



# Tolerating Byzantine Behavior in Distributed Systems

Miguel Correia University of Lisboa LASIGE / Navigators group

CyLab/CMU, December 2007







# Outline

- Hybrid system models and Wormholes
- I-T State machine replication
- Randomized I-T protocols
- Primary-backup vs decentralized protocols
- Conclusions











## **Question 3: model what?**

In this talk:

- "insecure system + secure subsystem"

- But there are other possibilities, e.g.,
  - "untimely system + timely subsystem"
  - A. Casimiro, P. Veríssimo, Timely Computing Base

# I-T State machine replication











### **Performance of I-T SMR** • Nice runs LATENCY Throughput Algorithm ComSteps SignCP VerifCP SignTot VerifTot MesgTot Rampart 8 3 2(n-f)+n $4n \oplus 3(n-1)$ $n \oplus (n-1)$ $(n-f)n \oplus (n-f)(n-1)$ 1 BFT 0 2 5 0 $2n \oplus (n-1)(2n-1)$ 0 0 HQ 4 2 (n+1)(n+1)(n-f)3 2(n-f)4n4 BFT2F 5 2 2f $2n \oplus (n-1)(2n-1)$ $(n+1) \oplus 0$ $n(2f+1)\oplus 0$ 5 $2n \left[ + (n^3 + n^2 - n) \right]$ 0 0 5 Our alg 0 0

### Bad runs

|   | Algorithm | Bad run                                         | Consequence                         |
|---|-----------|-------------------------------------------------|-------------------------------------|
| 1 | Rampart   | Long communication delays or faulty coordinator | One or more coordinator elections   |
| 2 | BFT       | Same as Rampart                                 | Same as Rampart                     |
| 3 | HQ        | Same as Rampart/BFT if there is contention      | Change to BFT and run BFT           |
| 4 | BFT2F     | Same as Rampart/BFT                             | Same as Rampart/BFT                 |
| 5 | Our alg.  | Nothing (outside the wormhole)                  | Not affected (outside the wormhole) |





## **Motivation**

- Randomized Byzantine FT agreement protocols:
  - Introduced in 1983: Ben-Or (PODC), Rabin (FOCS)
  - Since then many others appeared...
- But from a practical point of view:
  - Ben-Or style protocols ("local coins") → run in an exponential expected number of communication steps
  - Rabin style protocols ("shared coin") → rely on publickey crypto
- DS folklore: work in the area is theoretical; protocols too slow for most applications...
- ...but are they really slow?





| Sh                                  | ared Co<br>hię | oin has alv<br>gher laten | vays muc<br>cy | h     |  |
|-------------------------------------|----------------|---------------------------|----------------|-------|--|
| Latency (µs) [1000 Mbps, no faults] |                |                           |                |       |  |
| Proposal<br>Distribution            |                | Machines (n)              |                |       |  |
|                                     |                | 4                         | 7              | 10    |  |
| Uniform                             | Local          | 824                       | 2187           | 4132  |  |
| Uniioim                             | Shared         | 21590                     | 31315          | 43633 |  |
| Corrosive                           | Local          | 2453                      | 6172           | 12075 |  |
|                                     | Shared         | 33834                     | 38529          | 55169 |  |
| Random                              | Local          | 2056                      | 5812           | 11501 |  |
|                                     | Shared         | 24320                     | 36325          | 49206 |  |



| Sha                             | red Coi<br>the By: | n is more<br>zantine fa | robust w<br>ultload | ith      |  |  |
|---------------------------------|--------------------|-------------------------|---------------------|----------|--|--|
| Number of Rounds until Decision |                    |                         |                     |          |  |  |
|                                 |                    | Machines (n)            |                     |          |  |  |
| Faultload                       |                    | 4                       | 7                   | 10       |  |  |
| Failure-                        | Local              | 1.004                   | 1.005               | 1.009    |  |  |
| free                            | Shared             | 1.013                   | 1.018               | 1.010    |  |  |
| Crash                           | Local              | 1.000                   | 1.000               | 1 1 expe |  |  |
|                                 | Shared             | 1.000                   | 1.000               | 1. 128 r |  |  |
| Byzantine                       | Local              | 1.462                   | 1.569               | 2.289    |  |  |
|                                 | Shared             | 1.016                   | 1.017               | 1.012    |  |  |





# Primary-based vs decentralized protocols

# **Faster RITAS?**

- We wanted RITAS to be faster; best candidate for improvement: Binary Consensus (bottom)
  - Fastest RITAS's BC (Bracha 84): decentralized, n=3f+1, O(n<sup>3</sup>) message complexity, no signatures
- Decentralized algorithms that solve asynchronous Byzantine BC can be build with and only with:
  - 1. More Processes: n = 5f+1, *O*(*n*<sup>2</sup>) message complexity and no signatures
  - 2. More Messages: n = 3f+1, O(o) message complexity (n<sup>2</sup> < o = n<sup>2</sup>f) and no signatures
  - Signatures: n = 3f+1, O(n<sup>2</sup>) message complexity and using signatures
- To improve RITAS, option 2, message complex. *O*(*n*<sup>2</sup>*f*)





# <section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>



