

Tolerância a Intrusões em Sistemas Distribuídos

alguma pesquisa actual

Miguel Correia

mpc@di.fc.ul.pt www.di.fc.ul.pt/~mpc

Grupo Navigators, LASIGE Faculdade de Ciências da Universidade de Lisboa

USFC - Florianópolis - 13 de Setembro de 2006

Grupo Navigators

http://www.navigators.di.fc.ul.pt 20° aniversário em 2005!

Tolerância a Faltas e Intrusões em Sistemas Distribuídos Abertos

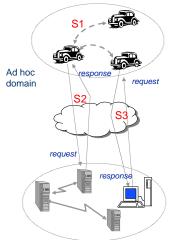
- Membros permanentes:
 - Paulo Veríssimo, Nuno F. Neves, Miguel Correia
- Palavras chave:
 - Sistemas distribuídos, Segurança, Tolerância a faltas, Algoritmos distribuídos
- Projetos actuais:
 - CRUTIAL Critical UTility InfrastructurAL Resilience
 - SecurIST Security and Dependability R&D
 - ESFors European Security Forum for services, software, systems
 - Resist Resilience for Survivability in IST
 - RITAS Randomized Intrusion Tolerance for Asynchronous Systems
 - AJECT Attack Injection on Software Components

3

Tempo e Adaptação em Sistemas Confiáveis

- Membros permanentes:
 - Paulo Veríssimo, António Casimiro, José Rufino
- Palavras chave:
 - Sistemas distribuídos, Tempo-real, Sistemas embutidos, Tolerância a faltas, Adaptação
- · Projetos actuais:
 - HIDENETS Highly DEpendable ip-based NETworks and Services (IST)
 - DARIO Distributed Agency for Reliable Input/Output
 - TACID Timely ACID Transactions in DBMS

HIDENETS - HIghly DEpendable ipbased NETworks and Services


Challenges

Dynamically changing communication Off-the-shelf, standard systems and components

Services with high dependability and scalability requirements

Use-case of ad-hoc car-to-car communication with connectivity to infra-structure services

Develop and analyze end-to-end resilience solutions

Infrastructure domain

5

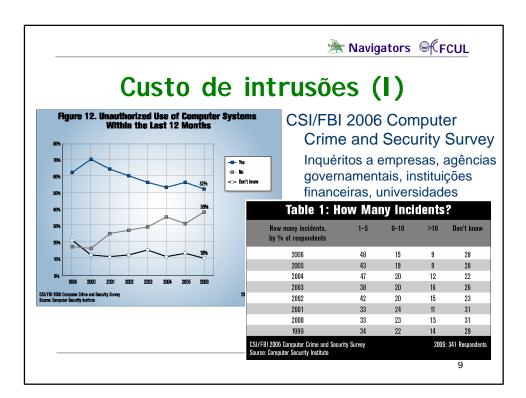
http://www.hidenets.aau.dk/

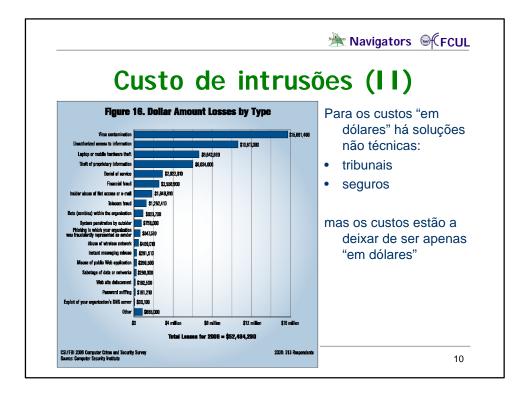
HIDENETS

Navigators FCUL

Tolerância a Intrusões em Sistemas Distribuídos (TISD)

- Cooperação DAS/UFSC+PUC-PR com Univ. Lisboa
 - Projecto CAPES/GRICES
- Até agora…
 - 2 doutorados sanduíche
 - 🕝 1 aluna de doutorado brasileira na Univ. Lisboa
 - Vários artigos em comum
 - Minha viagem aqui...


Sumário


- Motivação à TI
- Tolerância a Intrusões
- Wormholes e Replicação de Máquinas de Estados TI
- Protocolos Aleatórios Tolerantes a Intrusões
- Conclusões e outros trabalhos

7

Motivação

Infraestruturas Críticas

- A nossa vida depende de um conjunto de infraestruturas críticas controlados informaticamente: eléctrica, água, gás, esgotos,...
- Evoluíram de
 - Sistemas isolados baseados em hardware e software especializado, para
 - Sistemas distribuídos interligados por redes convencionais (TCP/IP, wireless) e hw/sw comuns
- Logo actualmente estão vulneráveis como os sistemas distribuídos convencionais...
- ... mas a questão já não são "dólares"

11

Ataques a Infraestrut. Críticas

- Jan. 03, EUA central nuclear Davis-Besse
 - O worm Slammer entrou na rede de gestão e depois na rede de controle através da rede de um fornecedor
 - Parou dois sistemas críticos de supervisão
- Dez. 00, EUA
 - Um grupo de hackers atacaram os servidores de um fornecedor de energia eléctrica para jogarem jogos interactivos
 - Consumiram 95% da largura de banda
- Etc etc...

Fiabilidade de Sistemas Críticos

- O problema é semelhante à fiabilidade de sistemas críticos como: aviões, centrais nucleares, foguetes, submarinos...
 - FEm caso de falha... vidas humanas
- Confiança no Funcionamento (CnF) / Dependability:
 - Prevenção de faltas
 - Tolerância a faltas
 - Supressão de faltas
 - Previsão de faltas

13

Infraestruturas Críticas

- Projecto CRUTIAL (EU-IST)
 - Critical UTility InfrastructurAL Resilience
 - CESI RIC. (It), KUL (Be), CNR-ISTI (It), CNIT (It), LAAS-CNRS (Fr), FCUL (Pt)
 - http://crutial.cesiricerca.it/
- Vamos usar Tolerância a Intrusões (TI) para controlar o acesso às redes de gestão e controle

CRUTIAL: The Blueprint of a Reference Critical Information Infrastructure Architecture.

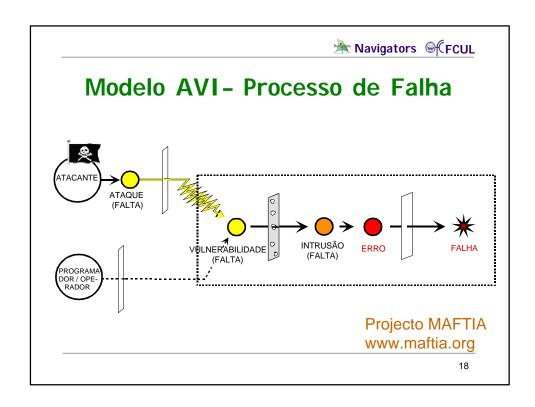
Paulo Veríssimo, Nuno F. Neves, Miguel Correia. CRITIS 2006

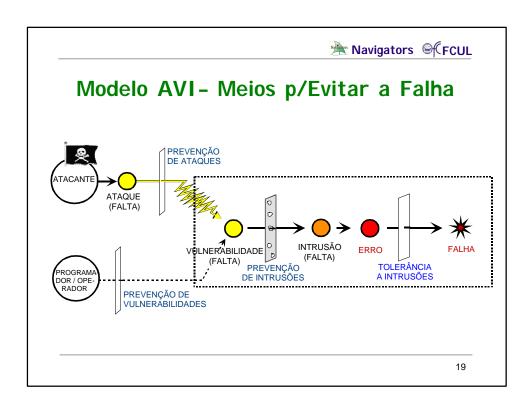
Tolerância a Intrusões

Tolerância a Intrusões

O conceito surgiu no artigo:

Joni Fraga, David Powell. A fault- and intrusion-tolerant file system. Proc. Int'l Conf. on Computer Security, 1985

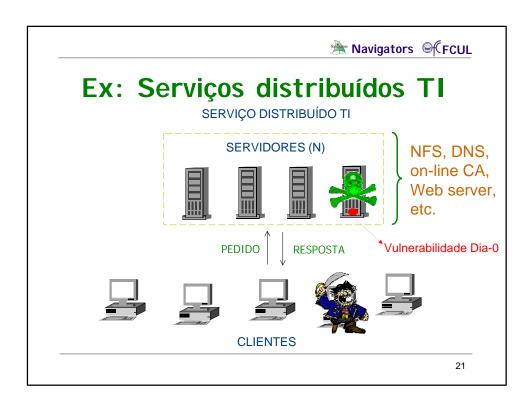

- Mas só por volta de 2000 a área "estourou"
 - Projecto MAFTIA (UE), programa OASIS (EUA), etc.



Tolerância a Intrusões

- A ideia consiste em aplicar o paradigma da Tolerância a Faltas no domínio da Segurança
 - assumir e aceitar que o sistema permanece sempre mais ou menos vulnerável;
 - assumir e aceitar que os componentes do sistema podem ser atacados e que alguns desses ataques terão sucesso;
 - garantir que o sistema como um todo permanece seguro e operacional, ou seja, que não falha.

17



Meios de CnF e serv.dist.TI

- O projecto de serviços distribuídos TI envolve os quatro meios de CnF referidos:
- Prevenção, supressão e previsão de faltas são importantes mas não são específicos da TI
- Tolerância a faltas:
 - a maior parte das soluções usam <u>mascaramento de</u> <u>faltas</u>: redundância de máquinas + protocolos tolerantes a faltas bizantinas
 - <u>processamento de erros</u>: recuperação proactiva
 <u>TI não substitui os meios de Segurança!!</u>

Wormholes e Replicação de Máquinas de Estados TI

Trabalho com Nuno F. Neves e Paulo Veríssimo

How to Tolerate Half Less One Byzantine Nodes in Practical Distributed Systems. SRDS 2004

Wormholes

- Muitos trabalhos em sistemas distribuídos consideram um sistema <u>homogéneo</u>: computadores interligados por uma rede:
 - Todo o sistema manifesta a mesma <u>incerteza</u> temporal, de segurança,...
- Hoje em dia n\u00e3o precisa de ser assim, o sistema pode ser h\u00edbrido:
 - Podem existir componentes com diferentes tipos/graus de incerteza
 - Partes mais atempadas, *mais seguras*,... (p.ex., trusted computing)

23

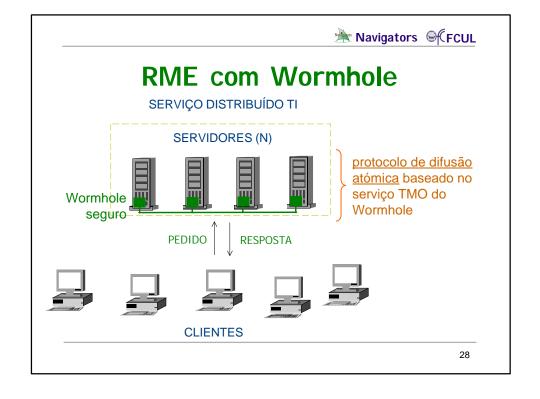
Nossa contribuição

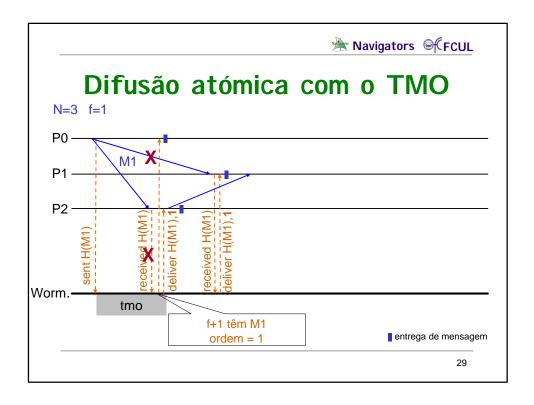
- Em todos os modelos de sistemas. distribuídos "práticos" (~ assíncrono), são necessários 3f+1 servidores para tolerar f falhados
- Com um wormhole seguro precisamos apenas de 2f+1
 - servidores...
 - ☞... e um servidor é caro:
 - Necessidade de diversidade
 - Hardware, software, gestão

25

- ...ou replicação activa
- solução genérica para a concretização de serviços tolerantes a faltas/intrusões
- cada servidor é uma máquina de estados definida por
 - rariáveis de estado;

comandos atómicos




Navigators © FCUL

CLIENTES

Serviço TMO

- Núcleo da solução
 - © Decide quando uma mensagem pode ser entregue
 - se f+1 servidores mostram que têm a mensagem, então pelo menos um correcto tem
 - Define uma ordem sequencial para as mensagens
 - Resultados são confiáveis pois o Wormhole é seguro
- Concretização do serviço TMO

 - Esse protocolo é executado num ambiente benigno, não tem de tolerar faltas bizantinas

Envio de pedidos

- Os clientes têm relógios locais (não confiáveis)
 Protocolo:
 - Enviar o pedido para um servidor protegido por um vector de MACs
 - Esperar por f+1 respostas idênticas de servidores diferentes
 - Se T_{resend} depois do pedido ter sido enviado não tiverem sido recebidas as respostas, reenviar para f servidores adicionais

31

Protocolos Aleatórios Tolerantes a Intrusões

Trabalho com Henrique Moniz, Nuno F. Neves, Paulo Veríssimo

Randomized Intrusion-Tolerant Asynchronous Services. DSN 2006.

Experimental Comparison of Local and Shared Coin Randomized Consensus Protocols. SRDS 2006.

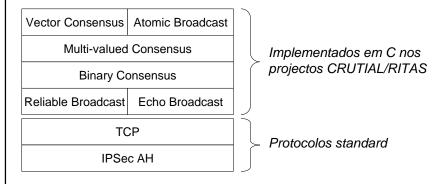
Protocolos aleatórios

- O consenso é um problema fundamental em sistemas distribuídos
 - Dado um conjunto de N processos distribuídos, cada um com um valor inicial
 - Como conseguir que todos escolham o mesmo valor entre esses?
- No modelo assíncrono em que os processos possam falhar, não existe solução determinística para o problema (FLP 1985)
- Mas existem soluções probabilísticas ou aleatórias (randomized)
 - Protocolos que "jogam uma moeda ao ar"

33

Nossa contribuição

- Duas "lendas" do folclore de sistemas distribuídos:
- Lenda 1: os protocolos aleatórios são demasiado lentos para serem usados na prática
 - Foram publicados na área da *teoria dos SD*s mas quase não há publicações na área de *sistemas*
- Lenda 2: os protocolos aleatórios baseados em moeda local são mais lentos do que os baseados em moeda partilhada
- Mostrámos que em grande medida são infundadas
 - Projectos CRUTIAL e RITAS
 - Randomized Intrusion-Tolerant Asynchronous Services http://ritas.di.fc.ul.pt



Lenda 1

"Os protocolos aleatórios são demasiado lentos para serem usados na prática" (artigo DSN 2006)

Pilha de protocolos TI RITAS

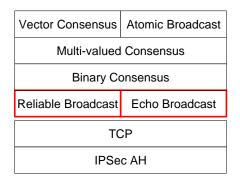
Os 3 protocolos do topo foram apresentados em "From Consensus to Atomic Broadcast: Time-Free Byzantine-Resistant Protocols without Signatures", M. Correia, N. Neves, P. Veríssimo. Computer Journal, Jan. 2006

Pilha de protocolos TI RITAS

Vector Consensus Multi-valued Consensus Binary Consensus Reliable Broadcast TCP IPSec AH

Reliable Channels

Fornecem 2 propriedades:


Integridade: IPSec
 Authentication Header (AH) protocol

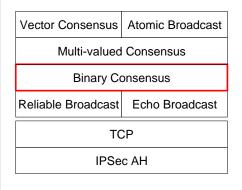
- Fiabilidade: TCP

37

Pilha de protocolos TI RITAS

Reliable Broadcast

Garante que todos os processos correctos entregam a mesma mensagem (ou nenhuma). Bracha 83


Echo Broadcast

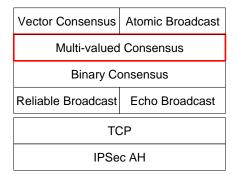
Mais fraco mas mais eficiente do que o anterior

Garante que os processos correctos que entregam a mensagem, entregam a mesma mensagem. Toueg 84, Reiter 96

Pilha de protocolos TI RITAS

(Randomized) Binary Consensus

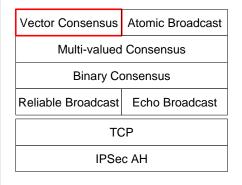
Permite aos processos correctos fazerem *consenso* sobre um valor binário (0 ou 1)


O protocolo usado foi o proposto por G. Bracha em 1983

- · Não usa criptografia
- ullet Corre num n^0 de ciclos esperado de 2^{n-f}

39

Pilha de protocolos TI RITAS



Multi-valued Consensus

Permite aos processos correctos fazerem *consenso* sobre um valor de tamanho arbitrário (não apenas binário)

Pilha de protocolos TI RITAS

Vector Consensus

Permite aos processos correctos fazerem *consenso* sobre um *vector* com um valor por cada processo (o valor inicial do processo ou um valor especial)

Pelo menos f+1 valores do vector são de processos correctos

41

Pilha de protocolos TI RITAS

Vector Consensus Multi-valued Consensus Binary Consensus Reliable Broadcast TCP IPSec AH

Atomic Broadcast

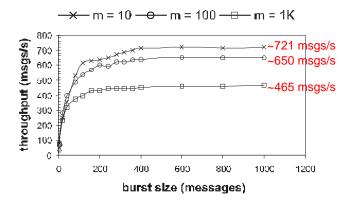
Difusão atómica ou com ordem total

Lembrar que é a base da replicação de máquinas de estados!

Logo poderíamos usar estes protocolos para concretizar qualquer serviço distribuído TI

...mas a resistência seria 3f+1

Latência de execuções isoladas

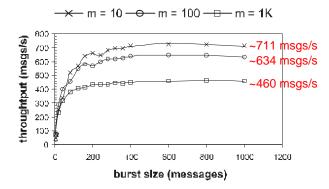

	w/ IPSec
	(μs)
Echo Broadcast	1724
Reliable Broadcast	2134
Binary Consensus	8922
Multi-valued Consensus	16359
Vector Consensus	20673
Atomic Broadcast	23744

43

Navigators FCUL

Débito da difusão atómica (I)

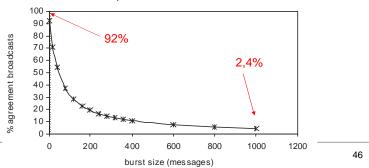
• Sem faltas, n=4



44

Débito da difusão atómica (II)

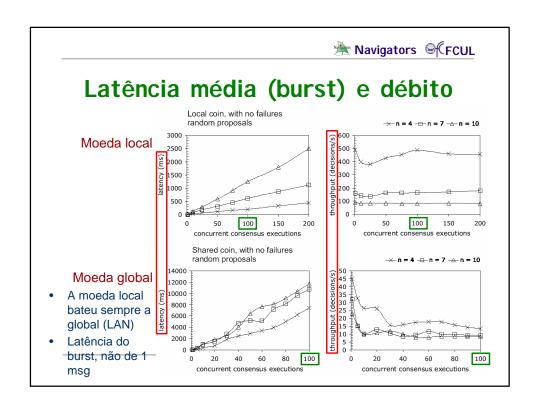
- f processos maliciosos
 - ☞ Desempenho quase não é afectado pelos ataques



45

Justificação da eficiência

- O modelo do adversário considerado nos artigos teóricos é pouco realista quando se vai medir o desempenho
 - Assume controle do escalonamento das mensagens
- Os protocolos não são executados no meio de nada
 - Percentagem de difusões que são devidas a consensus (e não à difusão atómica em si):


Lenda 2

"Os protocolos aleatórios baseados em moeda local são mais lentos do que os baseados em moeda partilhada" (artigo SRDS 2006)

Dois tipos de protoc. aleatórios

- Protocolos de consenso binário; moeda vale 0 ou 1
- Moeda local: cada processo pode gerar números aleatórios locais, ou seja, atira a sua moeda ao ar
 - Testámos o protocolo de Bracha 1983
 - Terminação esperada em 2^{n-f} ciclos
- Moeda partilhada: todos os processos têm acesso aos mesmos valores da moeda
 - Testámos o protocolo mais eficiente disponível, ABBA (Cachin, Kursawe, Shoup 2001)
 - Termina sempre em 1 ou 2 rounds!
 - Mas usa cripto assimétrica ("pesada")

Número de ciclos

	Local Coin		
	n = 4	n = 7	n = 10
failure-free	1,004 (0,42)	1,005 (0,14)	1,009 (0,19)
fail-stop	1,000 (0)	1,000 (0)	1,000 (0)
Byzantine	1,462 (1,52)	1,569 (1,69)	2,289 (2,79)

	Shared Coin		
	n = 4	n = 7	n = 10
failure-free	1,013 (0,23)	1,018 (0,27)	1,010 (0,20)
fail-stop	1,000 (0)	1,000 (0)	1,000 (0)
Byzantine	1,016 (0,25)	1,017 (0,26)	1,012 (0,22)

Conclusões e outros trabalhos

Conclusões (I)

- Usando um wormhole é possível concretizar serviços distribuídos TI reduzindo consideravelmente o número de réplicas (logo o custo)
- Outras contribuições para a TI do uso de wormholes:
 - rotocolos simples e eficientes
 - dispensar hipóteses temporais sobre o sistema "normal"
 - contornar impossibilidade de fazer recuperação proactiva em sistemas assíncronos (Sousa, Veríssimo, Neves)

Conclusões (II)

- Os protocolos aleatórios podem ser eficientes sob condições realistas
 - Existe uma diferença considerável entre os resultados teóricos e a prática
 - Num protocolo útil como a difusão atómica, o custo do consenso pode ser diluído quando o débito aumenta
- Protocolo de moeda local teve sempre melhor desempenho do que os de moeda partilhada

53

Outro trabalho

- I njecção de ataques em serviços distribuídos
 c/ João Antunes, Nuno Neves, P. Veríssimo
- Detecção de intrusões em redes Ethernet/STP
 C/Pan Jieke, João Redol (Siemens)
- Gestão de buffers em sistemas distribuídos tolerantes a intrusões
 - ☞ c/ Giuliana Santos, Lau Lung (PUCPR)
- Problemas de segurança em software para processadores de 64 bits
 - ☞ c/ I béria Medeiros

Perguntas?

Página pessoal

http://www.di.fc.ul.pt/~mpc

Grupo Navigators:

http://www.navigators.di.fc.ul.pt/

Email:

mpc@di.fc.ul.pt

55

Para saber mais...

- Sobre tolerância a intrusões no geral
 - M. P. Correia. Serviços Distribuídos Tolerantes a Intrusões: resultados recentes e problemas abertos. V SBSeg - Livro Texto dos Minicursos, 2005
 - P. Verissimo and N. F. Neves and M. Correia. Intrusion-Tolerant Architectures: Concepts and Design. In Architecting Dependable Systems, LNCS 2677, Springer, 2003
- Artigos em revistas
 - M. Correia, N. F. Neves, L. C. Lung, P. Veríssimo. Worm-IT A Wormhole-based Intrusion-Tolerant Group Communication System. Journal of Systems & Software, Elsevier, 2006. to appear
 - M. Correia, N. F. Neves, P. Veríssimo. From Consensus to Atomic Broadcast: Time-Free Byzantine-Resistant Protocols without Signatures. Computer Journal. vol. 41, n. 1, pp 82-96, January 2006
 - N. F. Neves, M. Correia, P. Veríssimo. Solving Vector Consensus with a Wormhole. IEEE Transactions on Parallel and Distributed Systems, Volume 16, Issue 12, Dec. 2005
 - M. Correia, N. F. Neves, L. C. Lung, P. Veríssimo. Low Complexity Byzantine-Resilient Consensus. Distributed Computing, vol. 17, n. 3, pp. 237--249, March 2005.
- · Artigos recentes em conferências
 - P. Veríssimo, N. F. Neves and M. Correia. CRUTIAL: The Blueprint of a Reference Critical Information Infrastructure Architecture. In CRITIS'06 1st International Workshop on Critical Information Infrastructures Security. August 30 - September 2, 2006.
 - H. Moniz and N. F. Neves and M. Correia and P. Veríssimo. Experimental Comparison of Local and Shared Coin Randomized Consensus Protocols. 27th IEEE Symposium on Reliable Distributed Systems. October 2006
 - H. Moniz and N. F. Neves and M. Correia and P. Verissimo. Randomized Intrusion-Tolerant Asynchronous Services. International Conference on Dependable Systems and Networks (DSN), June 2006.
 - N. F. Neves and J. Antunes and M. Correia and P. Veríssimo and R. Neves. Using Attack Injection to Discover New Vulnerabilities. International Conference on Dependable Systems and Networks (DSN), June 2006.
 - A.N.Bessani and M.Correia and J.S.Fraga and L.C.Lung. Sharing Memory between Byzantine Processes using Policy-Enforced Tuple Spaces. 26th International Conference on Distributed Computing Systems, July 2006.