Web Application Security:
from Static Analysis to Dynamic
Protections and Recovery

Miguel Correia
joint work with Ibéria Medeiros, Nuno Neves, Miguel Beatriz, Dario Nascimento,...

Building Trust in the Information Age — Summer School on Computer Security and Privacy —
Cagliari, Sep. 2016

~

TECNICO) .
w LISBOA @ nescid
D03 4¢3.

ULisboa / IST / INESC-ID

* Universidade de Lisboa — Portugal

— largest univ. in Portugal; ~50K students; ~460 programs; 18 schools
* Instituto Superior Técnico

— largest engineering school in Portugal; ~12K students; 80 programs
* |NESC-ID

— large lab in computer science and electrical engineering; 100+ PhDs
(most IST faculty); ~250 PhD/MSc students; many research groups

* Distributed Systems Group (GSD)
— 12 ST faculty, ~30 PhD students, ~40 MSC students, 3 EC projects

09/09/16

Research overview (1)

Intrusion Tolerance
* To apply the Fault Tolerance paradigm in the domain
of Security

* Do the best we know to protect systems ...but
vulnerabilities still remain... so tolerate intrusions
that still occur

intrusion

a

Research overview (2)
Intrusion-Tolerant Services

I-T Distributed Service

Servers (N) NFS, DNS,
Rgdun@ancy ?&KN on-line CA,
Diversity co® Web server,
lilll etc.
secure Components i
T] [ey

555@5‘-

—

Clients

09/09/16

Research overview (3)
MinBFT

|-T Distributed Servi . . .
isiributed service e First efficient BFT SMR

Servers (N protocol: PBFT (1999)

— 3f+1 replicas
— 5 communic. steps
secure
components * MinBFT (2009-13)

— requires local secure

Byzantine FT
Request Reply component:

protocol
monotonic counter
DI DI DI DI DI (simpler than TPM)
| — Q’ e — 2f+1 replicas
Clients — 4 communic. steps
G.S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, P. Verissimo. s

Efficient Byzantine Fault Tolerance. IEEE Transactions on Computers 2013.

Research overview (4)
DepSky

* Service: intrusion-tolerant cloud storage
— Client-side software
— Server-side are cloud storage services (diversity!)

* Byzantine quorum protocol (consistency) +

erasure codes (space) +

symmetric cripto (confidentiality) / \(%\
* Wide-area experiments: <

+ availability s
+ read speed ;

- write speed \
p g, B\ Rackspace \
L
Wmdows
A. N. Bessani, M. Correia, B. Quaresma, F. André, P. Sousa, Azure

DepSky: Dependable and Secure Storage in a Cloud-of-Clouds.
EuroSys 2011 and ACM Transactions on Storage 2013.

09/09/16

Overview of my research (5)
Software Security

* Diversity is a means to get different vulnerabilities in
replicas, mostly in software, but how? This
motivated me to understand software vulnerabilities

* Also reducing vulnerabilities is crucial so auditing,
static analysis, dynamic protection, secure coding...

* => Software Security that is the major topic of this
presentation

Overview of my research (6)
Software Security

* Older work:
— Attack injection / fuzzing
— Vulnerabilities in software ported from 32 to 64-
bit CPUs
— Anomaly-based intrusion detection in web apps

* Teaching a course since 2004
Seguranca

1 X
z <

09/09/16

OVERVIEW OF THE PRESENTATION

Outline

. WAP: vulnerability detection with static analysis
using taint analysis + classifier

DEKANT: vulnerability detection with static analysis
using a sequence model

. SEPTIC: blocking attacks in the DBMS

. SHUTTLE: intrusion recovery in the cloud

10

09/09/16

Papers

WAP: |. Medeiros, N. F. Neves, M. Correia. Automatic Detection and Correction
of Web Application Vulnerabilities using Data Mining to Predict False Positives.
WWW 2014

WAP: ___. Detecting and Removing Web Application Vulnerabilities with Static
Analysis and Data Mining. IEEE Transactions on Reliability 2016

WAP: ___. Equipping WAP with WEAPONS to Detect Vulnerabilities. DSN 2016

DEKANT: ___. DEKANT: A Static Analysis Tool that Learns to Detect Web
Application Vulnerabilities. ISSTA 2016

SEPTIC: I. Medeiros, M. Beatriz, N. Neves and M. Correia. Hacking the DBMS to
Prevent Injection Attacks. CODASPY 2016

SHUTTLE: D. Nascimento, M. Correia. Shuttle: Intrusion Recovery for PaaS.
ICDCS 2015.

11

1

WAP: VULNERABILITY DETECTION

WITH STATIC ANALYSIS
USING TAINT ANALYSIS + CLASSIFIER

09/09/16

Motivation

* Web applications are exposed to malicious user
inputs; if vulnerable, they can be attacked
successfully

* “So why do developers keep making the same
mistakes? (...) Instead of relying on programmers’
memories, we should strive to produce tools that
codify what is known about common security
vulnerabilities and integrate it directly into the

development process.”

— David Evans and David Larochelle, Improving Security Using Extensible
Lightweight Static Analysis, 2002

Static (source) code analysis

* Objective: to find vulnerabilities in the
applications’ (source) code automatically

— Similar to compiler’s error checking but for
vulnerabilities

— Similar to manual code reviewing but
automatically

e Static because the code is not executed

14

09/09/16

Generic static analysis tool

Source code
\/A
Build model
Vulnerability
data Analysis
Results
_/\

WAP: outline

Overview

Taint analysis

False positive classification
Code correction

The WAP tool

Results

16

09/09/16

Vulnerability example (SQLI)

New Tab - Mozilla Firefox
File Edit View History Bookmarks Tools Help
| {INew Tab I +* ‘
> e | “>| B coos: Q & @
[Most Visitedv P Release Notes [JFedora Project¥ [JRed Hatv

Usermname

‘orl=1--

Password

any

17
Vulnerability example (SQLI)
PHP code:
Username
Su=$ POST['user’]; «—— |‘orl=l--
$p = $_POST[’password’]; —__ Password
$q = “SELECT * FROM users any
WHERE user='Su' AND pass='$p"”’;
Sr=mysql_query($q); m
$q = “SELECT * FROM users WHERE user=" or 1=1 -- ' AND pass='any"’;
Sr = mysql_query($q);
18

09/09/16

Mechanism 1: Taint Analysis

* Analyses the source code, starting at every entry point,

propagating taintedness, checking if a sensive sink is fed with
tainted data)

$u,=$_PQST['user; ~~ SQL Injection A
ST[password]; o~ detected — -~
$q = CT * FROM users WHERE user="$u' AND pass\:"$p",’,;,,,\ P ad

$N\s mysql_quer ;

Vulnerability!

=35 ST[’user I . some functions sanitizes, so
OST[password’]; “Untaints”, the data flow
sql_real_escape_string(u);

$\'= mysql_query s
OK! 19

Challenge: False Positives

* False positive: the analyzer says there’s a
vulnerability, but that’s false

— Cause: sanitization function(s) missing from list
— Obvious solution: add missing info to the analyzer
* How do we know which functions untaint data?

— Some are obvious, like mysql real escape string

— Some aren’t, like substr or trim

20

09/09/16

10

Programming

How do computers “know” how to do something?

Humans create programs, i.e., sequences of
instructions

— Knowledge is the program plus data (config., DBs)
— Our case: program = analyser; data = sanitization
functions, etc.
: humans have first to synthetize this
knowledge in a precise way

21

Machine Learning

Programs learn automatically from data
— No need to express knowledge precisely! =
— Human effort can be much smaller

“We can think of machine learning as the o £
inverse of programming” (Pedro Domingos)

Extensively used today to solve complex problems

— voice recognition, natural language translation,
playing Jeopardy...

22

09/09/16

11

Mechanism 2: Classification

— for less obvious sanitization functions (or combinations)
don’t ask experts, let the tool

— we let the taint analyzer produce false positives, but use a
to distinguish true from false

* Classifier works based on a set of examples

— a user can add more examples to make the tool more
precise; no need to program knowledge

— other tools: user learns function X sanitizes, then codes X
— our tool: user sees example Y not vulnerable, then adds Y

23

Mechanism 3: Code Correction

* Correcting vulnerabilities is tiresome and they can be
removed mostly automatically using fixes

* Let the tool to do it when it detects a vulnerability

24

09/09/16

12

WAP: outline

Overview

Taint analysis

False positive classification
Code correction

The WAP tool

Results

25

Scheme

PHP
source code

parsing
code

¥

T

AS
vulnerability

detector
module

o

candidate
vulnerabilities

y

taint analyzer
- /1

\
\
44‘
\
\

ep: entry points
ss: sensitive sinks
san: sanitization functions

26

09/09/16

13

WAP: outline

Overview

Taint analysis

False positive classification
Code correction

The WAP tool

Results

29

Key idea

Code slice: sequence of all instructions from an entry
point to a sensitive sink that affect data flow

Key idea: given a code slice in which the taint
analyzer detected a vulnerability, classify it as
vulnerable or not

— confirming the conclusion of the taint analyzer
— or saying it was a false positive

How to distinguish vulnerable from non-vulnerable
slices? Using symptoms / features

30

09/09/16

14

Features for FP classification

* What are the features of the possible existence of a
false positive? A symptom exists when the user input
is (examples):

— changed
* string manipulation functions (e.g., substr)
* concatenation operations
— validated
* type checking functions (e.g., isset, is_string)
* white and black listing
* Features are binary: presence or not of one of these

31

FP classification: other ingredients

What do we need for classification?

A set of to characterize false positives

Classification ; we use two:
—isa FP (Y); is not a FP (N = real Vulnerability)
of slices annotated as Y or N
— original set: 76 instances (32 Y, 44 N)
— obtained manually, tedious
e A : we didn’t select one but
defined a process to do the selection

32

09/09/16

15

09/09/16

Original learning data set

* 76 instances: 32 false positives + 44 real vulnerabilities

* 15 features, corresponding to 24 symptoms (functions)

]
ce| Remove
ng | whitesp.

[Potential vulnerability] Stri
MIMr

ng

suk

RFI SRD
0sCI DVWA 1.0.7

R
242222222 2K <23
zz <2 zn 2 |
222222222 74 <2
ZZ 42244 22 2| 2
22222224222

icnuml5
XSS Mfm-0.13

Validation

z|Z 2

“Zezz222227 2%
zzzzz<4zzz2zz25 5
222222222)y 4
S

z 2z 2222225 3
ZZ2ZZ2 24 2222|272 ';

2272222222772z 2||3%
zzz4<222222z2|°

222222222 a5 E
Kz zgziLzI< <l =
o200z ozgolR 2l R

222222222 45 42 F2
PEEEEEER S :
L2 22 AL 2L,
PEEEEEERE
B

33

Evaluation of classifiers

With the WEKA tool we:
evaluated 10 machine learning classifiers
— ID3, C4.5/148, Random Forest, Random Tree, K-NN,

Naive Bayes, Bayes Net, MLP, SVM, and Logistic
Regression

tested the classifiers with 10-fold cross validation

— data set divided into 10 buckets, train the classifier
with 9 of them and test it with the 10t; repeat the
process with every combination (10 times)

used 10 metrics to evaluate the classifiers performance

34

16

Evaluation of classifiers

* Results for Logistic Regression (the best):

Observed
Yes (FP) No (not FP)
Yes (FP) 27 1p L
Predicted
! No (not FP) 5 N 43 1y

— Accuracy = (TP+TN)/(P+N) = 92.1% (instances well classified)
— Precision = TP/(TP+FP) = 96.4% (FP instances well classified)

* Later we repeated this with much more data

35

Classifiers implemented

* First version: we first implemented LR

* Second version: we implemented a combination of
the top 3 classifiers (LR, RT, SVM) (same data set)

36

09/09/16

17

WAP: outline

* Overview

* Taint analysis

* False positive classification
* Code correction

* The WAP tool

* Results

37

Code correction

when a vulnerability is found, insert a fix that
does sanitization or validation of the data

— Afix is just a call to a function that does it
— Sanitization: escaping metacharacters / metadata

— Validation: checking the data and executing the
sensitive sink or not depending on this verification

e SQLI example:

— fix calls a PHP sanitization function that depends
on the DBMS (e.g., pg_escape_string)

— fix inserted in the last write in the query string

38

09/09/16

18

Correction of code correction (!)

We never observed fixes breaking an application
functioning, but it’s not impossible

Solution:

— consists in running the same tests before and
after program modifications

— to check if what was working correctly still does
We did some simple experiments with Selenium

39

WAP: outline

Overview

Taint analysis

False positive classification
Code correction

The WAP tool

Results

40

09/09/16

19

WAP - Web Application Protection

Does what we saw for PHP: analysis, classification, correction
Gives feedback:

— reports vulnerabilities detected and how were corrected
— outputs a corrected version of the web application

— reports the false positives identified
Available online: ~9000 downloads!

— http://awap.sourceforge.net/ and at OWASP

About

Description & Features Acknowledgements

Description & Features:

WAP is a source code static analysis and data mining tool to detect and correct input validation vulnerabilities in web applications written in PHP 41
(version 4.0 or higher) with a low rate of false positives.
4 Y4 N\ N\
Y
N A
A — —
entry points f—or f o A
sensitive sinks trained)
sanit. funcs TGS fixes
detecting - .
PHP :
source code I ¥ candidate falgr:dlncs“igges mik sgﬂ:rcicggge
vulnerabilities p
false vulnerabilities
positives fixed
- N\ N\ J
Code False positive Code
analyzer predictor corrector
42

09/09/16

20

Vulnerabilities considered

* Most exploited:
— SQL Injection
— Cross Site Scripting (XSS)
* Others:
— Remote file inclusion
— Local file inclusion
— Directory traversal / path traversal
— Source code disclosure
— OS command injection
— PHP code injection

43

Challenges of implementing WAP

* PHP syntax uncertainty: PHP is not formally specified

and poorly documented features are used often

* Environment variables: resolve name of the included

files
* Interprocedural, global, context-sensitive, class
analysis

44

09/09/16

21

09/09/16

WAPe

* Extending static analysis tools to find new
vulnerability classes requires programming, its
complex and takes time

* Solution: modify WAP to deal with new vulnerability
classes defined by the users without programming

* “Equipping WAP with WEAPONS” (WAP extensions)

45

WAPe: Basic scheme

e detector faslst:qp;);i:]i\s/e fix WEAPON
ymp generator
A 4 A4
4 N A

entry points N |
sensitive sinks trained
sanit. funcs data sets

LPH/P_LU» g:rg?jic(;iz:t% 1], predicting | || correcting
source code N Rerahiias false plnsmves sourci code
false > <u|nerabiliti§
positives fixed
N '\ AN J
Code False positive Code
analyzer predictor corrector

46

22

WAPe: Classifier and data set

* We increased the data set and redone the classifier
study:

wAP___wape

15 features 60 features

24 symptoms (functions) 60 symptoms (functions)
data set with 76 instances data set with 256 instances
Classifiers: Classifiers:

Support Vector Machine Support Vector Machine
Logistic Regression Logistic Regression
Random Tree Random Forest

48

WAPe: new vulnerabilities

* LDAP injection (LDAPi)

» XPath injection (XPathl)

* NoSQL injection (NoSQLi)

* Comment spamming (CS)

» Session fixation (SF)

* Header injection / HTTP response splitting (HI)
* Email injection (El)

e SQLI for WordPress

52

09/09/16

23

WAP: outline

* Overview
* Taint analysis

* False positive classification

e Code correction
e The WAP tool
* Results

WAP vs Pixy

* Pixy does taint analysis to detect SQLI and XSS vulnerabilities

Weba [WAP-TA Pixy WAP (complete)
PP [SQLI[XSS[FP [FN [SQLI[XSS [FP [FN | SQLI[X85 [FP [FN | Comected

CurrentCost 3 4 2 3 5 3 0 1 4 2 0 5
DVWA 1.0.7 4 2 2 4 0 2 2 2 2 2 0 4
emoncms 2 8] 3 2 3 0 0 2 3 3 0 5
Measureit 1.14 1 7 7 1 16 16 0 1 0 7 0 1
Mfm-0.13 0 8 3 0 10 2 3 0 5 3 0 5
Multilidae 2.3.5 0 2 0 - - - - 0 2 0 0 2
SAMATE 3 11 0 4 11 1 0 3 11 0 0 14
Vienum15 3 1 3 3 1 3 0 0 1 3 0 1
Wackopicko 3 5 0 - - - - 3 5 0 0 8]
ZiPEC 0.32 3 0 1 3 7 8 0 2 0 1 0 2
Total 22 46 21 20 53 41 5 14 33 21 0 47

68 vuln.: 21 are FP 73 vuln.: 41 are FP 47 real vulnerabilities

0 false negatives 5 false negatives 21 predicted false positives

Same 11 FP than Pixy Same 11 FP than WAP 0 false negatives

+ 30 FP than WAP 47 vulnerabilities corrected
N) -
D' ~"
Without data mining With data mining

09/09/16

24

WAP vs PhpMinerll

PhpMinerll predicts the presence of SQLI/XSS vulnerabilities
in PHP code (in slices) using a ML classifier

unlike WAP, it does not identify where vulnerabilities are
also only SQLI and XSS

Observed
Yes (Vuln.) |No (not Vuln.)
) Yes (Vuln.) 48 5
Predicted No (not Vuln.) 5 20
Logistic Regression
Accuracy = 87.2%
Precision = 85.2%
55
Summary
Metric WAP Pixy PhpMinerll
accuracy 92.1% 44.0% 87.2%
precision 92.5% 50.0% 85.2%

56

09/09/16

25

WAP with all vulnerability classes

Detected taint analysis Detected
Weba RFI, LFI data Corrected
PP SQLI - SCD|OCSI|XSS |Total [FP| 20
DT/PT mining
currentcost 3 0 0 0 4 i 2 5 5
DVWA 1.0.7 4 3 0 G 4 17] : 9
emoncms 2 0 0 0 13 il 3 12
Measureit 1.14 1 0 0 0 11 2 7 5 5
Mifm 0.13 0 0 0 0) s 3 5 5
Mutillidae 2.3.5 0 0 0 2 8 10 0 10 10
OWASP Vicnum 3 0 0 0 1 4 3 1 1
SRD 3 6 0 0 11 20 1 19 19
Wackopico 3 2 0 1 5 1 0 11 11
ZiPEC 0.32 3 0 0 0 4 1 6 6
[Total 22 11 0 9 69 | 111 |28 83 83
57
L . Lines of | Analysis | Vul Vul Real
Web application Files code time (s) | files | found FP vul
adminer-1.11.0 75 5434 27 3 3 0 3
Butterfly insecure 16 2,364 3 5 0 | 0| 10
Butterfly secure 15 2,678 3 3 4 0 4
W A P t Ot a S currentcost 3 270 1 2| 4 |2 2
dmoz2mysql 6 1,000 2 0 0 0 0
DVWA 1.0.7 310 | 31407 15 2] 15 |8] 7
emoncms 76 6,876 6 6 15 3 12
gallery2 644 | 124414 27 0 0 0| o
getboo 199 | 42123 17 30 | 64 | 9| 55
Ghost 16 308 2 2 3 0| 3
gilbitron-PIP 14 328 1 0 0 0| o0
GTD-PHP 62 42853 10 33 | 11 | o | 111
Hexjector 1.0.6 11 1,640 3 0 0 0 0
Hotelmis 0.7 447 | 76754 9 2 7 50 2
Lithuanian-7.02.05-v1.6 | 132 | 3,790 2% 0 0 0| 0
Measureit 1.14 2 967 2 1 2 | 7] s
Mfm 0.13 7 5,859 6 1 8 3| s
Mutillidae 1.3 18 1,623 6 0] 19 [o] 19
Mutillidae 2.3.5 578 | 102,567 63 7 10 [o] 10
NeoBill0.9-alpha 620 | 100,139 6 5 19 | 0| 19
ocsvg-0.2 4 243 1 0 0 0| o
OWASP Vicnum 2 814 2 7 4 31
paCRUD 0.7 100 | 11,079 11 0 0 0| 0
Peruggia 10 988 2 6 2 |0 | 2
PHP X Template 0.4 10 3,009 5 0 0 0| 0
PhpBB 1.4.4 62 | 20743 25 0 0 0| o
Phpems 1.2.2 6 27 2 3 5 0| s
PhpCrud 6 612 3 0 0 0| o
PhpDiary-0.1 9 618 2 0 0 0| o
PHPFusion 633 | 27,000 40 0 0 0| 0
phpldapadmin-1.2.3 97 | 28,601 9 0 0 0| 0
PHPLIb 7.4 73 13,383 35 3 4 | 0| 14
PHPMyAdmin 2.0.5 40 4,730 18 0 0 0| 0
PHPMyAdmin 2.2.0 34 9,430 12 0 0 0| 0
PHPMyAdmin 2.6.3-pll | 287 | 143,171 105 0 0 0| o
Phpweather 1.52 13 2,465 9 0 0 0 0
SAMATE 2 353 1 0] 2 |[1] 19
Tikiwiki 1.6 1,563 | 499,315 1 4 4 0| 4
volkszachler 43 5,883 1 0 0 0| 0
WackoPicko 57 4,156 3 4 | o | 1
WebCalendar 129 | 36525 20 0 0 ()
1.38 MILOCs Webchess 1.0 37 7,704 1 5 1B | o | 13
WebScripts 5 391 4 2 14 | o | 14
Spegs Wordpress 2.0 215 | 44254 10 7 B |1] 12
388 vulnerabilities ZiPEC 0.32 10 765 2 1 7 1] 6
Total 6,708 || 1,381,043 | 557 174 | 431 | 43 [388

09/09/16

26

WAPe totals

Web application \ Version | Files Llcl:)e;eﬂf ?ill?iyg)s \;.:;lz fvo l:ll:d
Admin Control Panel Lite 2 0.10.2 14 1,984 1 9 81
Anywhere Board Games 0.150215 3 501 1 1 3
Clip Bucket 2,704 597 148,129 11 16 22
Clip Bucket 28 606 149,830 12 18 26
Community Mobile Channels 0.2.0 372 119,890 8 116 47
divine 0.1.3a 5 706 1 2 9
Ldap address book 0.22 18 4,615 2 4 1
Minutes 0.42 19 2,670 1 2 10
Mle Moodle 0.8.8.5 235 59,723 18 4 7
Php Open Chat 3.02 249 83,899 7 9 11
Pivotx 23.10 254 108,893 6 1 1
Play sms 1.3.1 1,420 | 248875 19 7 6
RCR AEsir 0.11a 8 39 1 6 13
refbase 0.9.6 171 109,600 10 18 48
SAE 1.1 150 47,207 7 39 48
Tomahawk Mail 20 155 16,742 3 3 3
viront 0.99.3 438 93,042 15 25 77
[Total | 4714 [1196702 [123 [280 | 413 |

59

WAPe: 0-day vulnerabilities

* WordPress is the most popular CMS; many plugins
e 115 WordPress plugins analyzed

— some have more than 1M downloads

— some are installed in more than 10K websites
e 23 were found vulnerable

— 153 zero-day vulnerabilities

— 16 known vulnerabilities

—55SQLl, 71 XSS, 31 DT/RFI/LFI, etc.

60

09/09/16

27

WAP wrap-up

* An approach and a tool (WAP)

— to automatically identify and correct these
vulnerabilities

— and to predict false positives using data mining

— leveraging the idea of learning instead of
programing knowledge

* Millions of LOCs analyzed, many 0-days found

61

WAP: better input validation

EMERGENCY TELEPHONE
Only 911 can bedialed |

62

09/09/16

28

A
dekant

2

DEKANT: VULNERABILITY
DETECTION WITH STATIC ANALYSIS
USING A SEQUENCE MODEL

63

Motivation

* Typical static analysis tools:
— detect vulnerabilities they are programmed to
— learning would be interesting, as seen already
* WAP: limited capacity to learn
— does classification of FPs based on symptoms
— does not take into account the order of elements
that appear in the code
* |s it possible to have a tool that learns “everything”?

64

09/09/16

29

09/09/16

DEKANT: outline

* Overview

* Intermediate slice language
* Sequence model

e The DEKANT tool

* Results

65

DEKANT

* No vulnerability knowledge is programmed in the
tool

— not 100% true: slicing is programmed; expert
assigns functions to classes

* The tool extracts knowledge (learns) from a corpus,
i.e., a set of annotated source code samples

* This knowledge is modeled using a sequence model
(a Hidden Markov Model — HMM)

66

30

Natural language processing

* Example: part-of-speech (POS) tagging
— Nelson Evora is expected to win tomorrow
— Nelson_Evora/NNP is/VBZ expected/VBN to/TO win/VB tomorrow/NN

* POS classifies each word (observation) of a sentence
(sequence) with a tag

— taking into account the context of the word (i.e., its place
in the sentence, order)

» context/order are modeled using a HMM
* knowledge about tags is learned from a corpus

67

Hidden Markov Model

<) Q\
N ——
- \Iain\lgff‘i//j s> states
i) | transitions
[\Chg_str\t/
\u{\\\\\ ///
TR A 7N\
(NfTaim)qi { val)
A
- ™~
_/ /

e States are hidden and emit observations

* For a sequence of observations, the HMM allows
discovering the sequence of states that emits that
sequence

68

09/09/16

31

Hidden Markov Model

* Goal: calculate which state emits obs

* How: by calculating the probability that each state
emits obs_ given the previous states

* Winner: the sequence with highest probability

input: obs1 obs2 obs3 obs4
output: ?? sequence of states ??

®LHOUS

69

Static analysis vs HMM

SAT HMM
search for discovers
vulnerabilities states

* Putting the two together we have SAT that learns to
detect vulnerabilities using a HMM

70

09/09/16

32

Knowledge and learning

* Create the corpus:

— collect slices (vulnerable and otherwise)

— translate slices into ISL (Intermediate Slice Language)

— annotate the slices with states (Vul and N-Vul)

— remove duplicates

* Learn vulnerability characteristics:

— generate matrices of probabilities

— train the HMM

collecting representing
I siices [| inisL | |

annotating
states

removing
duplicates

probabilities [¢—|
matrices

extracting
knowledge

o«

71

DEKANT: outline

* QOverview

* Sequence model
The DEKANT tool
Results

Intermediate slice language

72

09/09/16

33

Intermediate slice language (ISL)

* Alanguage that represents abstractly the source

code elements

* Composed by tokens and a grammar

| Token] Description PHP Func.
input entry point $_GET
var variable —
sanit_f sanitization function htmlentities
ss sensitive sink mysql_query

fillchk
cond
join_str
erase_str

typechk str
typechk num
contentchk

renlace atr

type checking string function
type checking numeric function
content checking function

fill checking function

if instruction presence

join string function

erase string function

renlarce atrino functinn

is_string
is_int
preg_match
isset, is_null
if

implode, join
trim

nreoc renlace

73

Translating a slice into ISL

"SELECT

m (= |$_POST[‘username’]1
g pass FROM users WHERE user="".$u."";

1_query($q);

74

09/09/16

34

Translating a slice into ISL

$u = $ POST['username’;

@ "SELECT pass FROM users WHERE user=""’“;
$result = mysql_query($q);

ir{put var
var var

75

Translating a slice into ISL

$u $_POST['username’];
$q "SELECT pass FROM users WHERE user="".$u."";

| $resu|t| @ | mysql_queryt$q)|;

input var
ar var ‘

SS var var

76

09/09/16

35

Translating a slice into ISL

1,0 : is an assignment instruction or not
- :is not a variable
u : the name of the variable in the slice

77

DEKANT: outline

Overview

Intermediate slice language
Sequence model

The DEKANT tool

Results

78

09/09/16

36

Sequence Model

The model is the HMM model already presented

an ISL instruction

—is a sequence of observations for the HMM

— is classified as taint or n-taint

the last observation from last instruction carries the
classification of the whole slice-isl: taint or n-taint,
i.e., vulnerable or not

79

Sequence Model

Vocabulary

Decoder

20 tokens from ISL
1 special token (var_vv)

Viterbi algorithm modified,
interacting with the VM and the TL,
CTL and SL lists

States

Model graph

Taint

N-taint
San(itization)
Val(idation)
Chg_str(ing)

Probability matrices

Initial (1 x 5)
Transition (5 x 5)
Emission (21 x 5)

80

09/09/16

37

Classification example

$u =$_POST['username’];
$q = "SELECT pass FROM users WHERE user="".$u."";
$result = mysql_query($q);

variable map
input var 1-u
var var 1Tuq
ss var var 1 - q result
sequence before Viterbi
input var - <input,taint> <var_vv_u,taint>
var var var_vv var <var_vv_u,taint> <var_vv_g,taint>
ss var var ssvar_wv var <ss,N-taint> <var_vv_g,taint>
<var_vv_result,taint>
Vulnerability! 81
Overview

Intermediate slice language

Sequence model
The DEKANT tool

Results

82

09/09/16

38

The DEKANT Tool

Implements the learning phase and the sequence model

Corpus with 510 slices extracted from real web applications
(414 vulnerable, 96 non-vulnerable)

Detects 8 vulnerability classes: SQLI, XSS, RFI, LFI, DT SCD,
OSCl, PHPCI

Composed by 4 modules:
— knowledge extractor
— slice extractor
— slice translator
— vulnerability detector

83

DEKANT: outline

Overview

Intermediate slice language
Sequence model

The DEKANT tool

Results

84

09/09/16

39

Evaluation: WordPress plugins

10 WordPress plugins analyzed

IPlugin lSlices N-Vul|FP
)) * . 1 : [6 [2
appointment-booking-calendar 1.1.7 12 S UESOTE 310 CVESOTS-7330
calculated-Tields-Torm 1.0.60 3 pi T
contact-form-generator 2.0.1 5 4 1
0 - T 2 3 0
sasy2map 1.2.9 S [CVE0T5-7668, CVE-2015-7600 |
event-calendar-wp 1.0.0 G T T [6 [0
¥ p] T
payment-form-for-paypal-pro 1.0.1 11 —30T5-760G
* 5 z [0 [0
resads 1.0.1 CVE-2015-7667
5 5 [0
simple-support-ticket-system 1.2" 20 C\;E-£015-7l(370 I >
wordfence 6.0.17 G G 0
wp-widget-master 1.2 9 6 3
[Total [80 6 8 2 56| 8]
0-day vvs:

- confirmed and fixed by developers
- registered in CVE

!
5
vulnerable

|

16
0-day vvs

85

Evaluation: real web applications

10 web applications with known vulnerabilities—l

|Web application Slices DEKANT
u an ota u -Vu

cacti-0.8.8b 2 0 8 10 2 6 2 0
communityEdition 16 | 36 8 60 16 44 0 0
epesi-1.6.0-20140710 25 1 8 34 25 5 4 0
NeoBill0.9-alpha 19| 0 0 19 19 0 oOfO0
phpMyAdmin-4.2.6-en| 1 6 7 14 1 13 0 0
refbase-0.9.6 5 4 3 12 5 1 6 (0
Schoolmate-1.5.4 120(O 0 120 |120 0 0 0
VideosTube 1 0 2 3 1 2 0 0
Webchess 1.0 20 0 0 20 20 0 0 0
Zero-CMS.1.0 2 5 18 2 16 0| o0

11
[Total | :EI,QF’? 7]

classified
manually

310 211 87 [12] O

v 211 Vul
99 N-Vul

10 vulnerable

> 4200 files
>1,5M Loc

|

223
vulnerabilities
found

l

211 vul
12 FP
0FN

86

09/09/16

40

Evaluation: real web applications

Metric DEKANT | WAP _=hapMineril Pixy
original | analyzed
acurracy 96% 90% 89% 71% 18%
precision 95% 88% 83% 19% 13%
false positive 12% 27% 4% 23% 87%
false negative 0% 2% 32% 69% 24%

88

DEKANT wrap-up

New approach inspired in NLP to detect web
application vulnerabilities

Knowledge is learned (except...)
— first learn about vulnerabilities from corpus

— then detect vulnerabilities taking the order of
instructions into consideration

Nice results in comparison with other tools
Just a first step in a promising research direction

89

09/09/16

41

$
€p1icC

3

SEPTIC: BLOCKING ATTACKS IN THE
DBMS

91

Motivation: dynamic protection

* Widely successful in the binary application world

* Today buffer overflows automatically blocked by:
— canaries in the stack — detect return address modification
— heap hardening — detects heap meta-data modification

— non-executable pages — jumps into injected code make
program crash

— address space layout randomization — makes addresses
hard to guess

— and many more, e.g., https://wiki.debian.org/Hardening

92

09/09/16

42

Motivation: dynamic protection

* |dea: block attacks that may exploit existing
vulnerabilities

* Benefit: can be deployed transparently (operating
system, compiler, virtual machine), independently of
vulnerabilities existing or not

» Successful with binary applications, why not with
web applications?

93

SEPTIC

* Problem:
— SQLl injection attacks retrieve/store data in DB
— Sometimes they circumvent sanitization functions
— Semantic mismatch between server-side language
and DBMS
* Qur solution:
— DBMS self-protected against injection attacks
— Detect and block injection attacks inside the DBMS
* How:
— “hacking” the DBMS = SEPTIC mechanism

94

09/09/16

43

Semantic mismatch example

* Input sanitized with mysql real escape string
— username admin' -- 2 'is escaped

— username admin%27 -- 2 %27 not escaped but
MySQL interprets %27 as a prime and executes
SELECT name FROM users WHERE user='admin’

* Semantic mismatch
— different views from PHP and MySQL
— PHP programmers don’t know this attack works

95

Semantic mismatch cases

Encoded characters do nothing decodes and executes
%27, 0x027 %27, 0x027
Unicode characters do nothing translates and executes
U+0027, U+02BC U+0027, U+02BC
Space character evasion do nothing removes and executes
char(39)/**/OR/**/1=1 -- char(39)/**/OR/**/1=1 - "OR 1=1
INSERT query sanitize unsanitizes and inserts data
admin’ -- admin\' -- admin’
! !
Server-side DBMS interprets
language interprets in another way
In one way

~— —
—

96

09/09/16

44

SEPTIC: outline

* Attack detection in SEPTIC
* Running SEPTIC
* Results

97

Attacks handled by SEPTIC

Syntax structure: alter the structure of the query -
Syntax mimicry: mimic the structure of the query

Obfuscation:
SQLI < - Encoded characters; - Unicode characters;

- Dynamic SQL; - Numeric fields;

- Space character evasion R
Stored procedures

Blind SQLI

(Second order SQLI

Stored) Stored XSS
injection | Stored RCI, RFI, LFI
L Stored OSCI

98

09/09/16

45

09/09/16

Query processing vs SEPTIC

S oBMS

Server-side detection: query is

query (Q)

language > parses compared to model(s);
engine .
no mismatch as
¥ mechanism runs just

/ before query is
validates
executed!

/ SEIf-Protecting
daTabases preventing

attaCks

query (Q)

executes

—

Web
application

inputs

99

SEPTIC: creating query models

SELECT name FROM users WHERE user = 'alice' AND pass = 'foo'

top, pop

push w r*
COND_ITEM

COND_ITEM AND

FUNC_ITEM =

FIELD_ITEM pass
FIELD_ITEM m

FUNC_ITEM =

m AND STRING_ITEM
STRING_ITEM alice -
user

{ %] FIELD_ITEM user FIELD_ITEM
FIELD_ITEM name FIELD_ITEM name
() ()
SELECT_FIELD name SELECT_FIELD name
ﬂ it o0 FROM_TABLE users FROM_TABLE Tsers

bottom of the stack

Query parse tree Query Structure (QS) Query Model (QM)
- U — _
DBMS parser SEPTIC
each query should have its own identifier (ID) 100

46

Query ID creation: SSLE IDs

o [FID*] = [*file:line | ... | file:line */

SS Lang. engine

FoR | rpa /7 DBMS N\

Q > parses
g i
P COND_ITEM AND
o . FUNC_ITEM =]
5 validates STRING_ITEM
7 FIELD_ITEM pass

STRING_ITEM

rersseerseessob s FIELD_ITEM user
FIELD_ITEM name
. ()
SELECT_FIELD name

FROM_TABLE users

<ID,QM>

Web
application

executes

—

101

Query ID creation: SSLE IDs

* SSLE best place to create IDs
— programmer not involved
— lot’s of info about the code
* BasicID:
— file:line — file pathname and line number where DBMS
is called (e.g., mysql_query)
— problem: single function used for different queries
* Full ID:
— file:line|...|file:line — 15t pair has same meaning
— other pairs: lines where query is passed as argument
to a function

102

09/09/16

47

Query ID creation: DBMS IDs

Server-side
language
engine

query (Q)

Web
application

parses

l

validates

executes

ID =SQLcmd_#nodes

COND_ITEM AND
FUNC_ITEM
STRING_ITEM

FIELD_ITEM pass
FUNC_ITEM
STRING_ITEM

user

FIELD_ITEM
FIELD_ITEM name

SELECT_FIELD name

FROM_TABLE users
\—/ <ID, QM >

103

09/09/16

SQLI detection: step 1- structurally

* compare the number of nodes of QS with its QM
* if #nodes is different, then SQLI attack detected

— otherwise goto step 2
— quick and covers many attacks, e.g., admin’ --

(COND_ITEM

COND_ITEM AND
FUNC_ITEM FUNC_ITEM =
STRING_ITEM STRING_ITEM -
FIELD_ITEM FIELD_ITEM pass
FUNC_ITEM FUNC_ITEM =
STRING_ITEM > #nodes < STRING_ITEM -
FIELD_ITEM FIELD_ITEM user
FIELD_ITEM name FIELD_ITEM ame

() ()
SELECT_FIELD name SELECT FIELD po—
FROM_TABLE users FROM_TABLE Tors

<ID,QS> <ID,QM > 104

48

SQLI detection: step 2- syntactically

* compare the content of nodes of QS with its QM

e ifapai

r does not match, a SQLI attack is detected

COND_ITEM AND “———) COND_ITEM AND
FUNC_ITEM — ——) FUNCITEM
STRING_ITEM foo 4——————» STRINGITEM
FIELD_ITEM m FIELD_ITEM pass
FUNC_ITEM —) FUNC._ITEM -
STRING_ITEM alice " STRING ITEM
FIELD_ITEM user FIELD_ITEM user
FIECDRITEM name FIELD_ITEM name
() =)
SELECT_FIELD name
SELECT_FIELD name
FROM_TABLE users
- ——> FROM_TABLE users
<ID,QS>
’ <ID,QM> 105

Example: second order SQLI

SELECT name

Second order SQLI attack

FROM users » malicious code is injected in an INSERT or UPDATE
WHERE user = ? query
AND pass = ? « malicious code is retrieved from the DB and used in a
second query. The attack is performed.
f:’::J'TT: o Malicious code: admin’ -

FIELD_ITEM

FIELD_ITEM pass Initial query

FUNC_ITEM

STRING_ITEM FUNC.ITEM - SELECT name
STRING_ITEM

FROM users
FIELD_ITEM usel

FIELD_ITEM

name - WHERE user = 'admin’ -

FIELD_ITEM name

©) AND pass = ‘any'

()

SELECT_FIELD

SELECT_FIELD name
FROM_TASLE veers FROM_TABLE o Final query (validated)
<ID.Qm> <ID,Qs> SELECT name
Attack detected FROM users _
1 step WHERE user = "admin’

09/09/16

49

Example: syntax mimicry

SELECT name Syntax mimicry
FROM users * malicious code does not alter the structure of the query
WHERE user = ?

AND pass = ? Malicious code:

admin® AND 1 =1 --

COND_ITEM AND .
COND_ITEM AND FUNC_ITEM Initial query
FUNC_ITEM f—

STRING_ITEM

| INT_ITEM 1 SELECT name
FIELD_ITEM pass FUNC_ITEM FROM users
FUNC_ITEM STRING_ITEM WHERE user = "admin’ AND 1=1 --

STRING_ITEM FIELD_ITEM user AND pass = 'any'
FIELD_ITEM user FIELD_ITEM name
FIELD_ITEM name ()
() SELECT_FIELD name Final query (Validated)
SELECT_FIELD name FROM_TABLE users
FROM_TABLE users SELECT name
<ID,QS> FROM users
<ID,QM> Attack detected WHERE user = "admin
2 step AND 1=1

107

Stored injection detection

» Stored injection attack

— Malicious data: JavaScript (stored XSS), shell
commands, PHP code

— 15t step: malicious data inserted in the DB

— 2"d step: malicious data retrieved from DB and
used

* Detection using code detectors (plugins)

— inputs from INSERT/UPDATE queries are checked
looking for malicious data

— we didn’t go much deep in this (only XSS, basic)

108

09/09/16

50

SEPTIC: outline

Attack detection in SEPTIC
Running SEPTIC
Results

109

SEPTIC operation modes

training phase: a pure training phase to learn QMs
« unit tests of the application
Training ¢ * septic_training module
build Incremental: there is no training phase;
query models QM is built for the first query with each ID

prevention: detect attacks; log attacks; drop the queries;
H and DBMS stops the query processing
Normal
l detection: detect attacks; log attacks;

detect & block
attacks and DBMS processes the query

110

09/09/16

51

Creating/storing query model

get
ID

generate
DBMS-ID

create
Qs

SEPTIC

- " create |
query Lam
models

execute Q

Training mode | training phase

IDentifier
Query

Query Model
Query Structure

. 111
Normal mode | incremental
(get get create
{ ID DBMS-ID Qs
o
'_
o . detect
) ge attacks
drop i I—.. log of
Q| attacks
IDentifier
---------- s
Query Structure
112

Normal mode | prevention or detection

09/09/16

52

Detecting/blocking stored injection

SEPTIC

create
Qs

——| apply
detect |« plugins
attacks

dron
Q.

log of
L,
attacks

execute Q

IDentifier
Query

Query Model
Query Structure

Normal mode | prevention or detection 13
SN get generate/get create
: ‘ DBMS-ID _as
. v
E - create fl apP.W
&5 Lam o . detect plugins
2 g€ attacks
drop I— log of
Q| attacks
IDentifier
..................................... oy
Query Structure
114

09/09/16

53

SEPTIC: outline

* Attack detection in SEPTIC
* Running SEPTIC
* Results

115

SEPTIC implementation (#changes)

MySQL DBMS — SEPTIC itself

— 1file: 14 loc

— SEPTIC detector

— SEPTIC setup

— septic_training module

PHP / Zend engine — insertion of IDs in the SSLE

— 3 files: 27 loc

— SEPTIC identifier

 Java/Spring framework — to show it’s not specific to PHP
— 1file: 16 loc
— SEPTIC identifier

* Also analyzed cases of MariaDB and PostgreSQL

116

09/09/16

54

SEPTIC detection w/code samples

SQLI unrelated to semantic mismatch

— 23 from the sq/lmap project

— 11 by Ray & Ligatti (4 are not attacks/vulnerab.)
— 7 other samples (for other SQLI attacks)

SQLI related to semantic mismatch

— 17 code samples

Stored injection

— 5 code samples

* Total: 59 attacks/vuln., 4 non-attacks/vuln.

117

Comparison with other tools

30
20
10

0

AMNESIA DIGLOSSIA SEPTIC
SQLrand CANDID ModSecurity

W Flagged attacks M False positives ' False negatives

Web
application

anti-SQLI
tools

DBMS

Browser

120

09/09/16

55

SEPTIC: real open source software

* Vulnerabilities detected/blocked in real webapps

* Zero CMS

— CVE-2014-4194

— CVE-2014-4034

— OSVDB ID 108025
* WebChess

— 13 vulnerabilities
* measureit

— 1 stored XSS

121

SEPTIC: performance

Apache & Zend MySQL & SEPTIC
Web applications

Benchlab
each1to5

browsers

SEPTIC combinations

SQLI detector Stored inj. det.

off off
......... ‘.) nof-f 0.82%
off on : 1
: on on 2.24% 122

09/09/16

56

SEPTIC wrap-up

Putting protection in the DBMS allows detecting /
blocking attacks efficiently

— Subtle attacks related to semantic mismatch
(Mostly) transparent protection for web applications
Low performance overhead

May have practical impact in webapp security?

123

A

SHUTTLE: INTRUSION RECOVERY IN
THE CLOUD

124

09/09/16

57

Cloud computing (public cloud)

* Cloud provider vs consumers
e Fundamental ideas

— Computing as a utility

— Pay-as-you-go

— Resource pooling

%
1N
1
L E
T
£
A
N
N

— Elasticity

* Large-scale datacenters

125

Cloud computing service models

* Infrastructure as a Service (laaS)

— virtual machines, storage (e.g., Amazon EC2,
Amazon S3)

* Platform as a Service (Paa$S)

— programming and execution (e.g., Google
AppEngine, Force.com, Windows Azure)
» Software as a Service (SaaS)

— mostly web applications (e.g., Yahoo! Mail, Google
Docs, Facebook,...)

126

09/09/16

58

Platform as a Service (PaaS)

* PaaS services allow running applications

* Consumer develops application to run in that
environment, using

— Supported languages, e.g., Java, Python, Go, PHP

— Supported components, e.g., SQL/NoSQL
databases, load balancers

— Examples: Google App Engine, Windows Azure
Cloud Services, Salesforce Force.com,...

127

Motivation

* Intrusions in PaaS applications may happen due to
— Software vulnerabilities (e.g., Shellshock)
— Configuration and usage mistakes
— Corrupted legitimate requests (e.g., SQLI)

e Attacker can run commands in the application and
, , and data

* Legitimate users can then do commands on
corrupted data...

128

09/09/16

59

Motivation

Cloud gecuri{y Exlalainecl

129

* Shuttle
e Evaluation

Shuttle: outline

130

09/09/16

60

Shuttle

* Recovers the state integrity of PaaS applications
when there are intrusions

* |Isn’t it what backups do?
— Backups: remove both bad and good operations
— Shuttle: removes bad operations but keeps good

ones Malicious
User operation °pe’Iﬁ°"

Backup

131

State of the art

* Previous works
— Operating systems: Taser, Retro
— Databases: ITDB, Phoenix
— Web applications: Goel et. al, Warp, Aire
— Others (Email): Undo for Operators
* Limitations
— Max. complexity: 1 app server, 1 database instance
— All require setup and configuration
— Cause application downtime during recovery

132

09/09/16

61

Shuttle

Supported by the cloud: available without consumer
setup

Supports applications deployed in various instances

Avoids application downtime as no need to stop the
application during recovery

Leverage elasticity to make recovery faster

133

PaaS applications architecture

] Application ‘ Application i
<)jL Server ——— Server | ‘

| Database :W”?D?a?t?at;égefﬁ >
<}:'”St3nce ,,,,, i {____Instance |

134

09/09/16

62

Shuttle architecture

-7 Storage

i Proxy I >l Manager

-

,,,,,,,,

|ntercet0r .

| Database : Database >
<: Instance i ___Instance |

Shuttle during recovery
Storage
Manager
ﬁél Ini?a%ec‘:}és [>

09/09/16

63

Recovery process

. Detect/identify the malicious operations (not Shuttle)
. Start new instances of the application and database

. Load a snapshot previous to intrusion instant; create
a new branch (application stays running in previous branch)

. Replay requests in new branch
. Block incoming requests; replay last requests

. Change to new branch; shutdown unnecessary
instances

137

Recovery modes

Full-Replay: Replay every operation after snapshot
Selective-Replay: Replay only affected (tainted) operations

Serial: Replay all dependency graph sequentially
Clustered: Replay independent clusters

concurrently; allowed by the cloud elasticity Q_,Q_,O
Modes supported: O-)O-)O

Full-Replay | Selective-Replay

1 Cluster (Serial) | v/ v

Clustered v X

138

09/09/16

64

09/09/16

Shuttle: outline

e Shuttle
e Evaluation

139

Evaluation environment

Amazon EC2, c3.xlarge instances, Gb Ethernet

WildFly application server (formely JBoss)

Voldemort database

Ask Q&A application; data from Stack Exchange

140

65

Accuracy

Intrusion Scenarios:
— 1. Malicious requests
— 2. Software vulnerabilities

— 3. External channels (e.g. SSH due to Shellshock)

data items #requests #requests replayed # requests replayed
affected tainted — Selective Replay — Full Replay

la 106 < 605 38 620
1b 58 <379 38 620
1c 48 <253 38 620
2a 4338 - 38 620
2b 18 286 1278 - 38 620
>2 000 - 38620

141

Performance overhead

in normal execution

50% Reads 50% Inserts 95% Reads 5% Inserts

ops/sec latency (ms) | ops/sec latency (ms)
Shuttle 6325 5.78 15 346 3.62
No Shuttle 7148 5.07 17 821 3.01
overhead 13% 14% 16% 20%

Overhead seems acceptable; penalty mostly due to single proxy

142

09/09/16

66

Recovery time

e for 1 million requests

Time (minutes:seconds)

2500 - - : ;
serial replay ->¢-
2 2000 clustered replay =—
2 1500
a y
Z 1000
s
Z so0 [~ \A X,
000:00 05:00 10:00 15:00 20:00 25:00 30:0
Time (minutes:seconds)
Clustering greatly reduces recovery time 13
Restrain duration
3000
clustered replay
2500 - concurrent client 5
=] .
§ 2000 Begln. W |
g restrain
4 1500 l]
g
3 1000 [.
[}
o
500 - i
0 MilorAnbasmrstimseswar o | ‘
00:00 03:00 06:00 09:00 12:00

Restrain: 46 seconds
144

09/09/16

67

Storage overhead

e for 1 million requests

objects Size (MB)

Shuttle Storage:
Requests 1 million 212

Response 1 million

Start/End timestamps 2 million 16
Keys 137 million 488
Total 9648

Database node:
Version List 14 593 1.4
Operation List 9 million 277
Total 282

Manager
Graph 1 million 718

Storage is considerable but mostly due to storing full responses
$47 per month if 20 Million requests per day (without responses)

SHUTTLE wrap-up

* New intrusion recovery service for PaaS offerings

* Supports applications running in various instances,
backed by distributed databases

* Leverages the resource elasticity and pay-per-use
model to reduce the recovery time and costs

* Provides intrusion recovery without service
downtime using a branching mechanism

146

09/09/16

68

Outline

1. WAP: vulnerability detection with static analysis
using taint analysis + classifier

2. DEKANT: vulnerability detection with static analysis
using a sequence model

3. SEPTIC: blocking attacks in the DBMS

intrusion recovery in the cloud

147

Papers

WAP: I. Medeiros, N. F. Neves, M. Correia. Automatic Detection and Correction of Web
Application Vulnerabilities using Data Mining to Predict False Positives. WWW 2014

WAP: ___. Detecting and Removing Web Application Vulnerabilities with Static Analysis
and Data Mining. IEEE Transactions on Reliability 2016

WAP: ___. Equipping WAP with WEAPONS to Detect Vulnerabilities. DSN 2016

DEKANT: ___. DEKANT: A Static Analysis Tool that Learns to Detect Web Application
Vulnerabilities. ISTTA 2016

SEPTIC: . Medeiros, M. Beatriz, N. Neves and M. Correia. Hacking the DBMS to Prevent
Injection Attacks. CODASPY 2016
D. Nascimento, M. Correia. Shuttle: Intrusion Recovery for PaaS. ICDCS 2015.

G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, P. Verissimo. Efficient Byzantine Fault Tolerance. IEEE
Transactions on Computers 2013.

A. N. Bessani, M. Correia, B. Quaresma, F. André, P. Sousa, DepSky: Dependable and Secure Storage in a Cloud-of-
Clouds. EuroSys 2011 and ACM Transactions on Storage 2013.

148

09/09/16

69

U

TECNICO
LISBOA

Thank you

Miguel Pupo Correia
miguel.p.correia@tecnico.ulisboa.pt
http://www.gsd.inesc-id.pt/~mpc/

\
T\T)
o [/

- .
X

nescid

(

)

; l)oa A3

09/09/16

70

