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Motivation
• Every year thousands of new vulnerabilities 

appear, zillions of attacks and intrusions happen
– Doing the best we know/can, using security best 

practices etc. is essential but not enough 

• Systems with high societal importance are 
becoming “online”
– Critical infrastructures: gas, water, power,…
– Controlled by computers indirectly connected to the 

Internet
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Intrusion Tolerance
• (also called Byzantine Fault Tolerance)
• To apply the Fault Tolerance paradigm in the 

domain of Security
• Do the best we know to protect systems
• …but vulnerabilities still remain…
• Tolerate intrusions that still occur 
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I-T: an example
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Outline

• Hybrid system models and Wormholes

• I-T State machine replication

• Randomized I-T protocols

• Primary-backup vs decentralized protocols

• Conclusions

Hybrid system models and 
Wormholes
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Homogeneous system models
• Most work on I-T assumes an homogeneous 

system model; typically:
– Asynchronous (no bounds on delays)
– Byzantine/arbitrary faults, including attacks/intrusions 
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Hybrid system models
• We proposed and are interested on hybrid

system models. For instance:
– Asynchronous/Byzantine as before (red) + 
– Wormhole that is secure/tamperproof (green)
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Question 1: practical?
• Yes, it models several current systems:
• PCs with Trusted Platform Modules (TPM)

– https://www.trustedcomputinggroup.org/ 

• PCs with SmartCards
• DIY: PCs with virtual machines (Xen, VMWare)

• DIY: PCs with hardware appliances
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Question 2: why model?
• Why not do research about PCs + SmartCards

or TPMs or…?
• In our research we want:

– Expressive models of real systems
– Sound theoretical basis for proofs of correctness
– Enablers for building new algorithms

• For practical minds: 
– We don’t want to be restricted to what can be done 

with SmartCards or TPMs…
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Question 3: model what?
• In this talk: 

– “insecure system + secure subsystem”

• But there are other possibilities, e.g., 
– “untimely system + timely subsystem”
– A. Casimiro, P. Veríssimo, Timely Computing 

Base

I-T State machine replication
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State machine replication basics
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SMR definition
• Servers are state machines: 

– state variables, commands
• Basic idea: to make all servers follow the same 

sequence of states, i.e., enforce:
– Initial state: all servers start in the same state
– Agreement: all servers execute the same commands
– Total order: all servers execute the commands in the 

same order
– Determinism: the same command executed in the 

same initial state generates the same final state
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Main Contribution
• There is a maximum number f of servers that can be 

faulty for the system to remain correct
• With an homogeneous system model (asynchronous 

Byzantine):
– Minimum: N=3f+1 servers
– 4 servers to tolerate 1 faulty, 7 to tolerate 2 faulty,…

• With a hybrid system model (secure wormhole in 
servers; not in clients):
– Minimum: N=2f+1 servers
– 3 to tolerate 1 faulty, 5 to tolerate 2 faulty,…
– This reduction has a huge impact on the system cost: hw, sw, 

admin (diversity)
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Trusted Ordering Wormhole
• The TOW is a wormhole that serves specifically to 

implement a 2f+1 I-T atomic multicast
• Provides a single service with two purposes:

– Says when a message can be delivered (which is when f+1 
servers have it)

– Says the order in which it must be delivered

• API:
– TOW_sent – “I sent a message”
– TOW_received – “I received a message”

• Output: 
– TOW_decide – “You can deliver the message, order is n”
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2f+1 Atomic multicast w/TOW
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Performance of I-T SMR
• Nice runs

• Bad runs
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I-T SMR Research trends
• BFT – Castro and Liskov (OSDI 99)

– First efficient I-T SMR system

• Increasing speed:
– FaB Paxos (DSN’05), Q/U (SOSP’05), HQ (OSDI’06), 

Zyzzyva (SOSP’07)

• Reducing window of vulnerability:
– BFT-PR (TOCS’02), Sousa et al. (SAC’06)

• Reducing number of replicas:
– this work (SRDS’04), BFT2F (NSDI’07), A2M-PBFT-

EA (SOSP’07)

Randomized I-T protocols
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Motivation
• Randomized Byzantine FT agreement protocols:

– Introduced in 1983: Ben-Or (PODC), Rabin (FOCS)

– Since then many others appeared…

• But from a practical point of view:
– Ben-Or style protocols (“local coins”) à run in an 

exponential expected number of communication steps
– Rabin style protocols (“shared coin”) à rely on public-

key crypto

• DS folklore: work in the area is theoretical; 
protocols too slow for most applications…

• …but are they really slow?
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RITAS
• First, we designed an arguably efficient stack of 

randomized I-T protocols, RITAS     (no wormhole)
– No signatures, asynchronous, decentralized, n=3f+1

• Then implemented and evaluated their performance…
– LANs, PlanetLab, wireless (PCs and PDAs)
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Local coins vs Shared coin
• Binary consensus protocols evaluated: 

– Bracha’s (84), expected n. rounds O(2n-f), no crypto
– ABBA (01), expected n. rounds constant, public-key 

crypto

• Testbed
– 10/100/1000 Mbps local-area network (LAN)
– 11 Dell PowerEdge 850 computers (2.8 GHz, 2 GB 

RAM)
– Linux 2.6.11
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Latency

Latency (µs) [1000 Mbps, no faults]
Proposal 

Distribution
Machines (n)

4 7 10

Uniform
Local 824 2187 4132

Shared 21590 31315 43633

Corrosive
Local 2453 6172 12075

Shared 33834 38529 55169

Random
Local 2056 5812 11501

Shared 24320 36325 49206

Shared Coin has always much 
higher latency
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ThroughputLocal Coin is always better than 
Shared Coin

Local Coin is affected by 
Byzantine faults

Shared Coin is not affected by 
Byzantine faults

Maximum Throughput (decisions/s)

Faultload
Machines (n)

4 7 10
Failure-

free
Local 450 170 80

Shared 13 9 8

Crash
Local 600 225 110

Shared 31 25 20

Byzantine
Local 330 87 30

Shared 16 9 8
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Number of Rounds

Number of Rounds until Decision

Faultload
Machines (n)

4 7 10
Failure-

free
Local 1.004 1.005 1.009

Shared 1.013 1.018 1.010

Crash
Local 1.000 1.000 1.000

Shared 1.000 1.000 1.000

Byzantine
Local 1.462 1.569 2.289

Shared 1.016 1.017 1.012

The average number of rounds is 
very low

Theoretical 
expected 
result is 

128 rounds

The performance is similar for the 
failure-free and crash faultloads

The protocols always terminate in 
one round in the crash faultload
Shared Coin is more robust with 

the Byzantine faultload
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Randomized Atomic Broadcast

• Is it fast/practical?
• Testbed

– 100 Mbps LAN
– 4 nodes (Pentium III PCs, 500 MHz, 128 MB RAM)
– Linux (kernel version 2.6.15)

Bracha’84
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Throughput
• No faults, n=4

~721 msgs/s
~650 msgs/s

~465 msgs/s

~711 msgs/s
~634 msgs/s

~460 msgs/s

• Byzantine faults – throughput almost not affected
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Primary-based vs decentralized 
protocols

30

Faster RITAS?
• We wanted RITAS to be faster; best candidate for 

improvement: Binary Consensus (bottom)
– Fastest RITAS’s BC (Bracha 84): decentralized, n=3f+1, O(n3)

message complexity, no signatures

• Decentralized algorithms that solve asynchronous 
Byzantine BC can be build with and only with:
1. More Processes: n = 5f+1, O(n2) message complexity and no 

signatures
2. More Messages: n = 3f+1, O(o) message complexity (n2 < o =

n2f) and no signatures
3. Signatures: n = 3f+1, O(n2) message complexity and using 

signatures

• To improve RITAS, option 2, message complex. O(n2f)
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State machine replication revisited
• For decentralized consensus algorithms, best:

– n = 3f+1, O(o) message complexity (n2 < o = n2f), no 
signatures

• But for a primary-based SMR like BFT:
– n = 3f+1, O(n2) message complexity, no signatures 

• SMR with n=2f+1:
– Requires distributed “heavy” wormhole
– Decentralized (but not randomized)

• What about a primary-based SMR?
– n=2f+1 ?   “Lighter” wormhole?

Conclusions
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Conclusions (1)
• Intrusion tolerance: a new paradigm for more 

secure distributed systems
• Hybrid system models and Wormholes

– Model reality as sound basis for proofs of correctness
– Enablers for building new algorithms…
– … without getting tied to current devices 

• First solution for I-T state-machine replication 
with only 2f+1 replicas
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Conclusions (2)
• Randomized I-T protocols

– Experimentation contradicted DS folklore
– Protocols are practical
– Local coin protocols are fast/practical but scale worse 

than shared-coin protocols

• Primary-based vs decentralized protocols
– Primary-based have to recover from faulty leader
– But decentralized protocols have constraints that do 

not apply to primary-based
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Thank you. Questions?

http://www.di.fc.ul.pt/~mpc/    
http://www.navigators.di.fc.ul.pt/
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