which	state	emits	obsn		
•  How:	by	calcula0ng	the	probability	that	each	state	
emits	obsn	given	the	previous	states		

•  Winner:	the	sequence	with	highest	probability	

69	

Sta0c	analysis	vs	HMM	

•  Pu�ng	the	two	together	we	have	SAT	that	learns	to	
detect	vulnerabili0es	using	a	HMM		

70	

09/09/16	

33	

Knowledge	and	learning	
•  Create	the	corpus:		

–  collect	slices	(vulnerable	and	otherwise)	
–  translate	slices	into	ISL	(Intermediate	Slice	Language)	
–  annotate	the	slices	with	states	(Vul	and	N-Vul)	
–  remove	duplicates	

•  Learn	vulnerability	characteris0cs:		
–  generate	matrices	of	probabili0es		
–  train	the	HMM		

71	

DEKANT:	outline	

•  Overview	
•  Intermediate	slice	language		
•  Sequence	model	
•  The	DEKANT	tool	
•  Results	

72	

09/09/16	

34	

Intermediate	slice	language	(ISL)		

•  A	language	that	represents	abstractly	the	source	
code	elements		

•  Composed	by	tokens	and	a	grammar		

73	

...	

Transla0ng	a	slice	into	ISL	

74	
18 / 41

A new language...A new language...

● Translates a slice to ISL
● Creates the variable map of the slice

In
te

rm
e
d
ia

te
 S

lic
e
 L

a
n
g
u
a
g
e
 (

IS
L
)

IS
L
 |
 S

lic
e
 T

ra
n
s
la

ti
o
n
 P

ro
c
e
s
s

$u = $_POST[‘username’];

$q = "SELECT pass FROM users WHERE user=’".$u."’";

$result = mysql_query($q);

inputvar varinput

09/09/16	

35	

Transla0ng	a	slice	into	ISL	

75	
19 / 41

A new language...A new language...

● Translates a slice to ISL
● Creates the variable map of the slice

In
te

rm
e
d
ia

te
 S

lic
e
 L

a
n
g
u
a
g
e
 (

IS
L
)

IS
L
 |
 S

lic
e
 T

ra
n
s
la

ti
o
n
 P

ro
c
e
s
s

$u = $_POST[‘username’];

$q = "SELECT pass FROM users WHERE user=’".$u."’";

$result = mysql_query($q);

input

var

var

var

Transla0ng	a	slice	into	ISL	

76	
20 / 41

A new language...A new language...

● Translates a slice to ISL

● Creates the variable map of the slice

In
te

rm
e
d
ia

te
 S

li
c
e
 L

a
n
g
u
a
g
e
 (

IS
L
)

IS
L
 |
 S

li
c
e
 T

ra
n
s
la

ti
o
n
 P

ro
c
e
s
s

$u = $_POST[‘username’];

$q = "SELECT pass FROM users WHERE user=’".$u."’";

$result = mysql_query($q);

input

var

ss var

var

var

var

09/09/16	

36	

Transla0ng	a	slice	into	ISL	

77	
21 / 41

A new language...A new language...

● Translates a slice to ISL
● Creates the variable map of the slice

In
te

rm
e
d
ia

te
 S

lic
e
 L

a
n
g
u
a
g
e
 (

IS
L
)

IS
L
 |
 S

lic
e
 T

ra
n
s
la

ti
o
n
 P

ro
c
e
s
s

$u = $_POST[‘username’];

$q = "SELECT pass FROM users WHERE user=’".$u."’";

$result = mysql_query($q);

1,0 : is an assignment instruction or not
- : is not a variable
u : the name of the variable in the slice

variable mapslice-isl

input

var

ss var

var

var

var

1 - u

1 u q

1 - q result

DEKANT:	outline	

•  Overview	
•  Intermediate	slice	language		
•  Sequence	model	
•  The	DEKANT	tool	
•  Results	

78	

09/09/16	

37	

Sequence	Model	

•  The	model	is	the	HMM	model	already	presented	
•  an	ISL	instruc0on	

–  is	a	sequence	of	observa0ons	for	the	HMM	
–  is	classified	as	taint	or	n-taint		

•  the	last	observa0on	from	last	instruc0on	carries	the	
classifica0on	of	the	whole	slice-isl:	taint	or	n-taint,	
i.e.,	vulnerable	or	not	

79	

Sequence	Model	

80	

09/09/16	

38	

Classifica0on	example	

81	Vulnerability!	

DEKANT:	outline	

•  Overview	
•  Intermediate	slice	language		
•  Sequence	model	
•  The	DEKANT	tool	
•  Results	

82	

09/09/16	

39	

The	DEKANT	Tool	
•  Implements	the	learning	phase	and	the	sequence	model		
•  Corpus	with	510	slices	extracted	from	real	web	applica0ons	

(414	vulnerable,	96	non-vulnerable)	
•  Detects	8	vulnerability	classes:	SQLI,	XSS,	RFI,	LFI,	DT	SCD,	

OSCI,	PHPCI		
•  Composed	by	4	modules:	

–  knowledge	extractor	
–  slice	extractor	
–  slice	translator	
–  vulnerability	detector		

83	

DEKANT:	outline	

•  Overview	
•  Intermediate	slice	language		
•  Sequence	model	
•  The	DEKANT	tool	
•  Results	

84	

09/09/16	

40	

Evalua0on:	WordPress	plugins	

85	

Evalua0on:	real	web	applica0ons	

86	

09/09/16	

41	

Evalua0on:	real	web	applica0ons	

88	

DEKANT	wrap-up	

•  New	approach	inspired	in	NLP	to	detect	web	
applica0on	vulnerabili0es	

•  Knowledge	is	learned	(except...)	
– first	learn	about	vulnerabili0es	from	corpus	
–  then	detect	vulnerabili0es	taking	the	order	of	
instruc0ons	into	considera0on	

•  Nice	results	in	comparison	with	other	tools	
•  Just	a	first	step	in	a	promising	research	direc7on	

89	

09/09/16	

42	

SEPTIC:	BLOCKING	ATTACKS	IN	THE	
DBMS	

3	

91	

Mo0va0on:	dynamic	protec0on	

•  Widely	successful	in	the	binary	applica0on	world	
•  Today	buffer	overflows	automa0cally	blocked	by:		

–  canaries	in	the	stack	–	detect	return	address	modifica0on	
–  heap	hardening	–	detects	heap	meta-data	modifica0on	
–  non-executable	pages	–	jumps	into	injected	code	make	
program	crash	

–  address	space	layout	randomiza0on	–	makes	addresses	
hard	to	guess	

–  and	many	more,	e.g.,	hqps://wiki.debian.org/Hardening		

92	

09/09/16	

43	

Mo0va0on:	dynamic	protec0on	

•  Idea:	block	aqacks	that	may	exploit	exis0ng	
vulnerabili0es	

•  Benefit:	can	be	deployed	transparently	(opera0ng	
system,	compiler,	virtual	machine),	independently	of	
vulnerabili0es	exis0ng	or	not	

•  Successful	with	binary	applica7ons,	why	not	with	
web	applica7ons?	

93	

SEPTIC	
•  Problem:	

–  SQLI	injec0on	aqacks	retrieve/store	data	in	DB		
–  Some0mes	they	circumvent	sani0za0on	func0ons	
–  Seman0c	mismatch	between	server-side	language	
and	DBMS	

•  Our	solu0on:	
– DBMS	self-protected	against	injec0on	aqacks	
– Detect	and	block	injec0on	aqacks	inside	the	DBMS	

•  How:	
–  “hacking”	the	DBMS	à	SEPTIC	mechanism	

94	

09/09/16	

44	

Seman0c	mismatch	example	

•  Input	sani0zed	with	mysql_real_escape_string	
– username	admin'	--	à	'	is	escaped	
– username	admin%27	--	à	%27	not	escaped	but	
MySQL	interprets	%27	as	a	prime	and	executes	
SELECT	name	FROM	users	WHERE	user='admin'	

•  Seman0c	mismatch	
– different	views	from	PHP	and	MySQL	
– PHP	programmers	don’t	know	this	aqack	works		

95	

Seman0c	mismatch	cases	

96	

09/09/16	

45	

SEPTIC:	outline	

•  ASack	detec8on	in	SEPTIC	
•  Running	SEPTIC		
•  Results	

97	

Aqacks	handled	by	SEPTIC	

98	

09/09/16	

46	

Query	processing	vs	SEPTIC	

99	

detec0on:	query	is	
compared	to	model(s);	
no	mismatch	as	
mechanism	runs	just	
before	query	is	
executed!	
	

SElf-Protec0ng	
daTabases	preventIng	
aqaCks	

SEPTIC:	crea0ng	query	models	
SELECT	name	FROM	users	WHERE	user	=	'alice'	AND	pass	=	'foo'	

100	each	query	should	have	its	own	iden0fier	(ID)	

09/09/16	

47	

Query	ID	crea0on:	SSLE	IDs	

101	

Zend	engine	
for	PHP	

Query	ID	crea0on:	SSLE	IDs	
•  SSLE	best	place	to	create	IDs	

–  programmer	not	involved	
–  lot’s	of	info	about	the	code	

•  Basic	ID:	
–  file:line	–	file	pathname	and	line	number	where	DBMS	
is	called	(e.g.,	mysql_query)	

–  problem:	single	func0on	used	for	different	queries	
•  Full	ID:	

–  file:line|...|file:line	–	1st	pair	has	same	meaning	
–  other	pairs:	lines	where	query	is	passed	as	argument	
to	a	func0on		

102	

09/09/16	

48	

Query	ID	crea0on:	DBMS	IDs	

103	

SQLI	detec0on:	step	1-	structurally	

•  compare	the	number	of	nodes	of	QS	with	its	QM		
•  if	#nodes	is	different,	then	SQLI	aqack	detected		

–  otherwise	goto	step	2	
–  quick	and	covers	many	aqacks,	e.g.,	admin’	--	

104	

09/09/16	

49	

SQLI	detec0on:	step	2-	syntac0cally	

•  compare	the	content	of	nodes	of	QS	with	its	QM	
•  if	a	pair	does	not	match,	a	SQLI	aqack	is	detected	

105	

Example:	second	order	SQLI	

106	

09/09/16	

50	

Example:	syntax	mimicry	

107	

Stored	injec0on	detec0on	

•  Stored	injec0on	aqack	
– Malicious	data:	JavaScript	(stored	XSS),	shell	
commands,	PHP	code	

– 1st	step:	malicious	data	inserted	in	the	DB	
– 2nd	step:	malicious	data	retrieved	from	DB	and	
used	

•  Detec0on	using	code	detectors	(plugins)	
–  inputs	from	INSERT/UPDATE	queries	are	checked	
looking	for	malicious	data	

– we	didn’t	go	much	deep	in	this	(only	XSS,	basic)	

108	

09/09/16	

51	

SEPTIC:	outline	

•  Aqack	detec0on	in	SEPTIC	
•  Running	SEPTIC		
•  Results	

109	

SEPTIC	opera0on	modes	

110	

09/09/16	

52	

Crea0ng/storing	query	model	

111	

SE
PT
IC
	

parsed	Q	parse	

query	
models	

get	
ID	

execute	Q	
IDen0fier	
Query	
Query	Model	
Query	Structure	

create	
QS	

validate	ID		Q	

DBMS

create	
QM	

generate	
DBMS-ID	

ID	

Training mode | training phase
Normal mode | incremental

Detec0ng/blocking	SQLI	

112	

SE
PT
IC
	

parsed	Q	parse	

query	
models	

log	of	
aqacks	

get	
ID	

get	
QM	

drop	
Q	

execute	Q	
IDen0fier	
Query	
Query	Model	
Query	Structure	

create	
QS	

detect	
aqacks	

validate	ID		Q	

DBMS

get	
DBMS-ID	

ID	

Normal mode | prevention or detection

09/09/16	

53	

Detec0ng/blocking	stored	injec0on	

113	

SE
PT
IC
	

parsed	Q	parse	

log	of	
aqacks	

drop	
Q	

execute	Q	
IDen0fier	
Query	
Query	Model	
Query	Structure	

create	
QS	

detect	
aqacks	

apply	
plugins	

validate	ID		Q	

DBMS

ID	

Normal mode | prevention or detection

SEPTIC	full	architecture	

114	

SE
PT
IC
	

parsed	Q	parse	

query	
models	

log	of	
aqacks	

get	
ID	

get	
QM	

drop	
Q	

execute	Q	
IDen0fier	
Query	
Query	Model	
Query	Structure	

create	
QS	

detect	
aqacks	

apply	
plugins	

validate	ID		Q	

DBMS

create	
QM	

generate/get	
DBMS-ID	

ID	

09/09/16	

54	

SEPTIC:	outline	

•  Aqack	detec0on	in	SEPTIC	
•  Running	SEPTIC		
•  Results	

115	

SEPTIC	implementa0on	(#changes)	
•  MySQL	DBMS	–	SEPTIC	itself	

–  1	file:	14	loc	
–  SEPTIC	detector	
–  SEPTIC	setup	
–  sep0c_training	module	

•  PHP	/	Zend	engine	–	inser0on	of	IDs	in	the	SSLE	
–  3	files:	27	loc	
–  SEPTIC	iden0fier	

•  Java/Spring	framework	–	to	show	it’s	not	specific	to	PHP	
–  1	file:	16	loc	
–  SEPTIC	iden0fier	

•  Also	analyzed	cases	of	MariaDB	and	PostgreSQL	
116	

09/09/16	

55	

•  SQLI	unrelated	to	seman0c	mismatch	
– 23	from	the	sqlmap	project	
– 11	by	Ray	&	Liga�	(4	are	not	aqacks/vulnerab.)		
– 7	other	samples	(for	other	SQLI	aqacks)	

•  SQLI	related	to	seman0c	mismatch	
– 17	code	samples	

•  Stored	injec0on	
– 5	code	samples	

•  Total:	59	aqacks/vuln.,	4	non-aqacks/vuln.	

117	

SEPTIC	detec0on	w/code	samples	

Comparison	with	other	tools	

120	

DBMS	Browser	

SEPTIC	

Web	
applica8on	

an0-SQLI	
tools	WAF	

SQLrand
AMNESIA

CANDID
DIGLOSSIA

ModSecurity
SEPTIC

0
10
20
30
40
50
60
70

Summary of 63 tests

Flagged attacks False positives False negatives

09/09/16	

56	

•  Vulnerabili0es	detected/blocked	in	real	webapps	
•  Zero	CMS	

– CVE-2014-4194	
– CVE-2014-4034	
– OSVDB	ID	108025	

•  WebChess	
– 13	vulnerabili0es	

•  measureit	
– 1	stored	XSS	

121	

SEPTIC:	real	open	source	sogware	

122	

Apache	&	Zend	
Web	applica0ons	
BenchLab	

MySQL	&	SEPTIC	

each	1	to	5	
browsers	

SEPTIC	combina8ons	

SQLI	detector	 Stored	inj.	det.	

off	 off	

on	 off	

off	 on	

on	 on	

0.82%	

	
2.24%	

SEPTIC:	performance	

09/09/16	

57	

SEPTIC	wrap-up	

•  Pu�ng	protec0on	in	the	DBMS	allows	detec0ng	/	
blocking	aqacks	efficiently		
– Subtle	aqacks	related	to	seman0c	mismatch	

•  (Mostly)	transparent	protec0on	for	web	applica0ons	
•  Low	performance	overhead	
•  May	have	prac7cal	impact	in	webapp	security?	

123	

SHUTTLE:	INTRUSION	RECOVERY	IN	
THE	CLOUD	

4	

124	

09/09/16	

58	

•  Cloud	provider	vs	consumers	
•  Fundamental	ideas	

– Compu0ng	as	a	u0lity	
– Pay-as-you-go	
– Resource	pooling	
– Elas0city	

•  Large-scale	datacenters	

125	

Cloud	compu0ng	(public	cloud)	

•  Infrastructure	as	a	Service	(IaaS)	
– virtual	machines,	storage	(e.g.,	Amazon	EC2,	
Amazon	S3)	

•  Pla�orm	as	a	Service	(PaaS)	
– programming	and	execu0on	(e.g.,	Google	
AppEngine,	Force.com,	Windows	Azure)	

•  Sogware	as	a	Service	(SaaS)	
– mostly	web	applica0ons	(e.g.,	Yahoo!	Mail,	Google	
Docs,	Facebook,…)	

126	

Cloud	compu0ng	service	models	

09/09/16	

59	

Pla�orm	as	a	Service	(PaaS)	

•  PaaS	services	allow	running	applica0ons	
•  Consumer	develops	applica0on	to	run	in	that	
environment,	using	
– Supported	languages,	e.g.,	Java,	Python,	Go,	PHP	
– Supported	components,	e.g.,	SQL/NoSQL	
databases,	load	balancers	

– Examples:	Google	App	Engine,	Windows	Azure	
Cloud	Services,	Salesforce	Force.com,...	

127	

Mo0va0on	

•  Intrusions	in	PaaS	applica0ons	may	happen	due	to		
– Sogware	vulnerabili0es	(e.g.,	Shellshock)	
– Configura0on	and	usage	mistakes		
– Corrupted	legi0mate	requests	(e.g.,	SQLI)	

•  Aqacker	can	run	commands	in	the	applica0on	and	
delete,	add,	and	modify	data	

•  Legi0mate	users	can	then	do	commands	on	
corrupted	data...	

128	

09/09/16	

60	

Mo0va0on	

129	

Shuqle:	outline	

•  ShuSle		
•  Evalua0on	

130	

09/09/16	

61	

Shuqle	

•  Recovers	the	state	integrity	of	PaaS	applica0ons	
when	there	are	intrusions	

•  Isn’t	it	what	backups	do?	
– Backups:	remove	both	bad	and	good	opera0ons	
– Shuqle:	removes	bad	opera0ons	but	keeps	good	
ones	

131	

State	of	the	art	
•  Previous	works	

–  Opera0ng	systems:	Taser,	Retro	
–  Databases:	ITDB,	Phoenix	
– Web	applica0ons:	Goel	et.	al,	Warp,	Aire	
–  Others	(Email):	Undo	for	Operators	

•  Limita0ons	
– Max.	complexity:	1	app	server,	1	database	instance	
–  All	require	setup	and	configura0on	
–  Cause	applica0on	down0me	during	recovery	

132	

09/09/16	

62	

Shuqle	

•  Supported	by	the	cloud:	available	without	consumer	
setup		

•  Supports	applica0ons	deployed	in	various	instances	
•  Avoids	applica0on	down0me	as	no	need	to	stop	the	
applica0on	during	recovery	

•  Leverage	elas0city	to	make	recovery	faster	

133	

PaaS	applica0ons	architecture	

134	

User Request

Proxy

Load Balancer

Application
Server

Application
Server

Database
Instance

Database
Instance

09/09/16	

63	

Shuqle	architecture	

normal	execu0on:	log,	
take	snapshots	

135	

User Request

Proxy

Load Balancer

Application
Server

Application
Server

Database
Instance

Database
Instance

Manager

Storage

DB Proxy DB Proxy

Interceptor Interceptor

Shuqle	during	recovery	

136	

User Request

Proxy

Load Balancer

Application
Server

Application
Server

Database
Instance

Database
Instance

Manager

Storage

DB Proxy DB Proxy

Replay
Instances

Interceptor Interceptor

09/09/16	

64	

Recovery	process	

1.  Detect/iden0fy	the	malicious	opera0ons	(not	Shuqle)	

2.  Start	new	instances	of	the	applica0on	and	database	
3.  Load	a	snapshot	previous	to	intrusion	instant;	create	

a	new	branch	(applica0on	stays	running	in	previous	branch)	
4.  Replay	requests	in	new	branch	
5.  Block	incoming	requests;	replay	last	requests	

6.  Change	to	new	branch;	shutdown	unnecessary	
instances	

	

137	

Recovery	modes	
•  Full-Replay:	Replay	every	opera0on	ager	snapshot	
•  Selec0ve-Replay:	Replay	only	affected	(tainted)	opera0ons	

•  Serial:	Replay	all	dependency	graph	sequen0ally	
•  Clustered:	Replay	independent	clusters		

concurrently;	allowed	by	the	cloud	elas0city	

•  Modes	supported:	

138	

Full-Replay	 Selec0ve-Replay	
1	Cluster	(Serial)	 ✔	 ✔	
Clustered	 ✔	 ✗	

09/09/16	

65	

Shuqle:	outline	

•  Shuqle		
•  Evalua8on	

139	

Evalua0on	environment	

•  Amazon	EC2,	c3.xlarge	instances,	Gb	Ethernet	

•  WildFly	applica0on	server	(formely	JBoss)	
•  Voldemort	database		

•  Ask	Q&A	applica0on;	data	from	Stack	Exchange	

140	

09/09/16	

66	

Accuracy	
•  Intrusion	Scenarios:	

–  1.	Malicious	requests	
–  2.	Sogware	vulnerabili0es	
–  3.	External	channels	(e.g.	SSH	due	to	Shellshock)	

141	

#	data	items	
affected

#	requests	
tainted

#	requests	replayed	
–	Selec8ve	Replay

#	requests	replayed		
–	Full	Replay

1a 106 0 <	605 38	620
1b	 58 14 <	379 	38	620

1c 48 52 <	253 	38	620
2a 4	338 0 - 	38	620
2b 18	286 1	278 - 	38	620
3 >	2	000 - - 38	620

Performance	overhead	

•  in	normal	execu0on	

142	

Overhead	seems	acceptable;	penalty	mostly	due	to	single	proxy	

50%	Reads	50%	Inserts 95%	Reads	5%	Inserts
ops/sec latency	(ms) ops/sec latency	(ms)

Shuqle 6325 5.78 15	346 3.62
No	Shuqle 7148 5.07 17	821 3.01
overhead 13% 14% 16% 20%

09/09/16	

67	

Recovery	0me	

•  for	1	million	requests	

143	Clustering	greatly	reduces	recovery	0me	

Restrain	dura0on	

144	

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00 03:00 06:00 09:00 12:00

R
eq

ue
st

s
pe

r s
ec

on
d

Time (minutes:seconds)

clustered replay
concurrent client

Begin	
restrain	

Restrain:	46	seconds	

09/09/16	

68	

#	objects Size	(MB)
ShuSle	Storage:

Requests 1	million 212
Response 1	million 8	767

Start/End	0mestamps 2	million 16
Keys 137	million	 488
Total 9	648

Database	node:
Version	List 14	593 1.4

Opera0on	List 9	million 277
Total 282

Manager
Graph 1	million 718

Storage	overhead	
•  for	1	million	requests	

Storage	is	considerable	but	mostly	due	to	storing	full	responses	
$47	per	month	if	20	Million	requests	per	day	(without	responses)	

SHUTTLE	wrap-up	

•  New	intrusion	recovery	service	for	PaaS	offerings	
•  Supports	applica0ons	running	in	various	instances,	
backed	by	distributed	databases	

•  Leverages	the	resource	elas0city	and	pay-per-use	
model	to	reduce	the	recovery	0me	and	costs	

•  Provides	intrusion	recovery	without	service	
down0me	using	a	branching	mechanism	

146	

09/09/16	

69	

Outline	

1.  WAP:	vulnerability	detec0on	with	sta0c	analysis	
using	taint	analysis	+	classifier	

2.  DEKANT:	vulnerability	detec0on	with	sta0c	analysis	
using	a	sequence	model	

3.  SEPTIC:	blocking	aqacks	in	the	DBMS	

4.  SHUTTLE:	intrusion	recovery	in	the	cloud	

147	

Papers	
WAP:	I.	Medeiros,	N.	F.	Neves,	M.	Correia.	Automa8c	Detec8on	and	Correc8on	of	Web	
Applica8on	Vulnerabili8es	using	Data	Mining	to	Predict	False	Posi8ves.	WWW	2014	

WAP:	___.	Detec8ng	and	Removing	Web	Applica8on	Vulnerabili8es	with	Sta8c	Analysis	
and	Data	Mining.	IEEE	Transac0ons	on	Reliability	2016	

WAP:	___.	Equipping	WAP	with	WEAPONS	to	Detect	Vulnerabili8es.	DSN	2016	

DEKANT:	___.	DEKANT:	A	Sta8c	Analysis	Tool	that	Learns	to	Detect	Web	Applica8on	
Vulnerabili8es.	ISTTA	2016	

SEPTIC:	I.	Medeiros,	M.	Beatriz,	N.	Neves	and	M.	Correia.	Hacking	the	DBMS	to	Prevent	
Injec8on	ASacks.	CODASPY	2016	

SHUTTLE:	D.	Nascimento,	M.	Correia.	ShuSle:	Intrusion	Recovery	for	PaaS.	ICDCS	2015.	

G.	S.	Veronese,	M.	Correia,	A.	N.	Bessani,	L.	C.	Lung,	P.	Verissimo.	Efficient	Byzan8ne	Fault	Tolerance.	IEEE	
Transac0ons	on	Computers	2013.	

A.	N.	Bessani,	M.	Correia,	B.	Quaresma,	F.	André,	P.	Sousa,	DepSky:	Dependable	and	Secure	Storage	in	a	Cloud-of-
Clouds.	EuroSys	2011	and	ACM	Transac0ons	on	Storage	2013.	

148	

09/09/16	

70	

Thank	you	
	

Miguel	Pupo	Correia		
miguel.p.correia@tecnico.ulisboa.pt	
hqp://www.gsd.inesc-id.pt/~mpc/		

	
	
	

