
1

Tolerating Byzantine Behavior in
Distributed Systems

Miguel Correia
University of Lisboa

LASIGE / Navigators group

CyLab/CMU, December 2007

2

Motivation
• Every year thousands of new vulnerabilities

appear, zillions of attacks and intrusions happen
– Doing the best we know/can, using security best

practices etc. is essential but not enough

• Systems with high societal importance are
becoming “online”
– Critical infrastructures: gas, water, power,…
– Controlled by computers indirectly connected to the

Internet

2

3

Intrusion Tolerance
• (also called Byzantine Fault Tolerance)
• To apply the Fault Tolerance paradigm in the

domain of Security
• Do the best we know to protect systems
• …but vulnerabilities still remain…
• Tolerate intrusions that still occur

4

I-T: an example

Servers (N)

Clients

I-T Distributed Service

Request Reply

NFS, DNS,
on-line CA,
Web server,
etc.

0-Day vulnerability

Redundancy

Diversity
CORRECT

3

5

Outline

• Hybrid system models and Wormholes

• I-T State machine replication

• Randomized I-T protocols

• Primary-backup vs decentralized protocols

• Conclusions

Hybrid system models and
Wormholes

4

7

Homogeneous system models
• Most work on I-T assumes an homogeneous

system model; typically:
– Asynchronous (no bounds on delays)
– Byzantine/arbitrary faults, including attacks/intrusions

Payload Network

Host n
Processes

OS

Host 2

OS

Processes

Host 1

OS

Processes

8

Hybrid system models
• We proposed and are interested on hybrid

system models. For instance:
– Asynchronous/Byzantine as before (red) +
– Wormhole that is secure/tamperproof (green)

Payload Network

Host n

Local
Wh.

Processes

OS

Host 2

OS Local
Wh.

Processes

Host 1

OS Local
Wh.

Processes

Wormhole Control Channel (optional)

5

9

Question 1: practical?
• Yes, it models several current systems:
• PCs with Trusted Platform Modules (TPM)

– https://www.trustedcomputinggroup.org/

• PCs with SmartCards
• DIY: PCs with virtual machines (Xen, VMWare)

• DIY: PCs with hardware appliances

10

Question 2: why model?
• Why not do research about PCs + SmartCards

or TPMs or…?
• In our research we want:

– Expressive models of real systems
– Sound theoretical basis for proofs of correctness
– Enablers for building new algorithms

• For practical minds:
– We don’t want to be restricted to what can be done

with SmartCards or TPMs…

6

11

Question 3: model what?
• In this talk:

– “insecure system + secure subsystem”

• But there are other possibilities, e.g.,
– “untimely system + timely subsystem”
– A. Casimiro, P. Veríssimo, Timely Computing

Base

I-T State machine replication

7

13

State machine replication basics

Servers (N)

Clients

I-T Distributed Service

Request Reply

SMR is a mechanism
to make any
deterministic service
fault-tolerant

14

SMR definition
• Servers are state machines:

– state variables, commands
• Basic idea: to make all servers follow the same

sequence of states, i.e., enforce:
– Initial state: all servers start in the same state
– Agreement: all servers execute the same commands
– Total order: all servers execute the commands in the

same order
– Determinism: the same command executed in the

same initial state generates the same final state

A
to

m
ic

m
ul

tic
as

tp
ro

to
co

l

8

15

Main Contribution
• There is a maximum number f of servers that can be

faulty for the system to remain correct
• With an homogeneous system model (asynchronous

Byzantine):
– Minimum: N=3f+1 servers
– 4 servers to tolerate 1 faulty, 7 to tolerate 2 faulty,…

• With a hybrid system model (secure wormhole in
servers; not in clients):
– Minimum: N=2f+1 servers
– 3 to tolerate 1 faulty, 5 to tolerate 2 faulty,…
– This reduction has a huge impact on the system cost: hw, sw,

admin (diversity)

16

Trusted Ordering Wormhole
• The TOW is a wormhole that serves specifically to

implement a 2f+1 I-T atomic multicast
• Provides a single service with two purposes:

– Says when a message can be delivered (which is when f+1
servers have it)

– Says the order in which it must be delivered

• API:
– TOW_sent – “I sent a message”
– TOW_received – “I received a message”

• Output:
– TOW_decide – “You can deliver the message, order is n”

9

17

2f+1 Atomic multicast w/TOW

S0

S1

S2

TOW

se
nt

H
(M

1)

N=3 f=1

message delivery

M1

re
ce

iv
ed

H
(M

1)

f+1 servers have M1
order = 1

de
ci

de
 H

(M
1)

,1
re

ce
iv

ed
H

(M
1)

de
ci

de
 H

(M
1)

,1

X

X

X

H(M) – a collision-resistant hash function

works the same way with more messages

18

Performance of I-T SMR
• Nice runs

• Bad runs

10

19

I-T SMR Research trends
• BFT – Castro and Liskov (OSDI 99)

– First efficient I-T SMR system

• Increasing speed:
– FaB Paxos (DSN’05), Q/U (SOSP’05), HQ (OSDI’06),

Zyzzyva (SOSP’07)

• Reducing window of vulnerability:
– BFT-PR (TOCS’02), Sousa et al. (SAC’06)

• Reducing number of replicas:
– this work (SRDS’04), BFT2F (NSDI’07), A2M-PBFT-

EA (SOSP’07)

Randomized I-T protocols

11

21

Motivation
• Randomized Byzantine FT agreement protocols:

– Introduced in 1983: Ben-Or (PODC), Rabin (FOCS)

– Since then many others appeared…

• But from a practical point of view:
– Ben-Or style protocols (“local coins”) à run in an

exponential expected number of communication steps
– Rabin style protocols (“shared coin”) à rely on public-

key crypto

• DS folklore: work in the area is theoretical;
protocols too slow for most applications…

• …but are they really slow?

22

RITAS
• First, we designed an arguably efficient stack of

randomized I-T protocols, RITAS (no wormhole)
– No signatures, asynchronous, decentralized, n=3f+1

• Then implemented and evaluated their performance…
– LANs, PlanetLab, wireless (PCs and PDAs)

12

23

Local coins vs Shared coin
• Binary consensus protocols evaluated:

– Bracha’s (84), expected n. rounds O(2n-f), no crypto
– ABBA (01), expected n. rounds constant, public-key

crypto

• Testbed
– 10/100/1000 Mbps local-area network (LAN)
– 11 Dell PowerEdge 850 computers (2.8 GHz, 2 GB

RAM)
– Linux 2.6.11

24

Latency

Latency (µs) [1000 Mbps, no faults]
Proposal

Distribution
Machines (n)

4 7 10

Uniform
Local 824 2187 4132

Shared 21590 31315 43633

Corrosive
Local 2453 6172 12075

Shared 33834 38529 55169

Random
Local 2056 5812 11501

Shared 24320 36325 49206

Shared Coin has always much
higher latency

13

25

ThroughputLocal Coin is always better than
Shared Coin

Local Coin is affected by
Byzantine faults

Shared Coin is not affected by
Byzantine faults

Maximum Throughput (decisions/s)

Faultload
Machines (n)

4 7 10
Failure-

free
Local 450 170 80

Shared 13 9 8

Crash
Local 600 225 110

Shared 31 25 20

Byzantine
Local 330 87 30

Shared 16 9 8

26

Number of Rounds

Number of Rounds until Decision

Faultload
Machines (n)

4 7 10
Failure-

free
Local 1.004 1.005 1.009

Shared 1.013 1.018 1.010

Crash
Local 1.000 1.000 1.000

Shared 1.000 1.000 1.000

Byzantine
Local 1.462 1.569 2.289

Shared 1.016 1.017 1.012

The average number of rounds is
very low

Theoretical
expected
result is

128 rounds

The performance is similar for the
failure-free and crash faultloads

The protocols always terminate in
one round in the crash faultload
Shared Coin is more robust with

the Byzantine faultload

14

27

Randomized Atomic Broadcast

• Is it fast/practical?
• Testbed

– 100 Mbps LAN
– 4 nodes (Pentium III PCs, 500 MHz, 128 MB RAM)
– Linux (kernel version 2.6.15)

Bracha’84

28

Throughput
• No faults, n=4

~721 msgs/s
~650 msgs/s

~465 msgs/s

~711 msgs/s
~634 msgs/s

~460 msgs/s

• Byzantine faults – throughput almost not affected

15

Primary-based vs decentralized
protocols

30

Faster RITAS?
• We wanted RITAS to be faster; best candidate for

improvement: Binary Consensus (bottom)
– Fastest RITAS’s BC (Bracha 84): decentralized, n=3f+1, O(n3)

message complexity, no signatures

• Decentralized algorithms that solve asynchronous
Byzantine BC can be build with and only with:
1. More Processes: n = 5f+1, O(n2) message complexity and no

signatures
2. More Messages: n = 3f+1, O(o) message complexity (n2 < o =

n2f) and no signatures
3. Signatures: n = 3f+1, O(n2) message complexity and using

signatures

• To improve RITAS, option 2, message complex. O(n2f)

16

31

State machine replication revisited
• For decentralized consensus algorithms, best:

– n = 3f+1, O(o) message complexity (n2 < o = n2f), no
signatures

• But for a primary-based SMR like BFT:
– n = 3f+1, O(n2) message complexity, no signatures

• SMR with n=2f+1:
– Requires distributed “heavy” wormhole
– Decentralized (but not randomized)

• What about a primary-based SMR?
– n=2f+1 ? “Lighter” wormhole?

Conclusions

17

33

Conclusions (1)
• Intrusion tolerance: a new paradigm for more

secure distributed systems
• Hybrid system models and Wormholes

– Model reality as sound basis for proofs of correctness
– Enablers for building new algorithms…
– … without getting tied to current devices

• First solution for I-T state-machine replication
with only 2f+1 replicas

34

Conclusions (2)
• Randomized I-T protocols

– Experimentation contradicted DS folklore
– Protocols are practical
– Local coin protocols are fast/practical but scale worse

than shared-coin protocols

• Primary-based vs decentralized protocols
– Primary-based have to recover from faulty leader
– But decentralized protocols have constraints that do

not apply to primary-based

18

35

Thank you. Questions?

http://www.di.fc.ul.pt/~mpc/
http://www.navigators.di.fc.ul.pt/

• Some related publications:
– M Correia, NF Neves, P Veríssimo. How to Tolerate Half Less One Byzantine Nodes

in Practical Distributed Systems. IEEE SRDS 2004
– N F Neves, M Correia, P Veríssimo. Solving Vector Consensus with a Wormhole.

IEEE TPDS 16-12, Dec. 2005
– M Correia, N F Neves, L C Lung, P Veríssimo. Low Complexity Byzantine-Resilient

Consensus. Distributed Computing, 17-3 Mar. 2005
– P Veríssimo, Travelling through Wormholes: a new look at Distributed Systems

Models. SIGACT News 37-1, 2006
– M Correia, N F Neves, P Veríssimo. From Consensus to Atomic Broadcast: Time-

Free Byzantine-Resistant Protocols without Signatures. Computer Journal 41-1, Jan.
2006

– H Moniz and N F Neves and M Correia and P Veríssimo. Randomized Intrusion-
Tolerant Asynchronous Services. DSN 2006

– A Bessani, M. Correia, H Moniz, N F Neves, P Verissimo. When 3 f +1 is not Enough:
Tradeoffs for Decentralized Asynchronous Byzantine Consensus. DISC 2007

