& Navigators &l FcuL

Tolerating Byzantine processes in
distributed systems:
using wormholes to reduce the
number of replicas

Miguel Correia
joint work with Nuno F. Neves and Paulo Verissimo
Faculdade de Ciéncias, Universidade de Lisboa
LASIGE / Navigators group

TheNIS — 2nd Information Security Workshop
IST,-Lisboa, July-17th- 2007

“% Navigators =fl FcuL

Navigators group

Group leader: Paulo Verissimo
Currently 9 PhDs (6 faculty, 3 post-docs), 7 PhD
students, ? MsC students, ? junior researchers

Projects: 2 EC STREPs (CRUTIAL, HIDENETS), 1
EC NoE (ReSIST), 1 EC CA (ESFORS), 1 ESA, 5
FCT

CMU-PT partnership — dual degree MsC in Security
and PhD in Informatics

Research Lines

@ Fault and Intrusion Tolerance in Open Distributed Systems
< Timeliness and Adaptation in Dependable Systems
http:/Aww.navigators.di.fc.ul.pt/

FACULDADE - DE - CIENCIAS B UNIVERSIDADE - DE - LISBOA

Outline

% Navigators &fl FcuL

Intrusion Tolerance — motivation
Hybrid system models and Wormholes

State machine replication
2f+1 atomic multicast
Consensus

Conclusions

% Navigators ©fl FcuL

Intrusion Tolerance -

motivation

% Navigators &l FcuL

Motivation for I-T

Every year thousands of new vulnerabilities

appear, zillions of attacks and intrusions

% Doing the best we know/can, using security best
practices etc. is not enough

Systems with very high societal importance

are becoming “online”

< Critical infrastructures: gas, water, electr., ...

& Controlled by computers indirectly connected to
the Internet

% Navigators =fl FcuL

Intrusion Tolerance

To apply the Fault Tolerance paradigm in the
domain of Security

Do the best we know to protect systems
(prevention)

...but vulnerabilities still remain...

Tolerate intrusions that still occur
(tolerance)

Redundancy
Diversity

& Navigators &l FcuL

1-T: an example

|-T Distributed Service

Servers (N) NFS, DNS,
on-line CA,
Web server,
|||| |||| |||| ||| etc.
Request Reply 0 Day vulnerability
| & -,
Clients

“% Navigators =fl FcuL

Hybrid system models and

Wormholes

" Navigators &l FcuL

Homogeneous system models

* In Fault and Intrusion Tolerance the system
model is usually homogeneous, e.g.:
& Asynchronous (no bounds on delays)
& Byzantine (or arbitrary) faults

Host 1 Host 2 Host n
@® Processes ® Processes ® Processes
[X J [e °® () P

Payload Network

“% Navigators =fl FcuL

Hybrid system models

» We proposed and are interested on hybrid
system models. For instance:
& Asynchronous/Byzantine as before (red) +
& Secure wormhole (green)

Host 1 Host 2 Host n
@® Processes ® Processes ® Processes
® o0 o o © e o ©
r ces

O

Worihhole Control Channel (optjonal)

Payload Network

10

& Navigators &l FcuL

Question 1: reasonable model?

* Yes, it models several current systems:
» PCs with Trusted Platform Modules

< https://www.trustedcomputinggroup.org/

* PCs with SmartCards
e DIY: PCs with virtual machines (Xen, VMWare)
» DIY: PCs with hardware appliances

11

“% Navigators =fl FcuL

Question 2: why model?

* Why not do research about PCs +
SmartCards or TPMs or...?

» Science vs. engineering; we want:
& Expressive models of reality
& Sound theoretical basis for proofs of correctness
& Enablers of concepts for building new algorithms

» For practical minds: we can do things that
cannot be done with SmartCards or TPMs...
& See rest of the talk

12

% Navigators &l FcuL

Question 3: model what?

* Not necessarily “insecure system + secure
subsystem”

» Some of us have been working with “untimely
system + timely subsystem”
@ A. Casimiro, P. Verissimo, Timely Computing Base

» on hybrid models and wormholes:

P. Verissimo, “Travelling through Wormholes: a new
look at Distributed Systems Models”
ACM SIGACT News 2006

13

% Navigators =fl FcuL

State machine replication

" Navigators &l FcuL

SMR basics

I-T Distributed Service])
SMR is a mechanism
to implement any

Servers (N) S .
deterministic service

A server or client is
said to be faulty if it
deviates from its
correct behaviour,
e.g., because there
is an intrusion or it

I crashes

Clients

15

“% Navigators =fl FcuL

SMR definition

Servers are state machines:

@& state variables, commands

All correct servers follow the same history of
states iff:

< |nitial state: all servers start in the same state

= Agreement: all servers execute the same
commands

< Total order: all servers execute the commands in
the same order

& Determinism: the same command executed in the
same initial state generates the same final state

Atomic multicast

16

" Navigators &l FcuL

I-T Atomic Multicast

There is a maximum number f of servers that can be
faulty for the system to remain correct

With an homogeneous system model (asynchronous
Byzantine):

& Minimum: N=3f+1 servers

& 4 to tolerate 1 faulty, 7 to tolerate 2 faulty,...

With a hybrid system model (secure wormhole in
servers; not in clients):

@ Minimum: N=2f+1 servers

@ 3 to tolerate 1 faulty, 5 to tolerate 2 faulty,...

< This reduction has a huge impact on the system costs due to
the need for diversity

17

“% Navigators =fl FcuL

Trusted Ordering Wormhole

The TOW is a wormhole that serves specifically to
implement a 2f+1 |-T atomic multicast
Provides a single service with two purposes:

@ Says when a message can be delivered (which is when f+1
servers have it)

@ Says the order in which it must be delivered
API:
& TOW_sent — “| sent a message”
& TOW._received — “I received a message”
Output:
@ TOW_decide — “You can deliver the message, order is n”

18

% Navigators &fl FcuL

2f+1 Atomic multicast w/TOW

N=3 f=1 H(M) — a collision-resistant hash function
SO . 1
Ny
S1— : —t
i : o
: 1 > :I
S2— =T
1 Siag =S
bl .2 IS
%’ '::\I_/ U‘:\I_/
L &:: o 2o
2 Zins 2T
3 oI oV
% 2y 1T)
TOW ——
TOW service

f+1 processes have M1
order=1

I_message delivery
19

% Navigators =fl FcuL

Performance of 1-T SMR

* In nice runs

LATENCY THROUGHPUT

Algorithm | ComSteps SignCP VerifCP MesgTot SignTot VerifTot
1 Rampart 8 3 2ln—f)+n | 4nc3(n—1) ntn—=1) (n—=finon—-fin-1)
2 BFT 5 0 0 2no(n—1)(2n—-1) O 0
3 HQ 4 2 2(n—f) 4n (n+1) (n+1)(n—f)
4 BFT2F 5 2 2f 2ns(n=1)2n=1) (n+1)20 a2f+1)+0
5 Ouralg. 5 0 0 2n [+ 4+n-n)] 0 0

« Bad runs

Algorithm Bad run Consequence

1 Rampart Long communication delays or faulty coordinator ~ One or more coordinator elections
2 BFT Same as Rampart Same as Rampart
3 HQ Same as Rampart/BFT if there is contention Change to BFT and run BFT
4 BFT2F Same as Rampart/BFT Same as Rampart/BFT
5 Ouralg. Nothing (outside the wormhole) Not affected (outside the wormhole)

20

% Navigators &fl FcuL

consensus

% Navigators =fl FcuL

Consensus problem

» “How can some distributed processes achieve
agreement on a value despite a number of
them being faulty?”

& Important since related to many other distributed
problems

* FLP impossibility result [Fischer et al. 85]

& Consensus is impossible to solve deterministically
in a completely asynchronous system (with faults)

& For the problem to be solved, this result must be
“circumvented” (i.e., system model modified):
failure detectors, partial synchrony, randomization,
wormholes!

22

" Navigators &l FcuL

Consensus and atomic multicast

» The 2 problems have been proved to be
equivalent in several system models
< Asynchronous, crash faults, failure detectors
< Asynchronous, Byzantine, failure detectors
& Asynchronous, Byzantine, randomization

[=ad

* What about asynchronous Byzantine with
TOW?

23

“% Navigators =fl FcuL

Consensus and atomic multicast

Two definitions of Byzantine consensus:

< Validity 1. If all correct processes propose the same value v,
then any correct process that decides, decides v.

@ Validity 2. If a correct process decides v, then v was
proposed by some process.

@ Agreement. No two correct processes decide differently.
< Termination. Every correct process eventually decides.
 ltis trivial to use the AM presented to implement
consensus with Validity 2
@ Each process atomic multicast its value
@ The decision is the first value delivered
» Itis simple to see that it is not possible to use the AM
presented to obtain consensus with Validity 1

Either or *

24

% Navigators &fl FcuL

Conclusions

% Navigators =fl FcuL

Conclusions (1)

First solution for intrusion-tolerant state-machine
replication in practical distributed systems with only
2f+1 replicas

Interesting impact since each additional replica has a
considerable cost

Circumvents FLP without synchrony assumptions on
the asynchronous part of the system

< all synchrony is encompassed in the TOW

Good performance:

<& Low time complexity

< No asymmetric cryptography

< No leader elections

26

" Navigators &l FcuL

Conclusions (2)

» This work showed clear benefits of using a
hybrid system model and wormholes

» Later: necessity of using wormholes
(Paulo Sousa)

27

“% Navigators =fl FcuL

Questions?

e Some related publications:

< M Correia, NF Neves, LC Lung, P Verissimo. Worm-IT - A Wormhole-based
Intrusion-Tolerant Group Communication System. Journal of Systems &
Software, vol. 80, n. 2, February 2007

= P Verissimo, Travelling through Wormholes: a new look at Distributed
Systems Models. SIGACT News, vol. 37, n. 1, 2006.

= NF Neves, M Correia, P Verissimo. Solving Vector Consensus with a
Wormhole. IEEE Transactions on Parallel and Distributed Systems, vol. 16,
n.12, Dec. 2005

<= M Correia, NF Neves, LC Lung, P Verissimo. Low Complexity Byzantine-
Resilient Consensus. Distributed Computing, vol. 17, n. 3, March 2005

<= M Correia, NF Neves, P Verissimo. How to Tolerate Half Less One
Byzantine Nodes in Practical Distributed Systems. In Proc. 23rd IEEE
Symposium on Reliable Distributed Systems, October 2004 (journal version
to appear)

e More info and papers:
< http://www.navigators.di.fc.ul.pt/
< http://www.di.fc.ul.pt/~mpc/

28

