
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

RANDOMIZED INTRUSION-TOLERANT
ASYNCHRONOUS SERVICES

Henrique Lícias Senra Moniz

MESTRADO EM INFORMÁTICA

September 2006

RANDOMIZED INTRUSION-TOLERANT
ASYNCHRONOUS SERVICES

Henrique Lícias Senra Moniz

Dissertação submetida para obtenção do grau de
MESTRE EM INFORMÁTICA

pela

Faculdade de Ciências da Universidade de Lisboa

Departamento de Informática

Orientador:
Nuno Fuentecilla Maia Ferreira Neves

Co-Orientador:
Miguel Nuno Dias Alves Pupo Correia

Júri:
Henrique João Lopes Domingos
António Casimiro Costa
Maria Teresa Caeiro Chambel

September 2006

Resumo

Os protocolos distribuídos com recurso à aleatoriedade foram propostos

há mais de duas décadas. Tradicionalmente, estes protocolos têm sido

considerados demasiado ineficientes, uma vez que apresentam complex-

idades teóricas elevadas quer para a comunicação como para o tempo, o

que tem impedido a sua utilização prática na concretização de sistemas

tolerantes a faltas. Esta tese pretende contrariar esta visão, demonstrando

que a aleatoriedade pode ser uma solução competitiva, mesmo em ambi-

entes hostis sujeitos a faltas maliciosas. Na tese é descrita a concretização

de uma de pilha de protocolos tolerantes a intrusões com recurso à aleto-

riedade, sendo efectuada a respectiva análise de desempenho sob diversos

tipos de critérios. A pilha de protocolos fornece um conjunto de serviços

relevantes, desde primitivas básicas de acordo até à difusão atómica. Os

protocolos partilham de um conjunto importante de propriedades estru-

turais, nomeadamente, toleram faltas arbitrárias, possuem resistência óp-

tima, são assíncronos, completamente descentralizados, e apenas usam

criptografia de chave simétrica. A análise de desempenho mostra que os

protocolos são eficientes e que o seu desempenho não sofre degradação

mesmo quando sujeitos a certos tipos de faltas maliciosas.

PALAVRAS-CHAVE: Tolerância a Intrusões, Acordo Bizantino, Algo-

ritmos Aleatórios, Avaliação de Desempenho.

Abstract

Randomized agreement protocols have been around for more than two

decades. Often assumed to be inefficient due to their high expected com-

munication and time complexities, they have remained largely overlooked

by the community-at-large as a valid solution for the deployment of fault-

tolerant distributed systems. This thesis aims to demonstrate that ran-

domization can be a very competitive approach even in hostile environ-

ments where arbitrary faults can occur. The implementation of a stack of

randomized intrusion-tolerant protocols is described, and its performance

evaluated under different faultloads. The stack provides a set of relevant

services ranging from basic communication primitives up to atomic broad-

cast. The protocols share a set of important structural properties, namely

they tolerate arbitrary faults, have an optimal resilience, are time-free,

completely decentralized, and signature-free. The experimental evalua-

tion shows that the protocols are efficient and no performance reduction

is observed under certain Byzantine faults.

KEY WORDS: Intrusion Tolerance, Byzantine Agreement, Random-

ized Protocols, Performance Evaluation.

Acknowledgments

I want to thank a handful of people whom I believe had a significant im-

pact, even if not in an obvious way, on this thesis.

First of all, my parents for passing on to me their exceptional genes, for

providing me with a purposeful foundation as a human being, and, within

their means, for always backing up my professional choices. In particular,

my mother for imprinting me with a resolute assurance in my intellectual

prowess, and my father, for providing me the environment, patience, and

support by which I began osmosing what became my professional play-

ground and a most important form of expression.

My advisors, Prof. Nuno Neves and Prof. Miguel Correia. Still to this

day, I have no idea how they picked up me among the crowd. They in-

vested in me, never failed to provide the space and tranquility I needed to

develop my work, and always gave me a tremendous amount of trust and

protection for which I am truly grateful. Along with Prof. Paulo Verís-

simo, the support I received from them during my initial stages at the

Navigators group was a fundamental encouragement for me to untangle

the serious health problems I had then.

A special word for my ex-girlfriend, Ana Teresa, who stood next to me

during most of this journey. Almost stoically, endured the side-effects of

my personality, was the pillar of the emotional serenity I experienced dur-

ing most of these two years, and, ultimately, was the catalyst for the fierce

personal growth I am going through in my life. Thank you for everything.

Finally, my friends, for their relenteless faith and inconditional sup-

port. I can’t name them with the fear of leaving someone out, but they

know who they are. During the rare moments I am able to rest my mind

and truly contemplate what I have, you make me feel the most fortunate

person on earth. I have no words to express the love I feel for all of you.

Lisboa, September 2006

Henrique Lícias Senra Moniz

To all who stand alone.

Contents

Contents i

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Impetus . 1

1.2 Contributions of the Thesis 5

1.3 Organization of the Thesis . 7

2 Context and Related Work 9

2.1 Consensus . 9

2.1.1 Partial Synchrony . 13

2.1.2 Failure Detectors . 14

2.1.3 Wormholes . 17

2.1.4 Randomization: the non-deterministic solution 18

2.2 Related Implementations . 20

2.2.1 Rampart . 21

2.2.2 SecureRing . 24

2.2.3 BFT . 27

i

2.2.4 Worm-IT . 29
2.2.5 SINTRA . 31

3 The Protocol Stack 35

3.1 System Model . 35
3.2 Protocol Stack . 37

3.2.1 Reliable Channels . 38
3.2.2 Reliable Broadcast . 39
3.2.3 Echo Broadcast . 40
3.2.4 Binary Consensus . 43
3.2.5 Multi-valued Consensus 45
3.2.6 Vector Consensus . 50
3.2.7 Atomic Broadcast . 52

4 RITAS: The Implementation 59

4.1 Design Considerations . 59
4.1.1 Single-threaded vs. Multi-threaded Operation 60
4.1.2 Message Management 61
4.1.3 Multiple Protocol Instances 62
4.1.4 Protocol Demultiplexing 63
4.1.5 Header Construction 64
4.1.6 Storage of Values . 64
4.1.7 Out-of-Context Messages 65

4.2 Internals . 65
4.2.1 The RITAS context . 66
4.2.2 Message Buffers . 67
4.2.3 Control Blocks and Protocol Handlers 69
4.2.4 The RITAS Channel . 71

ii

4.2.5 Control Block Chaining 72
4.2.6 Out-of-Context Message Handling 75

4.3 Interface . 75
4.3.1 Context Management Functions 76
4.3.2 Service Request Functions 77

5 Performance Evaluation 81

5.1 Testbeds . 81
5.2 Stack Analysis . 82
5.3 Atomic Broadcast Analysis 85

5.3.1 Group Size and Faultload 87
5.3.2 Network Bandwidth and Message Size 94
5.3.3 Relative Cost of Agreement 100

5.4 Summary of Results . 103

6 Conclusion 105

6.1 Conclusions . 105
6.2 Future Work . 106

Bibliography 109

iii

List of Figures

3.1 The RITAS protocol stack. 37

3.2 Messages exchanged during a reliable broadcast execution

with four processes. 40

3.3 Messages exchanged during an echo broadcast execution

with four processes. 42

3.4 Protocols involved in an agreement task of the atomic

broadcast protocol with four processes. 54

4.1 The ritas_t structure. 66

4.2 The mbuf structure. 68

4.3 Communication flow between the various protocol layers. . 72

4.4 Initialization of a tree of control blocks. 74

5.1 Latency and throughput for atomic broadcast with failure-

free faultload, 1000 Mbps bandwidth, and 100-byte mes-

sages in testbed tb-fast. 88

5.2 Latency and throughput for atomic broadcast with fail-stop

faultload, 1000 Mbps bandwidth, and 100-byte messages in

testbed tb-fast. 90

v

5.3 Latency and throughput for atomic broadcast with Byzan-

tine faultload, 1000 Mbps bandwidth, and 100-byte mes-

sages in testbed tb-fast. 91
5.4 Latency and throughput for atomic broadcast with failure-

free faultload, and 100-byte messages in both testbeds. . . . 93
5.5 Latency and throughput for atomic broadcast with four

processes, failure-free faultload, and 10-byte messages in

testbed tb-fast. 95
5.6 Latency and throughput for atomic broadcast with four

processes, failure-free faultload, and 100-byte messages in

testbed tb-fast. 97
5.7 Latency and throughput for atomic broadcast with four

processes, failure-free faultload, and 1-Kbyte messages in

testbed tb-fast. 98
5.8 Latency and throughput for atomic broadcast with four

processes, failure-free faultload, and 10-Kbyte messages in

testbed tb-fast. 99
5.9 Latency and throughput for atomic broadcast with four

processes, failure-free faultload, and 100 Mbps bandwidth

in both testbeds (10-byte, and 100-byte messages). 101
5.10 Latency and throughput for atomic broadcast with four

processes, failure-free faultload, and 100 Mbps bandwidth

in both testbeds (1-Kbyte, and 10-Kbyte messages). 102
5.11 Percentage of (reliable or echo) broadcasts that are due to

the agreements when a burst of messages is atomically

broadcasted. Four-process, failure-free, 1000 Mbps, and

100-byte message scenario in testbed tb-fast. 103

vi

List of Tables

2.1 The eight classes of failure detectors (Chandra & Toueg, 1996). 16

5.1 Average latency for isolated executions of each protocol

(with IPSec and IP) in testbed tb-slow (100 Mbps). 83
5.2 Average latency and relative slowdown (w.r.t. to the four-

process scenario) for isolated executions of each protocol

(with IPSec) in testbed tb-fast in the 1000 Mbps setting. . . . 84

vii

Chapter 1

Introduction

1.1 Impetus

Society has evolved increasingly dependent on networked computer sys-

tems over the past few decades. The Internet has become an hallmark of

modern society, and the massification of networked information systems

has brought forth a powerful cultural shift with an almost instantaneous

sharing of information. The Internet also became a huge marketplace for

companies, collaborative work has grown dramatically easier, file-sharing

applications have become ubiquitous, and video and voice streaming are

poised to boost another leap into personal communications. With this

rapid shift in business and personal communications, the protection of

this digital medium becomes one of the biggest priorities of modern soci-

ety. The availability, confidentiality, and integrity of data and services is

crucial for our everyday life to go smoothly.

The typical approach to secure these distributed systems has been one

of almost complete prevention, i.e., to avoid successful attacks, or penetra-

tions, at all cost. Once the breach occurred, there was not much that could

1

2 1.1. Impetus

be done about it, except to declare all remaining data to lack in integrity

(until proven otherwise, at least), and to reinstall the whole system from

scratch. Recently, a new trend of dealing with computer (in)security has

been emerging within the scientific community. The philosophy is simple.

Instead of just trying to prevent every intrusion, one would also resort to

some mechanisms that would provide the automatic tolerance of these in-

trusions. This means that the system as a whole can continue to provide

a correct behavior even if some of its components fall under the control of

an intelligent adversary. This area of study is called intrusion tolerance and

arose from the intersection of two classical areas of computer science, fault

tolerance and security (Avizienis et al., 2004; Fraga & Powell, 1985; Verís-

simo et al., 2003).

Within this domain of fault- and intrusion-tolerant distributed systems,

there is an essential problem: consensus. This problem has been specified

in different ways, but basically it aims to ensure that n processes are able to

propose some values and then they all agree in one of these values. Con-

sensus has been shown to be equivalent to fundamental problems, such

as state machine replication (Schneider, 1990), group membership (Guer-

raoui & Schiper, 2001), and atomic broadcast (Correia et al., 2006b; Hadzi-

lacos & Toueg, 1994). Hence, the relevance of consensus is noteworthy

because it is a building block for several important distributed systems

services. For example, to maintain data consistency in a replicated data-

base, some form of consensus between the sites is needed. Synchroniza-

tion of clocks, leader election, or practically any kind of coordinated activ-

ity between the various nodes of a distributed system can be built using

consensus. Unsurprisingly, the consensus problem has received a lot of

attention from the research community.

1. INTRODUCTION 3

Consensus, however, is impossible to solve deterministically in asyn-

chronous systems (i.e., systems where there are no bounds to the commu-

nication delays and computation times) if a single process can crash (also

known as the FLP result (Fischer et al., 1985)). This is a significant result, in

particular for intrusion-tolerant systems, because they usually assume an

asynchronous model in order to avoid time dependencies. Time assump-

tions can often be broken, for example, with denial of service attacks.

Throughout the years, several researchers have investigated tech-

niques to circumvent the FLP result. Most of these solutions, however,

required changes to the basic system model, with the explicit inclusion of

stronger time assumptions (e.g., partial synchrony models (Dolev et al.,

1987; Dwork et al., 1988)), or by augmenting the system with devices

that hide in their implementation these assumptions (e.g., failure detec-

tors (Chandra & Toueg, 1996; Malkhi & Reiter, 1997) or wormholes (Neves

et al., 2005)). Randomization is another technique that has been around

for more than two decades (Ben-Or, 1983; Rabin, 1983). One important

advantage of this technique is that no additional timing assumptions are

needed. It allows for the whole system to remain completely asynchro-

nous. This is a vital feature if we are assuming the case where the system

is deployed in a hostile environment and is subject to attacks that attempt

to delay to execution of the protocols. Obviously, an attacker can launch

an attack so strong that can stop the whole system. But this is usually

easier to perform on a synchronous system, where such an attack can be

conducted in a much more subtle, but efficient manner, and can even com-

promise the safety of the system, in addition to its liveness. To circumvent

the FLP result, randomization uses a probabilistic approach where the ter-

mination of consensus is ensured with probability of 1. Although this line

4 1.1. Impetus

of research produced a number of important theoretical results, including

many algorithms, in what pertains to the implementation of practical ap-

plications, randomization has been historically overlooked because it has

usually been considered to be too inefficient.

The reasons for the assertion that “randomization is inefficient in prac-

tice” are simple to summarize. Randomized consensus algorithms, which

are the most common form of these algorithms, usually have a large ex-

pected number of communication steps, i.e., a large time-complexity. Even

when this complexity is constant, the expected number of communication

steps is traditionally significant even for small numbers of processes, when

compared, for instance, with solutions based on failure detectors1. Many

of these algorithms also rely heavily on public-key cryptography, which

increases the performance costs, especially for LANs or MANs in which

the time to compute a digital signature is usually much higher than the

network delay.

Nevertheless, two important points have been chronically ignored.

First, consensus algorithms are not usually executed in oblivion, they

are run in the context of a higher-level problem (e.g., atomic broadcast)

that can provide a friendly environment for the “lucky” event needed for

faster termination (e.g., many processes proposing the same value can

lead to a quicker conclusion). Second, for the sake of theoretical inter-

est, the proposed adversary models usually assume a strong adversary

that completely controls the scheduling of the network and decides which

processes receive which messages and in what order. In practice, a real ad-

1There is an exception to this reasoning, which is the stack of randomized protocols
proposed by Cachin et al. (Cachin et al., 2000; Cachin & Poritz, 2002). These protocols
terminate in a low expected number of communication steps but they depend heavily on
public-key cryptography which seriously a�ects their performance. This is discussed in
more detail in the Related Work section.

1. INTRODUCTION 5

versary does not possess this ability, but if it does, it will probably perform

attacks in a distinct (and much simpler) manner to prevent the conclusion

of the algorithm – for example, it can block the communication entirely.

Therefore, in practice, the network scheduling can be “nice” and lead to a

speedy termination.

This is one of the motivations for this thesis: to show that randomiza-

tion can be efficient and should be regarded as a valid solution for practi-

cal intrusion-tolerant distributed systems. To the best of our knowledge,

this is the first work that presents a thorough look into the effectiveness of

randomization for practical systems.

1.2 Contributions of the Thesis

The work performed on this thesis involves the implementation of a stack

of randomized intrusion-tolerant protocols for distributed systems, and

the evaluation of their performance under different environmental set-

tings and faultloads. This implementation is called RITAS which stands

for Randomized Intrusion-Tolerant Asynchronous Services (Moniz et al., 2006).

At the lowest level of the stack there are two broadcast primitives: reliable

broadcast and echo broadcast. On top of these primitives, the most basic form

of consensus is available, the binary consensus. This protocol lets processes

decide on a single bit of information and is, in fact, the only randomized

algorithm of the stack. The rest of the protocols are simply built on the top

of this one. Building on the binary consensus layer is the multi-valued con-

sensus, allowing the agreement on values of arbitrary range. At the highest

level there is vector consensus, which lets processes decide on a vector with

values proposed by a subset of the processes, and atomic broadcast, which

6 1.2. Contributions of the Thesis

ensures total order. The protocol stack is executed over a reliable chan-

nel abstraction provided by standard Internet protocols – TCP ensures re-

liability, and IPSec guarantees cryptographic message integrity (Kent &

Atkinson, 1998). All these protocols have been previously described in the

literature (Bracha, 1984; Correia et al., 2006b; Reiter, 1994). However, the

implemented protocols are, in most cases, optimized versions of the origi-

nal proposals that have significantly improved the overall performance.

The protocols of RITAS share a set of important structural properties:

• They are asynchronous in the sense that no assumptions are made

on the processes’s relative execution and communication times. This

is important to prevent attacks against assumptions on the domain

of time, a known problem in some intrusion-tolerant protocols that

have been presented in the past.

• They attain optimal resilience, tolerating up to f = bn−1
3
c malicious

processes out of a total of n processes. This is important since the

cost of each additional replica has a significant impact in a real-world

application.

• They are signature-free, meaning that no expensive public-key cryp-

tography is used anywhere in the protocol stack. This has an impor-

tant impact in terms of performance since this type of cryptography

is several orders of magnitude slower than symmetric cryptography.

• They take decisions in a distributed way (there is no leader). This

avoids the costly operation of detecting the failure of a leader, an

event that can considerably delay the execution.

The thesis has two main contributions: 1) it presents the implementa-

tion of a stack of randomized intrusion-tolerant protocols discussing sev-

1. INTRODUCTION 7

eral optimizations – the implementation of a stack with the four above

properties is novel; 2) it provides a detailed evaluation of RITAS in a

LAN setting, showing that it has interesting latency and throughput val-

ues; for example, the binary consensus protocol always runs in only

one round (three communication steps) with realistic faultloads, and the

atomic broadcast has a very low ordering overhead (only 6.3%) when the

rate of transmitted messages is high; moreover, some experimental results

show that realistic Byzantine faults do not reduce the performance of the

protocols.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 2 presents the related work by

discussing the several techniques to circumvent the FLP result in consen-

sus protocols - randomization in particular - and other implementations

of related protocols. Chapter 3 thoroughly describes the stack of protocols

implemented in RITAS: its architecture, the individual algorithms, and the

modifications performed for optimization. The actual implementation de-

tails are presented in Chapter 4 where the design decisions and internal

structure of RITAS are discussed. The performance evaluation of the RI-

TAS protocol stack under different environmental settings and subject to

different faultloads is described in Chapter 5. Finally, Chapter 6 presents

the final conclusions of the thesis.

Chapter 2

Context and Related Work

This chapter provides the context in which this thesis is inserted. Since

this work presents a stack of randomized agreement protocols, the chap-

ter starts with an introduction to the consensus problem, its related prob-

lems, and the current solutions. The next section focuses on the evolution

of randomization as a solution for consensus in asynchronous distributed

systems. Finally, the last section describes implementations and evalua-

tions of protocols that offer services similar to the ones provided by the

protocol stack of this thesis.

2.1 Consensus

The consensus problem in distributed systems is defined in simple terms:

given a set of processes where each one proposes a value, all must agree

on one of these values. Behind this apparently simple problem lies the so-

lution to important distributed system services. The consensus problem

has been shown to be equivalent to several other fault-tolerant distributed

systems problems, such as state machine replication, and atomic broad-

9

10 2.1. Consensus

cast.

The solution to consensus seems trivial at a first impression. It is when

one starts to consider the possibility of individual process failures, that

things complicate. What happens if a process crashes? Do we take a de-

cision without considering its proposal? But what if other processes have

seen this proposal? And what if a process is intentionally sending dif-

ferent proposal values to different processes? Or omitting proposals to

certain processes?

The consensus problem can be devised under several different system

models. The system model can be seen as a set of parameters that abstract

and dictate the behavior of the system. The two most important system

parameters are the synchrony assumptions and the fault model.

About the synchrony, or timing assumptions, it is said that the sys-

tem is synchronous if there is a known bound on the processes’s relative

communication and computation delays. On the other hand, the system

is asynchronous if the relative communication and computation times are

unknown, thus subject to arbitrary delays.

The fault model defines the types of faults that can exist in the sys-

tem. Commonly used fault classes are: crash, omissive, and Byzantine

(or arbitrary). The crash model states that processes simply stop taking

any actions when they fail. In the omissive model, in spite of being sub-

ject to crash failures, the processes may exhibit occasional omissive fail-

ures (e.g., failing to send a message) which do not necessarily constitute

a crash. Finally, the Byzantine model states that there are no assumptions

on the types of faults the system can exhibit. This necessarily implicates

that the system falls under the threat of any kind of faults, including those

of malicious nature. In this thesis we will consider only Byzantine faults.

2. CONTEXT AND RELATED WORK 11

There is an additional important system parameter: the upper bound f

on the number of processes that can fail. This is usually referred as the

resilience of the system. This upper bound value is usually defined by

the previous two parameters: the synchrony assumptions, and the fault

model.

Besides the parameter f, there are three other parameters that model the

behavior of a potential adversary. These are its scheduling capabilities, its

resources, and its adaptiveness.

The scheduling capabilities may include the timing of message deliv-

ery, the individual rates of the internal clocks of the processes, and the

order by which messages are delivered to the individual processes. These

decisions do not need to be fixed a priori, the adversary may change their

values dynamically as the protocol is executed.

The resources include both the computational and information re-

sources the adversary may have access to. It is said that the adver-

sary is computationally unbounded if it has access to unlimited comput-

ing power. Otherwise, it is said that the adversary is computationally

bounded and there are certain actions it cannot perform (e.g., it cannot

break certain types of cryptography).

The adaptiveness of the adversary is only relevant under the random-

ized model. When the protocols are deterministic, the adversary can de-

termine its whole strategy a priori, thus not requiring to adapt its behavior

while the protocol is being executed. On the other hand, in a randomized

protocol, the adversary has no way to predict the outcome of certain steps

of the protocol, thus adapting its behavior on-the-fly may be important for

the adversary.

Considering that the scope of this thesis is to provide a set of proto-

12 2.1. Consensus

cols that are tolerant to faults of malicious nature, the most interesting

model is one where there are no synchrony or fault assumptions what-

soever. The asynchronous model is the most interesting because since we

consider the system to be subject to malicious attacks, it allows the correct-

ness of the protocols to be completely independent of timing constraints,

making them more resilient, for instance, to denial-of-service attacks. The

interest of lack of assumptions on the types of faults is obvious since we

are considering an hostile environment. It is best to keep on the safe side

and assume that any kind of abnormal behavior can happen.

The problem with this model is that it has been proven that consensus

cannot be solved deterministically in an asynchronous system where a sin-

gle process crash can occur. This result, named after its author’s initials, is

commonly referred as the FLP impossibility (Fischer et al., 1985).

Intuitively, the result comes from the fact that, given an asynchronous

setting, it is impossible for a process that has not received a message from

another process to know if that other process is faulty or if it is just slow.

Since it is impossible to identify faulty processes, the correct processes can

find themselves, for instance, in a state in which they are waiting indefi-

nitely for messages from a crashed process but have no way to know that

that process has crashed. By formalizing this intuition, Fischer, Lynch and

Paterson proved that there is no deterministic consensus protocol that can

guarantee termination in an asynchronous system where just one process

can fail.

Since this surprising result, a large amount of research was made on the

topic of devising alternative models in which consensus could be solved.

Most of these solutions require timing assumptions, either explicitly (e.g.,

partial synchrony models (Dolev et al., 1987; Dwork et al., 1988)), or im-

2. CONTEXT AND RELATED WORK 13

plicitly (e.g., failure detectors (Chandra & Toueg, 1996; Malkhi & Reiter,

1997) or wormholes (Neves et al., 2005)). The only technique that requires

no timing assumptions whatsoever is randomization, it rather uses a prob-

abilistic approach to solve consensus.

2.1.1 Partial Synchrony

The work by Dwork and Lynch represents the first attempt to devise a

time model to circumvent the FLP result (Dwork et al., 1988). Although

consensus was proven to be impossible to solve in asynchronous systems

subject to process failures, it does not necessarily mean that a fully syn-

chronous system is needed to solve consensus. Their goal was to identify

a set of minimal synchrony settings necessary to solve consensus.

The intuition of their work is that while the existence of bounds on

communication and processing times is necessary to solve consensus, the

knowledge of their exact values is not. They used the concept of par-

tial synchrony in a distributed system which lies between the completely

synchronous and completely asynchronous models. There are two cases

where the communication (or the computation) can be partially synchro-

nous. One is to assume that there exists an upper bound on communi-

cation (or computation) time, but its value is unknown. The other is to

consider that exists an upper bound which is known but it only holds af-

ter some unknown time.

From these scenarios they devise three models of partial synchrony:

partially synchronous communication and synchronous processors, par-

tially synchronous communication and processors, and partially synchro-

nous processors and synchronous communication. For each of these three

models, they prove that maximum resilience is possible for four differ-

14 2.1. Consensus

ent fault models: crash, omission, Byzantine and, authenticated Byzantine

(i.e., Byzantine fault model with the processes fully-connected by authen-

ticated channels).

For the crash and omission fault models the resilience is n ≥ 2f + 1

for n processes of which up to f can be faulty. For the Byzantine and

authenticated Byzantine fault models the resilience is n ≥ 3f + 1.

Moreover, their protocols reach consensus in polynomial time in the

number of processes and the upper bound on the communication time.

The number of bits exchanged by the protocols is also polynomial in these

parameters.

2.1.2 Failure Detectors

The attractiveness of the asynchronous system model has led researchers

into developing alternatives to circumvent the FLP result while maintain-

ing most of the system model as fully asynchronous. One of such alterna-

tives is the failure detector model, introduced in (Chandra & Toueg, 1996).

It was an important step in order to breed life into the asynchronous sys-

tem model for consensus.

Their proposal is based on the unreliable failure detector abstraction.

Since the impossibility to solve consensus in asynchronous systems arises

from being unable to distinguish a crashed process from a very slow one,

Chandra and Toueg augment the asynchronous model with a failure de-

tection mechanism that can provide this information to processes. It is as-

sumed that these failure detectors can make mistakes (i.e., they are not nec-

essarily perfect), and that process only fail by crashing. Byzantine faults

are not tolerated in the initial failure detector model.

In the failure detector model, each process has access to a local failure

2. CONTEXT AND RELATED WORK 15

detector module which is responsible for detecting and maintaining a list

of processes suspected to have crashed. The failure detectors are specified

according to two properties: completeness and accuracy. Completeness re-

quires the failure detector to eventually suspect every process that crashes,

and accuracy restricts the mistakes a failure detector can make when sus-

pecting processes. More formally, two types of completeness properties

and four types of accuracy properties were defined:

Strong completeness. Eventually every process that crashes is perma-

nently suspected by every correct process.

Weak completeness. Eventually every process that crashes is perma-

nently suspected by some correct process.

Strong accuracy. No process is suspected before it crashes.

Weak accuracy. Some correct process is never suspected.

Eventual strong accuracy. There is a time after which correct processes

are not suspected by any correct process.

Eventual weak accuracy. There is a time after which some correct

process is never suspected by any correct process.

By combining one of the two completeness properties with one of the

four accuracy properties, a class of failure detectors is obtained. This gives

a total of eight classes summarized in Table 2.1. Basically, while this model

makes possible the use of asynchronous protocols, timing assumptions

must still be made to implement the failure detector module.

An example implementation of a failure detector can be one where

every process q sends a periodic “q-is-alive” message to all other

16 2.1. Consensus

Accuracy
Completeness Strong Weak Eventually Strong Eventually Weak

Strong Perfect Strong Eventually Perfect Eventually Strong
P S 3P 3S

Weak Weak Eventually Weak
Q W 3Q 3W

Table 2.1: The eight classes of failure detectors (Chandra & Toueg, 1996).

processes. When a process p does not receive this message after a given

time, it adds q to a list of suspected processes. If later p receives a “q-is-

alive” message, it is because it has erroneously suspected q. Process p can

then remove q from the list of suspects and increasing the timeout for the

‘q-is-alive’ message to avoid making the same mistake in the future.

Although this example fails to implement a failure detector with even

the eventual weak accuracy property, in practice it can hold this property

for a “long enough” period of time. A “long enough” period of time here

means the necessary time for the consensus protocol to reach a decision,

or to execute whatever critical step that requires that property.

There were some attempts within the scientific community to extend

the failure detection model to include Byzantine failures, but the results

were not completely satisfactory (Doudou et al., 2002; Kihlstrom et al.,

1997; Malkhi & Reiter, 1997). The problem is that, in the context of Byzan-

tine failures, a complete separation between the failure detector module

and the algorithm using it is impossible. This is because Byzantine fail-

ures are very specific to the algorithm since they potentially violate its se-

mantics. Unlike crash failures, some action can be considered a Byzantine

failure for some algorithm but not for another.

2. CONTEXT AND RELATED WORK 17

2.1.3 Wormholes

Despite their usefulness, failure detectors are not particularly adequate for

systems subject to Byzantine faults. For such a fault to be detected it would

be necessary for the failure detector to perfectly understand the semantics

of whatever protocols are using its service. It would have to closely moni-

tor every message exchange that occurs in the system and be aware of all

the badness that could occur in these message exchanges. Additionally,

there can be protocols were an invalid message does not necessarily trans-

late into a malicious action. It would be extremely difficult to distinguish

a corrupt process from a correct one that made a honest mistake in such

cases.

Wormholes are another way of augmenting the basic system model in

order to solve consensus (Correia et al., 2005; Neves et al., 2005; Verís-

simo, 2002). For agreement problems, one can say that wormholes pick up

where failure detectors left off, providing a useful abstraction for solving

these kinds of problems in malicious environments. They are the materi-

alized through architectural hybridization (Veríssimo et al., 2003). That is

the notion that certain parts of the system can be enhanced with stronger

properties otherwise not guaranteed by the ‘normal’ environment. In such

a setting, the problem of solving consensus can be tackled by having a few

of its critical steps executed inside the wormhole which, by design, can be

immune to Byzantine faults and/or offer timely behavior.

Neves et al. solved the consensus problem (in its vector variant) with

wormholes (Neves et al., 2005). In their model the system is divided in two

parts: a payload system which is the normal environment where processes

carry out their execution, and a wormhole which is a distributed compo-

nent with local parts on each node and a private network with enough

18 2.1. Consensus

synchrony to ensure that its services eventually terminate. While the pay-

load system is subject to Byzantine failures, the wormhole is subject only

to crash failures. The wormhole provides a small set of simple services to

protocols or applications such as a block agreement protocol.

2.1.4 Randomization: the non-deterministic solution

Randomization is fundamentally different from the other solutions to cir-

cumvent the FLP result. Other solutions rely essentially, either implic-

itly or explicitly, on incorporating timing assumptions into the system

model in order to guarantee termination. Those protocols are determin-

istic: given a certain input, the same output will always be produced at a

given step of the protocol. Rather than deterministic, randomized proto-

cols are probabilistic. There are certain steps of the protocol in which the

produced result may be a random value, chosen according to a probability

distribution. This means that the adversary cannot determine the outcome

of any disruptive strategy since that outcome is affected by a random el-

ement. The ending result is that any strategy the adversary may employ

is dependent on ‘luck’ in order to prevent correct processes from reach-

ing agreement. The same reasoning applies for correct processes. They

also rely on a ‘lucky’ event to reach a decision. The difference is that in a

multi-round protocol, the correct processes only need for that lucky event

to happen once, while the adversary needs its lucky event to happen an

infinite number of times to prevent correct processes from reaching a de-

cision. If the correct processes are unable to reach agreement in a given

round, they just need to carry out the execution for another round. No

matter how small the probability for correct process to reach agreement

on any individual round may be, given an infinite number of rounds, the

2. CONTEXT AND RELATED WORK 19

probability that correct processes make a decision is 1.

The biggest advantage of randomization is that the system model re-

quires no additional timing assumptions. The only change is a slight mod-

ification to the termination property of consensus. Instead of stating that

the correct processes must reach termination, it is stated that the correct

processes reach termination with probability 1. This allows the system to

remain completely asynchronous and safeguards the protocols to attacks

based on the domain of time.

Randomized intrusion-tolerant protocols have been around since Ben-

Or’s and Rabin’s seminal consensus (or Byzantine agreement) proto-

cols (Ben-Or, 1983; Rabin, 1983) (an excellent survey of early work is

in (Chor & Dwork, 1989)). These two papers defined the two approaches

that each of the subsequent works followed. Essentially all randomized

protocols rely on a coin-tossing scheme that generates random bits. Ben-

Or’s approach relies on a local coin-toss, while in Rabin’s shares of the

coins are distributed by a trusted dealer before the execution of the pro-

tocol to ensure that all processes see the same coins. Ben-Or-style pro-

tocols theoretically take many communication steps to terminate. Rabin-

style protocols terminate in fewer communication steps but there can be

exhaustion of the pre-distributed shares. More recent papers following

Rabin’s approach have solved this limitation by distributing the coins in

run-time (Cachin et al., 2000; Canetti & Rabin, 1993).

Bracha’s randomized binary consensus protocol is a Ben-Or-style pro-

tocol that exchanges O(n3) point-to-point messages per round and the ex-

pected number of rounds until termination is 2n−f under the strong adver-

sary model1 (Bracha, 1984). The algorithm itself does not use any kind of

1In the strong adversary model it is assumed that the adversary completely controls
the network scheduling, having the power to decide the timing and the order in which the

20 2.2. Related Implementations

cryptographic operations, albeit its dependence on a reliable communica-

tion channel implies the use of a relatively inexpensive cryptographic hash

function.

The ABBA randomized binary consensus protocol is a Rabin-style pro-

tocol that exchanges O(n2) point-to-point messages per round and reaches

a decision in 1 or 2 rounds with high probability (Cachin et al., 2000). The

protocol makes extensive use of asymmetric cryptography to ensure the

correctness of the execution. For the coin-tossing scheme, the protocol

relies on a novel cryptographic technique called a (n, k, f) dual-threshold

signature scheme. In such a scheme, there are n processes and at most

f of them may be corrupt. Processes hold shares of an unpredictable

function F that maps the coin name C to a binary value F (C) ∈ {0, 1}.

The processes can generate shares of the coin and k of those shares are

both necessary and sufficient to assemble the function F . The imple-

mented threshold coin-tossing scheme is the Diffie-Hellman based solu-

tion in (Cachin et al., 2000).

2.2 Related Implementations

This section describes previous implementations of protocols, and their

respective performance evaluation, that offer similar services to the ones

provided by the protocol stack of this thesis. Five systems are described:

Rampart, SecureRing, BFT, Worm-IT, and SINTRA.

messages are delivered to the processes.

2. CONTEXT AND RELATED WORK 21

2.2.1 Rampart

Rampart is a protocol stack that provides a set of services to the application

programmer for the implementation of high integrity services using state

machine replication (Reiter, 1995, 1996a).

All protocols are tolerant to Byzantine faults and achieve optimal re-

silience. The protocols make extensive use of asymmetric cryptography

which dominates the execution time of the protocols. The system model

of Rampart makes no assumptions about time, meaning that it is asynchro-

nous. Rampart assumes that each process has an associated private/pub-

lic key pair. The private key is known only to the associated process, while

all public keys are known to all processes. The initial key distribution is

done outside the scope of Rampart, but can be achieved, for example, by

manual distribution or with the aid of some key distribution infrastruc-

ture. An additional assumption is the existence of a reliable, authenticated,

point-to-point channel between every pair of processes.

From bottom to top, the stack provides a group membership service,

a reliable multicast protocol, and an atomic broadcast protocol. It also

provides an output voting service to ensure that the replies received by

clients correspond to the correct values.

The group membership protocol provides a service by which processes

can request their addition or removal from the group, and ensures that

malicious processes cannot force unwanted changes to the group. The

membership protocol, in its essence, solves a consensus problem since all

correct processes must agree on a view of the group. In Rampart, this

means that its termination cannot be guaranteed because it assumes an

asynchronous model.

The reliable multicast primitive is implemented on top of the mem-

22 2.2. Related Implementations

bership protocol. Rampart uses this primitive to either deliver messages

reliably multicasted by other group members, or to deliver group views

received locally from the membership protocol. The progression of this

protocol is dependent on the liveness of the membership protocol. If a

failed process is not removed from group, the reliable multicast protocol

can become halted until the group view is correctly updated.

The atomic multicast primitive is implemented on top of the reliable

multicast primitive. This primitive is used to either deliver group views or

messages in the same order to all group members. The order of the mes-

sages are decided by a designated process called the sequencer. Clients

outside the group can atomically multicast messages by sending them to

any of the group members which, in turn, forwards the request by atomi-

cally multicasting it to the group.

The output voting service exists in two flavors. The first is a simple

voting protocol where each server sends its output to the client, which per-

forms the voting based on the received values. In the second method, the

voting is performed at the servers, which authenticate the response with

a (k,n)-threshold signature scheme. The client then verifies the thresh-

old signature associated with the received value in order to accept the re-

sponse.

The performance evaluation of the protocols in the Rampart Toolkit is

scattered across several papers (Reiter, 1994, 1995, 1996b). Although they

do not provide much information about the testbed used for the experi-

ments, it is assumed that they were conducted under roughly the same

environmental settings: moderately loaded SPARCstations 10s running

SunOS 4.1.3 and spanning several networks.

The group membership protocol is based on the concept of a manager.

2. CONTEXT AND RELATED WORK 23

A process that is responsible, based on recommendations from the other

group members, for suggesting and carrying on changes to the group.

There are two cases on this type of protocol, one where the manager is

correct, and another where the manager is faulty. For the faulty case, the

protocol has an added complexity inherent to the cost of electing another

process responsible for carrying out the necessary group changes. In the

Rampart Toolkit, this process is called the deputy. The performance as-

sessment evaluates both cases using RSA for the digital signature scheme,

with 512-bit keys.

For the case where the manager is correct, the results present the aver-

age time necessary to remove a non-manager process from the group. For

the non-manager processes, the results were 215 ms, 250 ms, and 283 ms

for a group size of 4, 7, and 10 processes, respectively. For the manager

process the results were 205 ms, 236 ms, and 265 ms for a group size of 4,

7, and 10 processes, respectively.

For the case where the manager is faulty, the results show the average

time to remove the manager from the group, which includes electing a

deputy and having it carrying out the group change. For the non-deputy

processes the results were, respectively, 295 ms, 330 ms, and 378 ms for

a group size of 4, 7, and 10 processes. For the deputy, the results were

282 ms, 320 ms, and 360 ms for a group size of 4, 7, and 10 processes,

respectively.

The reliable and atomic multicast protocols are evaluated in (Reiter,

1994). The chosen RSA key size for these experiments was 300 bits. For the

reliable multicast, the average latency was measured with varying group

sizes and different message payload sizes. For a 0 KB payload, the results

were 42.5 ms, 55 ms, and 67.5 ms for a group size of 4, 7, and 10 processes,

24 2.2. Related Implementations

respectively. For 1 KB payloads, the results were, respectively, 45 ms, 58

ms, and 68 ms for 4, 7, and 10 processes. For 4 KB payloads, the results

were 51 ms, 67.5 ms, and 85 ms, for 4, 7, and 10 processes, respectively. The

performance results also show the sustainable throughput for the reliable

multicast protocol with 0 KB messages and two cases: only one process

multicasting and all processes multicasting. With one process multicasting

the results were, for a group size of 4, 7, and 10 processes, 27 msgs/s, 20

msgs/s, and 16 msgs/s, respectively. With all the processes multicasting,

the results were 26 msgs/s, 18 msgs/s, and 14 msgs/s for a group size of

4, 7, and 10 processes, respectively.

Finally, for the atomic multicast protocol the available results show the

sustainable throughput for 0 KB message payloads and two multicasting

scenarios: one process multicasting, and all processes multicasting. For

the scenario were only one process multicasts, the results were, respec-

tively, 22 msgs/s, 18 msgs/s, and 16 msgs/s for 4, 7, and 10 processes. For

the second scenario, the results were 18 msgs/s, 14 msgs/s, and 11 msgs/s

for 4, 7, and 10 processes, respectively.

2.2.2 SecureRing

SecureRing provides a set of intrusion-tolerant protocols that offer ser-

vices such as reliable ordered message delivery and group member-

ship (Kihlstrom et al., 1998, 2001).

The philosophy of SecureRing is to optimize the protocols for fault-free

executions, and assume a performance degradation whenever Byzantine

faults are detected (which are assumed to be rare). The protocols are built

upon an asynchronous system model. Processes are assumed to be fully

connected, and the communication channels to be unreliable and unau-

2. CONTEXT AND RELATED WORK 25

thenticated. Every process has a private/public key pair and has access to

the public key of other processes. The resilience of the protocols is optimal

in the sense that they can tolerate up to f faulty processes out a total of

n = 3f + 1 processes.

The protocol stack provided by SecureRing is organized as follows. At

the top of the stack is the Reliable Totally Ordered Message Delivery Pro-

tocol. This protocol in essence guarantees the same properties of atomic

broadcast and it is built on top of a group membership protocol, and a

Byzantine fault detector (which is also used by the membership proto-

col). The protocol relies on a logical token-passing ring arrangement of the

processes. The total order of messages is derived from a sequence num-

ber present in the token. The membership protocol receives information

from the Byzantine fault detector about process failures and installs new

membership views accordingly.

The Byzantine failure detector provides the strong Byzantine complete-

ness and the eventual strong accuracy properties. It does so by assuming

the existence of periods of stability in the system with bounds on com-

putation and communication speeds, and that the digital signatures are

unforgeable. Besides detecting process crashes, the fault detector also de-

tects possible malicious actions such as the transmission of messages with

invalid signatures.

At the bottom of the SecureRing protocol stack is a Message Diffusion

Protocol. This protocol is used by both the membership protocol and the

fault detector, and in some instances by the Reliable Totally Ordered Mes-

sage Delivery protocol. In the latter, it is used only when process failures

occur during the recovery phase of the protocol when a new view is in-

stalled. The Message Diffusion protocol is essentially a reliable broadcast

26 2.2. Related Implementations

protocol and ensures that, upon a broadcast, every correct process receives

the same message or no message at all.

The performance tests on SecureRing were performed on a testbed con-

sisting of eight UltraSparc 2 workstations with clock speeds varying from

168 MHz to 200 MHz. The Operating System used was Solaris, and the

machines were connected by a 100 Mbps Ethernet.

For the total order delivery protocol, the measurements were taken by

varying three parameters: the message size, the RSA key size, and the

number of processes. The throughput values were more or less the same

independently of the number of processes, showing only a slight decline

on certain occasions with 7 and 8 processes. To make the discussion con-

cise, we only discuss the values obtained for a 4 process group size. Using

300-bit keys the measured thoughput was 5500 msgs/s for 200-byte mes-

sages, 1900 msgs/s for 600-byte messages, and 1000 msgs/s for 1000-byte

messages. For 512-bit keys, the results were 2700 msgs/s for 1000-byte

messages, 900 msgs/s for 600-byte messages, and 500 msgs/s for 1000-

byte messages. Finally, for 768-bit keys, the results were 1080 msgs/s for

200-byte messages, 350 msgs/s for 600-byte messages, and 200 msgs/s for

1000-byte messages.

For the membership protocol, experiments were made with the goal of

measuring average time to remove a process from the group. The varying

parameters were the number of processes and the RSA key size. For 300-

bit keys, the average removal time was 50 ms for 4 processes, and 100

ms for 8 processes. For 512-bit keys, the removal time was 140 ms for 4

processes, and 390 ms for 8 processes. Finally, for 768-bit keys, the time

was 400 ms for 4 processes, and 980 ms for 8 processes.

2. CONTEXT AND RELATED WORK 27

2.2.3 BFT

Unlike the previous described implementations, BFT is not a protocol

stack, but an algorithm that provides Byzantine-fault-tolerant state ma-

chine replication (Castro & Liskov, 1999).

BFT has a set of characteristics that make it an efficient solution for

the implementation of Byzantine-fault-tolerant services using state ma-

chine replication. It has optimal resilience, tolerating up to bn−1
3
c faulty

processes out of a total of n processes. During fault-free operation, BFT

does not resort to public-key cryptography for its normal execution, it re-

lies instead on message authentication codes. BFT does not rely on syn-

chrony for safety, but it requires it for liveness. The required assumption

is that the network delays do not grow exponentially.

In BFT, there are clients and servers. The clients issue requests to the

servers, then requests are processed by the servers in total order, and a

reply is returned to the clients. The servers are either primary or backup.

There is only one primary at any given moment in the system. The client

requests are issued directly to the primary, which in turn multicasts the

request to the backups. The replies are transmitted to the client by all

servers. The client waits for f+1 replies with the same result in order to ob-

tain the response. This comprises the normal operation of the algorithm.

In case a primary fails, a view change must occur and the servers must

agree on a new primary. View changes are triggered by timeouts. A con-

sensus algorithm is run to elect a new primary. This is the only time that

BFT resorts to public-key cryptography. After a view change the service

resumes to its normal operation.

The performance experiments on BFT were carried on a testbed con-

sisting of four DEC 3000/400 Alpha workstations with a 133 MHz Alpha

28 2.2. Related Implementations

21064 processor and 128 MB of RAM, running Digital Unix 4.0. The ma-

chines were connected by a 10 Mbps DEC EtherWorks 8T/8X Ethernet

switch. Two main experiments were performed. A micro-benchmark that

measures the latency to invoke a null operation, and an Andrew bench-

mark that emulates a software development workload and measures a

replicated file system that uses BFT.

The micro-benchmark evaluates a simple request-reply service and

compares one that is replicated using BFT with another that is unrepli-

cated and uses UDP. The results are presented for different payload sizes

for the request and reply messages. For the replicated service there is also

a distinction between read-write and read-only operations. The read-only

operations do not require total order since they do not modify the system

state. For 0 KB payload for both the request and reply messages the re-

sults were 3.35 ms for the replicated read-write operation, 1.62 ms for the

replicated read-only, and 0.82 ms for the unreplicated operation. For 4 KB

requests and 0 KB replies, the results were 14.19 ms, 6.98 ms, and 4.62 ms,

for the replicated read-write, replicated read-only, and the unreplicated

operation, respectively. Finally, for 0 KB requests and 4 KB replies, the re-

sults were 8.01 ms for the replicated read-write operation, 5.94 ms for the

replicated read-only, and 4.66 ms for the unreplicated operation.

The Andrew benchmark was used to evaluate BFT by comparing the

performance of the standard NFS file system with a replicated NFS version

using BFT. On average the BFT-replicated NFS completed the benchmark

in 64.48 seconds, while the standard NFS took 62.52. The implies that

the replicated version only took an additional 3% of time to complete the

benchmark.

2. CONTEXT AND RELATED WORK 29

2.2.4 Worm-IT

Worm-IT is a group communication system that uses the wormhole ab-

straction to provide a membership service and a view-synchronous atomic

multicast (VSAM) primitive (Correia et al., 2006a).

Worm-IT is designed under an hybrid system model where a small

subset of the system is assumed to be secure (i.e., not subject to Byzantine

failures) and synchronous, whereas the rest is assumed to be unreliable

in the sense that completely asynchronous and subject to all kinds of fail-

ures. The secure part of the system (or the wormhole) is implemented by a

special secure distributed component called Trusted Timely Computing Base

(TTCB) (Correia et al., 2002). Critical steps of the protocols that require

stronger environmental properties (such as agreement tasks) can be exe-

cuted inside the wormhole. As such, the TTCB provides a small number of

services useful for protocols and applications, most notably, it provides a

Trusted Block Agreement Service (TBA) which allows processes to agree on

binary blocks of data with a limited size.

This architecture allows the protocols provided by Worm-IT to be effi-

cient since they do not require any kind of public-key cryptography, and

to be totally decentralized which makes the protocols more resilient to

denial-of-service attacks because there is no notion of primary replica.

A performance evaluation of Worm-IT was conducted on a LAN en-

vironment with 6 Pentium III PCs. The PCs were connected by two 100

Mbps Ethernet switches. One switch was used for the payload network,

where most of the protocol execution took place, and another for the con-

trol network, where the wormhole (i.e., TTCB) was deployed.

The experiments for the membership service were performed with a

number of nodes ranging from four to six, with f always set to 1. Three

30 2.2. Related Implementations

scenarios were measured: the time for a crashed process to be removed

from the group, the time for a process to join, and the time for a process to

leave. For the first scenario, the measurements registered approximately

20 ms to remove a crashed process independent of the group size. In the

second scenario, the time to join the group was around 9 ms for both 4 and

5 processes, with the latter taking slightly longer. For the leave operation,

the time was around 10 ms for 4, 5, and 6 processes.

For the VSAM primitive, experiments were performed by varying

three parameters: the delivery watermark, the message size, and the num-

ber of processes. This delivery watermark (WM) is the number of deliv-

ered messages that cause an agreement round to start in order to decide

the ordering of the messages received so far. The message size is in respect

to the payload and disregards the headers. The number of processes is the

total number of nodes participating in the protocol. The metrics used for

these experiments were the average latency per message

For the first experiment of the VSAM protocol the number of processes

was fixed to four and the message payload to 100 bytes. There was only

one sender, and none of the processes failed. The WM was varied between

1 and 25. The observed average latency for WM=1 was around 12 ms and

increased linearly up to around 80 ms for WM=25. With increasing WM

values, the throughput stabilized at around 175 messages per second.

The second experiment measured the impact of the payload message

size. The number of processes was fixed to four, and the watermark to

WM=10. There was a single sender and no process failures were consid-

ered. The payload size was varied between 0 and 1000 bytes. Regardless

of the message size the performance results were always the same. The

average latency was around 37.5 ms and the throughput around 170 mes-

2. CONTEXT AND RELATED WORK 31

sages per second.

The last experiment measured the protocol performance with a varied

number of processes in different situations: (1) one sender and no failures,

(2) all senders and no failures, and (3) one sender and one crashed process.

For the average latency, the results were the same for scenarios (1) and (3):

around 37.5 ms regardless of the number of processes. For scenario (2),

the results were 25 ms for 4 processes, and roughly 45 ms for 5 processes,

and 50 ms for 6 processes. For the throughput, the results were again

similar for (1) and (3): 175 msgs/s. For (2), it was around 360 msgs/s for 4

processes, 400 msgs/s for 5 processes, and 415 msgs/s for 6 processes.

2.2.5 SINTRA

SINTRA is a protocol stack that provides a number of communica-

tion primitives for the construction of intrusion-tolerant distributed ser-

vices (Cachin & Poritz, 2002). SINTRA uses a completely asynchronous

system model, not relying on any time assumptions for either liveness or

safety. It uses a static group, and attains optimal resilience in the pres-

ence of arbitrary faults. To solve consensus in such a setting, SINTRA uses

randomization. The protocols in SINTRA also rely heavily in public-key

cryptography, more specifically in threshold signatures and a threshold

coin-tossing scheme, which has a significant negative impact on their per-

formance.

At the bottommost of the SINTRA protocol stack there are two broad-

cast primitives, reliable and consistent broadcast, and a binary agreement

protocol. Above this layer, there are three other layers, each one im-

plementing one protocol, from bottom to top: multi-valued agreement,

atomic broadcast, and secure causal atomic broadcast.

32 2.2. Related Implementations

The reliable broadcast primitive is the protocol proposed in (Bracha &

Toueg, 1985) and ensures that all correct processes deliver the same mes-

sage or no message at all. The consistent broadcast is the one proposed by

Reiter for Rampart. It ensures that only those processes that deliver the

message, do it so for the same value.

The binary agreement protocol of SINTRA is the ABBA protocol de-

scribed above and is, in fact, the only one that uses randomization in the

stack (Cachin et al., 2000). The multi-valued agreement protocol is built on

top of the binary agreement and allows processes to agree on values with

an arbitrary size.

The atomic broadcast primitive ensures that messages are delivered by

total order to all correct processes, while the secure causal atomic broad-

cast extends this primitive with confidentiality for the payload of the mes-

sages until their order of delivery is determined.

Performance experiments were conducted in SINTRA in both LAN

and WAN environments. The LAN setup consisted of four servers

running different operating systems connected by a 100 Mbps Ethernet

switch. The WAN setup consisted of four Linux servers deployed on the

Internet, each located in a different continent. The average network la-

tency between these hosts on the Internet varied around 100 to 400 ms.

The first experiment evaluated the Atomic Broadcast protocol. The

way the experiment was conducted was with three of the servers broad-

casting a total of 1000 messages concurrently. The performance metric

used was the time between successive deliveries. The protocol proceeded

in rounds and batched two messages per round. The results for the LAN

setup were around 0.5-1 seconds between batches. For the WAN setup,

the results were around 2.5-3.5 seconds between batches.

2. CONTEXT AND RELATED WORK 33

The second experiment evaluated the latency of the broadcast proto-

cols. The experiment was conducted with one server sending 500 mes-

sages. The performance metric was once again the time between succes-

sive deliveries. For the LAN setup, the average results were 0.11s for the

consistent broadcast, 0.13s for the reliable broadcast, 1.07s for the secure

causal broadcast, and 0.69s for the atomic broadcast. For the WAN setup,

the average results were 0.83s for the consistent broadcast, 0.72s for the

reliable broadcast, 3.61s for the secure causal broadcast, and 2.95s for the

atomic broadcast. An additional setup was used in this experiment were

the four servers from the LAN were combined with three others from the

WAN to form a group of seven nodes. The results for this setup were 0.64s

for the consistent broadcast, 0.6s for the reliable broadcast, 3.79s for the

secure causal broadcast, and 2.74s for the atomic broadcast.

Chapter 3

The Protocol Stack

This chapter describes the protocol stack that was implemented in the con-

text of this thesis. It is divided in two main sections. First, it lays out the

system model assumed by the protocol stack. Second, it describes in detail

each protocol in the stack, its function, algorithm, and formal correctness

proof (where relevant).

3.1 System Model

The system is composed by a group of n processes P = {p0, p1, ...pn−1}.

Group membership is assumed to be static, i.e., the group is predefined

and there cannot be joins or leaves during the system operation.

There are no constrains on the kind of faults that can occur in the sys-

tem. This class of unconstrained faults is usually called arbitrary or Byzan-

tine. Processes are said to be correct if they do not fail, i.e., if they follow

their protocol until termination. Processes that fail are said to be corrupt.

No assumptions are made about the behavior of corrupt processes – they

can, for instance, stop executing, omit messages, send invalid messages ei-

35

36 3.1. System Model

ther alone or in collusion with other corrupt processes. It is assumed that

at most f = bn−1
3
c processes can be corrupt for total number of n processes.

The system is assumed to be completely asynchronous. There are no

assumptions whatsoever about bounds on processing times or communi-

cations delays.

Each pair of processes (pi, pj) shares a secret key sij . It is out of the

scope of this work to present a solution for distributing these keys, but

it may require a trusted dealer or some kind of key distribution proto-

col based on public-key cryptography. Nevertheless, this is normally per-

formed before the execution of the protocols and does not interfere with

their performance.

Each process has access to a random bit generator that returns unbiased

bits observable only by the process (if the process is correct).

Some protocols use a cryptographic hash function H(m) that maps an

arbitrarily length input m into a fixed length output. We assume that it is

impossible (1) to find two values m 6= m′ such that H(m) = H(m′), and,

(2) given a certain output, to find an input that produces that output. The

output of the function is often called a hash.

All the described protocols preserve their correctness under the pres-

ence of an adversary with complete control of the network scheduling,

having the power to decide the timing and the order by which the mes-

sages are delivered to the processes. Despite this, the presence of such an

adversary is not very realistic in practice since a malicious attacker who

has the power to control the network scheduling usually has the power

to perform much more severe damage such as halting the communication

between the processes altogether.

3. THE PROTOCOL STACK 37

3.2 Protocol Stack

The RITAS protocol stack, depicted in Figure 3.1, provides a set of use-

ful distributed system services. A first version of this protocol stack was

presented in (Correia et al., 2006b). All protocols in the stack rely on two

standard Internet services: the IPSec Authentication Header protocol (AH)

and the Transmission Control Protocol (TCP). These two protocols provide

authenticated reliable communication channels for the rest of the stack. At

the bottom there are the broadcast primitives: echo broadcast and reliable

broadcast. On top of the broadcast primitives is the most basic flavor of

consensus: binary consensus. This is the only randomized protocol in the

stack. On top of binary consensus there is the multi-valued consensus pro-

tocol, which allows the proposal of arbitrary values. Finally, at the top of

the stack there are two protocols: vector consensus, and atomic broadcast.

Each one of these protocols is throughly described in the next subsections.

R e l i a b l e B r o a d c a s t E c h o B r o a d c a s t

B i n a r y C o n s e n s u s

M u l t i - v a l u e d C o n s e n s u s

V e c t o r C o n s e n s u s A t o m i c B r o a d c a s t

T C P

I P S e c A H

P r o t o c o l s
i m p l e m e n t e d
i n R I T A S

S t a n d a r d
I n t e r n e t
s e r v i c e s

Figure 3.1: The RITAS protocol stack.

38 3.2. Protocol Stack

3.2.1 Reliable Channels

The two layers at the bottom of the stack implement a reliable channel

(see Figure 3.1). This abstraction provides a point-to-point communication

channel between a pair of correct processes with two properties: reliability

and integrity. Reliability means that messages are eventually received, and

integrity says that messages are not modified in the channel.

Formally, such a channel follows two properties:

RC1 Reliability. If processes pi and pj are correct and pi sends a message

m to pj , then pj eventually receives m.

RC2 Integrity. If pi and pj are correct and pj receives a message m with

sender(m) = pi, then m was sent by pi and m was not modified in

the channel.1

In practical terms, these properties can be enforced using standard In-

ternet protocols: reliability is provided by TCP, and integrity by the IPSec

Authentication Header (AH) protocol (Kent & Atkinson, 1998).

TCP establishes a point-to-point two-way communication channel be-

tween a pair of processes and guarantees reliable and FIFO delivery of

sender to receiver data.

The IPSec AH protocol guarantees connectionless integrity and data

origin authentication of IP datagrams. It protects all fields of an IP data-

gram except those that are mutable during the transmission of an IP packet

on the network (e.g., the TTL field). The IPSec AH protocol requires that

every pair of processes pi and pj share a secret symmetric key kij , which is

already assumed in the system model.

1The predicate sender(m) returns the process identi�er of the sender of message m.

3. THE PROTOCOL STACK 39

This layer provides a primitive RC_Broadcast(m) that allows the broad-

casting of a message m to all processes. In practice this is done by sending

m to each channel that connects to any other process.

3.2.2 Reliable Broadcast

The reliable broadcast protocol ensures that all correct processes eventually

receive the same set of messages. No constrains are placed on the relative

delivery order of messages.

It is defined formally as follows:

RB1 Validity. If a correct process pi broadcasts a message m, then pi

eventually delivers m.

RB2 Agreement. If a correct process pi delivers a message m, then all

correct processes eventually deliver m.

RB3 Integrity. For any message m, every correct process delivers m at

most once, and only if m was previously broadcasted by sender(m).

These properties basically ensure that all correct processes deliver the

same messages, and that, upon a broadcast, if the sender is correct, then

the message is eventually delivered by all correct processes. In the case the

sender is corrupt, the protocol guarantees that either all correct processes

deliver the same message, or no message is delivered at all.

The implemented reliable broadcast protocol was originally proposed

in (Bracha, 1984), and it is presented in Algorithm 1. An instance of the

protocol, identified by rbid, starts with the sender broadcasting a message

(INITIAL, m, rbid) to all processes. Upon receiving this message a process

sends a (ECHO, m, rbid) message to all processes. It then waits for at least

40 3.2. Protocol Stack

bn+f
2
c+ 1 (ECHO, m, rbid) messages or f + 1 (READY, m, rbid) messages,

and then it transmits a (READY, m, rbid) message to all processes. Fi-

nally, a process waits for 2f + 1 (READY, m, rbid) messages to deliver m.

Figure 3.2 illustrates the three communication steps of the protocol. The

broadcasts inside the protocol are made via the reliable channels.

Reliable Broadcast

p0

p1

p2

p3

INIT ECHO READY

Figure 3.2: Messages exchanged during a reliable broadcast execution with
four processes.

Correctness Proof

The protocol is the one described in (Bracha, 1984) so the correctness proof

remains unchanged.

3.2.3 Echo Broadcast

The echo broadcast protocol is a weaker and more efficient version of reli-

able broadcast. Its properties are somewhat similar, however, it does not

guarantee that all correct processes deliver a broadcasted message if the

sender is corrupt (Toueg, 1984). In this case, the protocol only ensures that

3. THE PROTOCOL STACK 41

Algorithm 1 Reliable Broadcast protocol (for process pi).

Function R_Broadcast (vi, rbid)
Initialization:
1: activate task (T0); {sender only}
2: activate task (T1);

Task T0 (sender only):
1: RC_Broadcast (〈INITIAL, vi, rbid〉);
Task T1:
1: wait until have been delivered at least one 〈INITIAL, v, rbid〉 or n+f

2 〈ECHO, v,
rbid〉 or f + 1 〈READY, v, rbid〉) messages;

2: RC_Broadcast (〈ECHO, v, rbid〉);
3: wait until have been delivered at least n+f

2 〈ECHO, v, rbid〉 or f + 1 〈READY, v,
rbid〉 messages;

4: RC_Broadcast (〈READY, v, rbid〉);
5: wait until have been delivered at least 2f + 1 〈READY, v, rbid〉 messages;
6: return v;

the subset of correct processes that deliver will do it for the same message.

Formally, we define echo broadcast with the following properties:

EB1 Validity. If a correct process pi broadcasts a message m, then pi

eventually delivers m.

EB2 Agreement 1. If the sender is correct and a correct process pi deliv-

ers a message m, then all correct processes eventually deliver m.

EB3 Agreement 2. If the sender is corrupt and a correct process pi de-

livers a message m, then no correct process delivers m′ 6= m.

EB4 Integrity. For any message m, every correct process delivers m at

most once, and only if m was previously broadcasted by sender(m).

The implemented echo broadcast primitive was originally proposed

in (Toueg, 1984), and is a variant of the previously described reliable broad-

cast protocol. It is presented in Algorithm 2.

42 3.2. Protocol Stack

The protocol is essentially the described reliable broadcast algorithm

with the last communication step omitted. An instance of the protocol

identified by ebid is started with the sender broadcasting a message (INI-

TIAL, m) to all processes. When a process receives this message, it broad-

casts a (ECHO, m) message to all processes. It then waits for more than
n+f

2
(ECHO, m) messages to accept and deliver m. Figure 3.3 illustrates

the communication steps of the protocol. The broadcasts inside the proto-

col are made using the reliable channels.

Figure 3.3: Messages exchanged during an echo broadcast execution with
four processes.

Correctness Proof

The protocol is the one described in (Toueg, 1984) so the correctness proof

remains unchanged.

3. THE PROTOCOL STACK 43

Algorithm 2 Echo Broadcast protocol (for process pi).

Function E_Broadcast (vi, ebid)
Initialization:
1: activate task (T0); {sender only}
2: activate task (T1);

Task T0 (sender only):
1: RC_Broadcast (〈INITIAL, vi, rbid〉);
Task T1:
1: wait until have been delivered at least one 〈INITIAL, v, rbid〉 or n+f

2 〈ECHO, v,
rbid〉

2: RC_Broadcast (〈ECHO, v, rbid〉);
3: wait until have been delivered at least 2f + 1 〈ECHO, v, rbid〉
4: return v;

3.2.4 Binary Consensus

A binary consensus allows correct processes to agree on a binary value.

Each process pi proposes a value vi ∈ {0, 1} and then all correct processes

decide on the same value b ∈ {0, 1}. In addition, if all correct processes

propose the same value v, then the decision must be v.

Binary consensus is formally defined by the following properties:

BC1 Validity. If all correct processes propose the same value b, then any

correct process that decides, decides b.

BC2 Agreement. No two correct processes decide differently.

BC3a Termination. Every correct process eventually decides.

Given the FLP impossibility result, there is no deterministic algorithm

that can guarantee the termination property of consensus in our system

model, which is completely asynchronous. The solution is to resort to a

randomized model that guarantees the termination in a probabilistic way

44 3.2. Protocol Stack

(as opposed to a deterministic way). As such, the termination property is

changed to the following:

BC3 Termination. Every correct process eventually decides with prob-

ability 1.

The implemented protocol is adapted from a randomized algorithm

previously presented in (Bracha, 1984). The protocol has an expected num-

ber of communication steps for a decision of 2n−f , and uses the underlying

reliable broadcast as the basic communication primitive. The main advan-

tage of this algorithm is that is does not use any cryptography whatsoever

(altough its dependence on a reliable communication channel, in practice,

implies the use of a relatively cheap cryptographic hash function of some

sort).

The protocol, which is presented in Algorithm 3, proceeds in 3-step

rounds, running as many rounds as necessary for a decision to be reached.

The first step (lines 2-9) of an execution of the protocol identified by bcid

starts when each process pi (reliably) broadcasts its proposal vi. Then waits

for n − f valid messages and changes vi to reflect the majority of the re-

ceived values. In the second step (lines 10-17), pi broadcasts vi, waits for

the arrival of n − f valid messages, and if more than half of the received

values are equal, vi is set to that value; otherwise vi is set to the undefined

value ⊥. Finally, in the third step (lines 18-27), pi broadcasts vi, waits for

n−f valid messages, and decides if at least 2f +1 messages have the same

value v 6=⊥. Otherwise, if at least f + 1 messages have the same value

v 6=⊥, then vi is set to v and a new round is initiated. If none of the above

conditions apply, then vi is set to a random bit with value 1 or 0, with

probability 1
2
, and a new round is initiated.

3. THE PROTOCOL STACK 45

The validation of the messages is performed as follows. A message

received in the first step of the first round is always considered valid. A

message received in any other step k, for k > 1, is valid if its value is con-

gruent with any subset of n − f values accepted at step k − 1. Suppose

that process pi receives n − f messages at step 1, where the majority has

value 1. Then at step 2, it receives a message with value 0 from process

pj . Remember that the message a process pj broadcasts at step 2 is the ma-

jority value of the messages received by it at step 1. That message cannot

be considered valid by pi since value 0 could never be derived by a correct

process pj that received the same n− f messages at step 1 as process pi. If

process pj is correct, then pi will eventually receive the necessary messages

for step 1, which will enable it to form a subset of n− f messages that val-

idate the message with value 0. This validation technique has the effect of

causing the processes that do not follow the protocol to be ignored.

Correctness Proof

The protocol is the one described in (Bracha, 1984) so the correctness proof

remains unchanged.

3.2.5 Multi-valued Consensus

The multi-valued consensus builds on top of the binary consensus protocol.

It allows for processes to propose and decide on values with an arbitrary

domain V . Depending on the proposals, the decision is either one of the

proposed values or a default value ⊥/∈ V .

Formally, it is defined as follows:

MVC1 Validity 1. If all correct processes propose the same value v, then

46 3.2. Protocol Stack

Algorithm 3 Binary Consensus protocol (for process pi).

Function B_Consensus (vi, bcid)
1: repeat
2: R_Broadcast (〈S1, vi, bcid, i〉);
3: wait until ((n− f) valid S1 messages have been delivered);
4: ∀j : if (〈S1, vj , bcid, j〉 has been delivered) then Vi[j] ← vj ; else Vi[j] ←⊥;
5: if (#1(Vi) ≥ dn−f

2 e) then
6: vi ← 1;
7: else
8: vi ← 0;
9: end if
10: R_Broadcast (〈S2, vi, bcid, i〉);
11: wait until ((n− f) valid S2 messages have been delivered);
12: ∀j : if (〈S2, vj , bcid, j〉 has been delivered) then Vi[j] ← vj ; else Vi[j] ←⊥;
13: if (∃v : v 6=⊥ and #v(Vi) > n

2) then
14: vi ← v;
15: else
16: vi ←⊥;
17: end if
18: R_Broadcast (〈S3, vi, bcid, i〉);
19: wait until ((n− f) valid S3 messages have been delivered);
20: ∀j : if (〈S3, vj , bcid, j〉 has been delivered) then Vi[j] ← vj ; else Vi[j] ←⊥;
21: if (∃v : #v(Vi) > 2f + 1) then
22: return v;
23: else if (∃v : #v(Vi) > f + 1) then
24: vi ← v;
25: else
26: vi ← 1 or 0 with probability 1

2 ;
27: end if
28: until

3. THE PROTOCOL STACK 47

any correct process that decides, decides v.

MVC2 Validity 2. If a correct process decides v, then v was proposed by

some process or v =⊥.

MVC3 Validity 3. If a value v is proposed only by corrupt processes,

then no correct process that decides, decides v.

MVC4 Agreement. No two correct processes decide differently.

MVC5 Termination. Every correct process eventually decides.

The implemented protocol is adapted from the multi-valued consensus

proposed in (Correia et al., 2006b). It uses the services of the underlying

reliable broadcast, echo broadcast, and binary consensus layers. The main dif-

ference from the original protocol is the use of echo broadcast instead of

reliable broadcast at a specific point, and a simplification of the validation

of the vectors used to justify the proposed values. These changes grant

greater efficiency to the protocol without compromising its correctness.

The protocol is presented in Algorithm 4.

The protocol starts when every process pi announces its proposal value

vi by reliably broadcasting a (INIT, vi) message (line 1). The processes then

wait for the reception of n − f INIT messages and store the received val-

ues in a vector Vi (lines 2-3). If a process receives at least n − 2f mes-

sages with the same value v, it echo-broadcasts a (VECT, v, Vi) message

containing this value together with the vector Vi that justifies the value;

otherwise, it echo-broadcasts the default value⊥ that does not require jus-

tification (lines 4-9). The next step is to wait for the reception of n − f

valid VECT messages (line 10). A VECT message, received from process

pj , and containing vector Vj , is considered valid if one of two conditions

48 3.2. Protocol Stack

hold: (a) v =⊥; (b) there are at least n − 2f elements Vi[k] ∈ V such that

Vi[k] = Vj[k] = vj . If a process does not receive two valid VECT messages

with different values, and it received at least n − 2f valid VECT messages

with the same value, it proposes 1 for an execution of the binary consensus,

otherwise it proposes 0 (lines 11-16). If the binary consensus returns 0, the

process decides on the default value ⊥. If the binary consensus returns

1, the process waits until it receives n − 2f valid VECT messages (if it has

not done so) with the same value v and then it decides on that value (lines

17-22).

Algorithm 4 Multi-valued Consensus protocol (for process pi).

Function M_V_Consensus (vi, cid)
1: R_Broadcast (〈INIT, vi, cid, i〉);
2: wait until (at least (n− f) INIT messages have been delivered);
3: ∀j : if (〈INIT, vj , cid, j〉 has been delivered) then Vi[j] ← vj ; else Vi[j] ←⊥;
4: if (∃1

v : #v(Vi) ≥ (n− 2f)) then
5: wi ← v;
6: else
7: wi ←⊥;
8: end if
9: E_Broadcast (〈VECT, wi, Vi, cid, i〉);
10: wait until (at least (n−f) valid messages 〈VECT, wj , Vj , cid, j〉 have been delivered);
11: ∀j : if (〈VECT, wj , Vj , cid, j〉 has been delivered) then Wi[j] ←wj ; else Wi[j] ←⊥;
12: if (∀j,k Wi[j] 6= Wi[k] ⇒ Wi[j] = ⊥ or Wi[k] = ⊥) and (∃w: #w(Wi) ≥ (n − 2f))

then
13: bi ← 1;
14: else
15: bi ← 0;
16: end if
17: ci ←B_Consensus (bi, cid);
18: if (ci = 0) then
19: return ⊥;
20: end if
21: wait until (at least (n− 2f) valid messages 〈VECT, vj , Vj , cid, j〉 with vj = v have

been delivered);
22: return v;

3. THE PROTOCOL STACK 49

Correctness Proof

Lemma 1 If a message (VECT, wi, Vi, cid, i) is echo-broadcasted by a correct

process pi, then eventually all correct processes will consider it valid.

Proof: This Lemma is similar to the Lemma 1 found in (Correia et al.,

2006b). The difference is that here the VECT message is echo-broadcasted

instead of reliably broadcasted. This does not affect the correctness of the

lemma since it is assumed that the VECT message is broadcasted by a cor-

rect process, and in this case the echo broadcast protocol ensures the same

agreement property as the reliable broadcast protocol. 2

Theorem 1 (Validity 1) If all correct processes propose the same value v, then

any correct process that decides, decides v.

Proof: The proof is similar to the proof of the original protocol (Correia

et al., 2006b). 2

Theorem 2 (Validity 2) If a correct process decides v, then v was proposed by

some process or v =⊥.

Proof: The proof is obtained with a trivial inspection of the protocol. 2

Theorem 3 (Validity 3) If a value v is proposed only by corrupt processes, then

no correct process that decides, decides v.

Proof: The proof is similar to the proof of the original protocol (Correia

et al., 2006b). 2

Theorem 4 (Agreement) No two correct processes decide differently.

Proof: The proof is similar to the proof of the original protocol (Correia

et al., 2006b). 2

50 3.2. Protocol Stack

Theorem 5 (Termination) Every correct process eventually decides.

Proof: The difference from this proof to the proof for the original protocol

is that we must prove that the protocol makes progress at the execution of

the echo broadcast protocol (lines 9-10). Termination of the echo broadcast

protocol is guaranteed if the sender is correct. The protocol must deliver

n− f VECT messages to make progress, and since by definition, there are

at least n − f correct processes, then at least n − f VECT messages were

sent by a correct process which implies that progress is ensured. 2

3.2.6 Vector Consensus

Vector consensus allows processes to agree on a vector with a subset of the

proposed values. It ensures that every correct process decides on the same

vector V of size n; if a process pi is correct, then the vector element V [i] is

either the value proposed by pi or the default value ⊥, and at least f + 1

elements of V were proposed by correct processes.

This problem is adapted from the problem of interactive consistency,

defined for synchronous systems, to asynchronous systems (Pease et al.,

1980). While in interactive consistency the problem requires that the deci-

sion vector is composed by the values proposed by all correct processes,

in vector consensus the requirement is that the decision vector is formed

by a majority of values proposed by correct processes.

Vector consensus is formally defined by the following properties:

VC1 Vector Validity. Every correct process that decides, decides on a

vector V of size n:

• ∀pi: if pi is correct, then either V [i] is the value proposed by pi

or ⊥.

3. THE PROTOCOL STACK 51

• at least (f+1) elements of V were proposed by correct processes.

VC2 Agreement. No two correct processes decide differently.

VC3 Termination. Every correct process eventually decides.

The implemented protocol is the one described in (Correia et al.,

2006b), which uses reliable broadcast and multi-valued consensus as under-

lying primitives. The protocol, which is presented in Algorithm 5, starts

by reliably broadcasting a message containing the proposed value by the

process and setting the round number ri to 0. The protocol then proceeds

in up to f rounds until a decision is reached. Each round proceeds as fol-

lows. A process waits until n − f + ri messages have been received and

constructs a vector Wi of size n with the received values. The indexes of

the vector for which a message has not been received have the value ⊥.

The vector Wi is proposed as input for the multi-valued consensus. If it de-

cides on a value Vi 6=⊥, then the process decides Vi. Otherwise, the round

number ri is incremented and a new round is initiated.

Algorithm 5 Vector Consensus protocol (for process pi).

Function Vector_Consensus (vi, vcid)
1: ri ← 0; {round number}
2: R_Broadcast (〈VC_INIT, vi, vcid, i〉);
3: repeat
4: wait until (at least (n− f + ri) VC_INIT messages have been delivered);
5: ∀j : if (〈VC_INIT, vj , vcid, j〉 has been delivered) then Wi[j] ← vj ; else Wi[j]

←⊥;
6: Vi ←M_V_Consensus (Wi, (vcid,ri));
7: ri ← ri + 1;
8: until (Vi 6= ⊥);
9: return Vi;

52 3.2. Protocol Stack

Correctness Proof

The protocol is the one described in (Correia et al., 2006b) and the correct-

ness proofs remain unchanged.

3.2.7 Atomic Broadcast

The atomic broadcast protocol delivers messages in the same order to all

processes and it is on the genesis of many important distributed system

services. One can see atomic broadcast as a reliable broadcast protocol

plus the total order property.

Formally, atomic broadcast is defined by the following set of proper-

ties:

AB1 Validity. If a correct process broadcasts a message m, then some

correct process eventually delivers m.

AB2 Agreement. If a correct process delivers a message m, then all cor-

rect processes eventually deliver m.

AB3 Integrity. For any identifier ID, every correct process p delivers at

most one message m with identifier ID, and if sender(m) is correct

then m was previously broadcasted by sender(m).

AB4 Total order. If two correct processes deliver two messages m1 and

m2, then both processes deliver the two messages in the same order.

The implemented protocol was adapted from a proposal in (Correia et al.,

2006b). The main difference from the original protocol is that it has been

adapted to use multi-valued consensus instead of vector consensus and to

utilize message identifiers for the agreement task instead of cryptographic

3. THE PROTOCOL STACK 53

hashes. These changes were made for efficiency and have been proved not

to compromise the correctness of the protocol. The protocol uses reliable

broadcast and multi-valued consensus as primitives.

The atomic broadcast protocol, presented in Algorithm 6, is conceptu-

ally divided in two tasks: (1) the broadcasting of messages, and (2) the

agreement over which messages should be delivered.

When a process pi wishes to broadcast a message m, it simply uses the

reliable broadcast to send a (A_MSG, i, rbid, m) message where rbid is a

local identifier for the message (lines 7-8). Every message in the system

can be uniquely identified by the tuple (i, rbid).

The agreement task (2) is performed in rounds. A process pi starts by

waiting for A_MSG messages to arrive. When such a message arrives,

pi constructs a vector Vi with the identifiers of the received A_MSG mes-

sages and reliable broadcasts a (AB_VECT, i, r, Vi) message, where r is the

round for which the message is to be processed (lines 10-11). It then waits

for n− f AB_VECT messages (and the corresponding Vj vectors) to be de-

livered and constructs a new vector Wi with the identifiers that appear in

f + 1 or more Vj vectors (lines 12-13). The vector Wi is then proposed as

input to the multi-valued consensus protocol and if the decided value W is

not ⊥, then the messages with their identifiers in the vector W can be de-

terministically delivered by the process (lines 14-16). Figure 3.4 illustrates

the protocols involved in the agreement task.

The protocol applies a window of messages to be delivered. Its pur-

pose is to impose a limit on the identifiers that can be proposed to the

multi-valued consensus primitive (line 14). This serves to ensure that

processes will not indefinitely propose more identifiers while the mes-

sages with the identifiers within the window are not delivered by the

54 3.2. Protocol Stack

Binary Consensus

Multi-valued Consensus

Reliable Broadcast
(A_VECT)

Reliable Broadcast
(INIT)

Echo Broadcast
(VECT)

Reliable Broadcast
(STEP 1)

Reliable Broadcast
(STEP 2)

Reliable Broadcast
(STEP 3)

Atomic Broadcast Agreement

p0

p1

p2

p3

Figure 3.4: Protocols involved in an agreement task of the atomic broadcast
protocol with four processes.

atomic broadcast protocol. The variable Bj indicates the beginning of the

window for process j and L is the window size. So, for example, if Bj =

10 and L = 50, task T2 will only consider reaching agreement on the order

of messages whose identifier (j, num) has 10 ≤ num < 50.

Correctness Proof

Theorem 6 (Validity) If a correct process broadcasts a message m, then some

correct process eventually delivers m.

Proof: A correct process broadcasts a message M by calling A_Broad-

cast(M). Then, the atomic broadcast protocol adds a header to the message

and broadcasts it using the reliable broadcast protocol. The properties of

the reliable broadcast protocol ensure that all correct processes eventually

receive M (properties RB1-RB3). This implies that all correct processes will

eventually reliably broadcast an A_VECT message with a vector Vj con-

taining ID(M). Consequently, all correct processes will deliver at least f+1

A_VECT messages with a vector Vj containing ID(M). From this point on,

3. THE PROTOCOL STACK 55

Algorithm 6 Atomic Broadcast protocol (for process pi).

Initialization:
1: R_deliveredi ←∅; {messages delivered by the reliable broadcast protocol}
2: A_deliveredi ←∅; {messages delivered by the atomic broadcast protocol}
3: aidi ← 0; {atomic broadcast identi�er}
4: numi ← 0; {message number}
5: ∀j : B[j] ← 0; {window start}
6: activate task (T1,T2);

When Procedure A_Broadcast (m) is called do
7: R_Broadcast (〈A_MSG, numi, m, i〉);
8: numi ← numi + 1;

Task T1:
9: when R_deliveredi 6= ∅ do
10: Vi ← {IDs (j, numj) of the messages in R_deliveredi where B[j] ≤ numj < L};
11: R_Broadcast (〈A_VECT, Vi, aidi, i〉);
12: wait until (n− f or more 〈A_VECT, Vj , aidi, j〉 messages have been delivered);
13: Wi ← IDs (j, numj) that appear in f + 1 or more vectors Vj and B[j] ≤ numj < L;
14: W ←M_V_Consensus(Wi, aidi);
15: wait until (all messages with IDs in W are in R_deliveredi);
16: Atomically deliver messages with IDs in W in a deterministic order;
17: A_delivered ←A_delivered

⋃
W;

18: while message with ID (j, B[j]) ∈ A_deliveredi do
19: B[j] ←B[j] + 1;
20: end while
21: aidi ← aidi + 1;
22: end when

Task T2:
23: when 〈A_MSG, numj , m, j〉 is delivered by the reliable broadcast protocol do
24: R_deliveredi ←R_deliveredi

⋃
{〈A_MSG, numj , m, j〉};

25: end when

56 3.2. Protocol Stack

all correct processes will propose a vector W for the multi-valued consen-

sus protocol that contains ID(M) until a decision not ⊥ is reached.

There is one execution of the multi-valued consensus protocol that

reaches a decision because correct processes will not try to reach agree-

ment on messages whose ID is equal or greater than ID(M)+B while M

is not delivered. There must be an execution of MVC where all correct

processes propose a vector W containing the same set of values W =

{ID(M),ID(M)+1,...,ID(M)+B}. The decision of the MVC is guaranteed by

the protocol property MVC1.

The protocol might block in line 15 where it waits until all messages

that have to be delivered by the atomic broadcast protocol (those with

IDs in vector W) are in R_delivered. A message with an ID in vector W

must have already been delivered by the reliable broadcast protocol to at

least one correct process. Because of properties RB1-RB3, this message

will eventually be delivered to all correct processes, so no correct process

blocks on line 15. 2

Theorem 7 (Agreement) If a correct process delivers a message m, then all cor-

rect processes eventually deliver m.

Proof: The protocol assumes that a given correct process, say pi, delivers

M. Therefore: (1) the multi-valued consensus in line 14 decides on a vector

W containing ID(M); and (2) the reliable broadcast protocol delivers M to

pi, therefore it delivers M to all correct processes (properties RB1-RB3). All

correct processes get the same result from the multi-valued consensus, so

all eventually deliver M. 2

Theorem 8 (Integrity) For any identifier ID, every correct process p delivers at

most one message m with identifier ID, and if sender(m) is correct then m was

3. THE PROTOCOL STACK 57

previously broadcasted by sender(m).

Proof: The proof of the first assertion is trivial from the inspection of the

algorithm. The proof of the second assertion follows directly from the

properties of the reliable communication channels (RC1-RC2). 2

Theorem 9 (Total order) If two correct processes deliver two messages m1 and

m2, then both processes deliver the two messages in the same order.

Proof: Any correct process delivers messages only after an execution of

multi-valued consensus (line 14-16). All correct processes execute the

same instances of the multi-valued consensus protocol, identified by aid.

The messages which are delivered are all those whose IDs are in vector

W returned by multi-valued consensus and the order of delivery is deter-

ministic (line 16). Therefore, all processes deliver the same messages in the

same order. 2

Chapter 4

RITAS: The Implementation

RITAS is the implementation of the protocol stack described in Chapter 3.

This chapter provides an insight into the design considerations and practi-

cal issues that arose during the development of RITAS. The protocol stack

was implemented in the C language and was packaged as a shared library

with the goal of offering a simple interface to applications wishing to use

the protocols. The chapter is organized as follows. Section 4.1 is concerned

with the design considerations of RITAS. Section 4.2 describes the internal

architecture and data structures of the implementation. Finally, Section 4.3

focuses on the external interface of the protocol stack.

4.1 Design Considerations

This section discusses the several design considerations that had to be

taken into account before the actual implementation took place. These

considerations provided a point from which the conception of the whole

internal structure of RITAS could be driven.

59

60 4.1. Design Considerations

4.1.1 Single-threaded vs. Multi-threaded Operation

One of the design options with significant influence on the efficiency of RI-

TAS was the single-threaded operation of the protocol stack. When devel-

oping a software component such as a protocol stack, there are two pos-

sible options regarding its operation: multi-threaded or single-threaded.

The RITAS protocol stack runs in a single thread, independent of the ap-

plication thread. The rationale for this choice is explained below.

In a typical multi-threaded protocol stack, every instance of a specific

protocol is handled by a separate thread. Usually, there is a pivotal thread

that reads messages from the network and instantiates protocol threads to

handle messages that are specific to them.

Another option is to avoid the pivotal thread, and have the protocol

threads responsible for reading messages from the network. The multi-

threaded approach may be simpler to implement since there is practically

no need to synchronize the different threads (each one deals with a sep-

arate protocol instance), each context is self-contained in a given thread,

and there is virtually no need for protocol demultiplexing since the mes-

sages can be addressed directly to the threads handling them. The most

important advantage of this approach is that it allows for cleaner imple-

mentations (i.e., more verbatim translations from pseudocode) because the

protocol code has only to deal with one protocol instance (the context is

implicit). Nevertheless, as new messages are received, more and more

threads are created to handle the different protocol instances. This leads

to a situation where the constant context switching between the various

threads - and a loaded system can easily be in a situation where it needs

several hundreads of threads to deal with all protocol instances - poses

a serious performance impact on the stack, and may provoke an unfair

4. RITAS: THE IMPLEMENTATION 61

internal scheduling.

A single-threaded approach, while more complex to develop, al-

lows a much more efficient stack operation when properly implemented.

A single-threaded protocol stack ensures a fair first-come, first-served

scheduling as messages are processed by the relevant protocol instances

one-by-one as they are received. But such an approach poses additional

challenges. The contexts for the different protocol instances are not self-

contained and require explicit management which adds complexity to

such tasks as message passing, protocol demultiplexing, and packet con-

struction. The specific protocol code also becomes harder to implement

since it has to juggle between multiple contexts (each one representing a

different protocol instance).

Since one of the main goals of RITAS was the implementation of an ef-

ficient protocol stack, the extra complexity of a single-threaded approach

was outweighted by its potential performance advantages. The same ra-

tionale was used for the programming language of choice. All of the

protocol stack was implemented using the C language, while resorting

to third-party libraries whenever possible (e.g., openssl was used for all

cryptographic operations).

4.1.2 Message Management

Messages are the central element of any network protocol stack. Every-

thing is built around them. Protocol layers are really there to process mes-

sages. So, if there is a single feature of a protocol stack that determines

its efficiency, that must be the way messages are managed by the proto-

col stack. More specifically, the way they are created, destroyed, recycled,

modified, and passed along the various protocol layers is of vital impor-

62 4.1. Design Considerations

tance to an efficient stack operation.

When dealing with a multi-layered network protocol stack, messages

need to be passed back and forth the network stack. A certain degree

of flexibility is needed to manipulate the buffers which hold the messages,

data may need to be prepended or appended to these buffers, existing data

may need to be transformed or deleted, and the amount of operations that

actually copy data needs to be kept to a minimum in order to maintain

efficiency in the stack. Additionally, messages may need to be tagged with

several meta-information such as their size, where they came from, or the

bounds of certain headers inside the message.

This implies the need for some kind of data structure, preferably hid-

den behind a simple interface that abstracts most of the complex opera-

tions needed for its manipulation. Examples of such operations are initial-

ization and destruction of messages, and the prepending and appending

of data to the message. Besides being able to hold a message, this data

structure should have the fields to store all the necessary meta-information

for a correct and efficient message management.

In RITAS, such functionality is implemented by a data structure which

we call mbuf. It was inspired by the TCP/IP implementation in the Net/3

Operating System kernel (Wright & Stevens, 1995), and it is described in

detail later in this chapter.

4.1.3 Multiple Protocol Instances

Since we would like to evaluate the performance of the RITAS protocols,

the ability to execute multiple instances of the same protocol is a strict req-

uisite. This implies a need to have and efficiently manage several contexts

for the different protocol instances. When a message is passed to a given

4. RITAS: THE IMPLEMENTATION 63

protocol layer, that layer must be able to identify the relevant context for

the message, and process the message according to it. This hints a ne-

cessity of having each protocol instance uniquely identified, and to have

messages addressed to specific protocol instances to avoid overlapping of

multiple instances.

Two techniques in RITAS make possible the efficient implementation of

multiple protocol instances: the RITAS Channel, and Control Block Chain-

ing. Both are detailed later in this chapter.

4.1.4 Protocol Demultiplexing

Protocol demultiplexing is a problem that presents itself naturally in a

stack such as the proposed one. It occurs when one or more protocols

have to deliver messages to multiple protocols (or layers). In RITAS, this

problem is present, for instance, in the broadcast primitives. For example,

since the service provided by the reliable broadcast protocol is used by all

the protocols above it in the stack, the reliable broadcast protocol needs to

know which layer it should deliver its messages to.

The problem can be more tricky than what it may seem at a first glance

if one wishes to keep the layers as transparent as possible from one an-

other. The option usually used is to have a field in the lower-layer protocol

header that gives indication of the higher-layer protocol to which the mes-

sage should be delivered. The implication of this solution is that protocol

transparency is lost. This field in the lower-layer protocol header must ei-

ther be written directly by the higher-level protocol, or some sort of extra

communication between the two layers is required.

The latter option seems to be the less stringent to layer transparency.

It is the one used by RITAS, and is implicit in its management of control

64 4.1. Design Considerations

blocks which is described in later sections.

4.1.5 Header Construction

When dealing with a layered protocol stack, it is important to keep each

layer as separated as possible. As a message is passed along the stack, a

protocol layer should not have to worry about making any special man-

gling to the message depending on which layer it is going to pass it.

Following this principle, when a layer receives an inbound message,

its contents should remain untouched except for the protocol header at

the beginning of the message. After processing the message, the header

should be stripped off before passing the message to the upper layer pro-

tocol. When the message is outbound, the same principle applies. The

contents of the message should be completely opaque to the protocol layer

receiving the message, and a protocol header should be prepended at the

beginning of the message.

4.1.6 Storage of Values

All protocols in RITAS have a similar structure. They perform their actions

based on the values received from other processes. An action is triggered

usually when some value reaches a given threshold. Protocols need to

keep track of the values received and their respective count. Except for

the binary consensus protocol, all protocols accept values with an arbitrary

length. This implies a need to efficiently compare blocks of data with an

arbitrary length, some possibly large.

RITAS makes extensive use of hash tables to deal with this issue. This

makes possible the quick retrieval of the count associated with each value.

4. RITAS: THE IMPLEMENTATION 65

4.1.7 Out-of-Context Messages

The asynchronous nature of the protocol stack leads to situations in which

a process is receiving correct messages but they are destined to a protocol

instance for which a context has not yet been created. These messages –

called out-of-context (OOC) messages – have no context to handle them,

though they will, eventually.

Since the correctness of the protocols depends on the eventual deliv-

ery of these messages, they cannot simply be discarded. There must be a

way to store these messages as they arrive, and to efficiently retrieve them

when a context that can handle them is created. The protocol stack must

be able to handle this issue in an efficient way.

4.2 Internals

Internally, three major data structures form the core of the RITAS oper-

ation: the RITAS context, the message buffers, and the protocol control

blocks and their respective protocol handlers. There are other data struc-

tures and algorithmic operations that have a key role in the protocol stack:

the RITAS channel, control block chaining, and out-of-context message

handling. This section will describe these subjects. Additionally, sev-

eral data structures and functions provide ancillary common operations

for general use: hash tables, lists, FIFO queues, and vectors are the most

useful. Those will not be subject of further study. Because of their gen-

eral nature, it is assumed that the reader is already familiarized with these

concepts.

66 4.2. Internals

4.2.1 The RITAS context

The operation of RITAS revolves around a monolithic data structure called

ritas_t . This structure holds all the necessary context – variables and

data structures – for a communication session and is completely opaque

to the application programmer. Every internal and external function of

RITAS needs to take a pointer to this data structure as a parameter.

Figure 4.1 shows the ritas_t data structure. There are additional

fields to ritas_t that are not represented in the figure. Those are mostly

variables used for internal synchronization (e.g., mutexes, etc.) and were

purposedly left out for simplification.

pid

n

f

socket

group

ht_rccb

ht_ooc

proc_id

addr

next

proc_id

addr

next

64 byte buffer:

errbuf
Hash table of

RITAS Channel

Control Blocks

Hash table of Out-

of-Context

Messages

Linked list of the

processes in the group
ritas_t {} proc_t {} proc_t {}

ht_t {} ht_t {}

Figure 4.1: The ritas_t structure.

The pid field is an integer between 0 and n− 1 that uniquely identifies

the process inside the group. The elements n and f are self-explanatory,

they indicate the number of processes n in the group, and the maximum

4. RITAS: THE IMPLEMENTATION 67

number of processes f that can fail. The field socket is a socket descrip-

tor where the process receives incoming connections. The pointer group

points to a linked list of proc_t data structures. These hold the informa-

tion for each process in the group such as the identifier, network address,

etc. The ht_rccb element is a pointer to a hash table that holds the RITAS

Channel control blocks, while ht_ooc points to a hash table that hold the

incoming out-of-context messages.

4.2.2 Message Bu�ers

In RITAS, information is passed along the protocol stack using message

buffers (mbuf for short). This data structure was inspired by the TCP/IP

implementation in the Net/3 Operating System kernel (Wright & Stevens,

1995). The mbuf is used to store messages and several metadata related to

their management. One instance of mbuf can only hold a single message.

All communication between the different layers is done by passing point-

ers to mbufs. This way, it is possible to both eliminate the need to copy

large chunks of data when passing messages from one layer to another,

and have a data structure that facilitates the manipulation of messages.

Figure 4.2 shows the structure of an mbuf. Each field is explained be-

low:

prev Pointer to the previous mbuf in a mbuf list.

next Pointer to the next mbuf in a mbuf list.

head Pointer to the beggining of the message held by the mbuf. This is

some memory address inside the data buffer, lower or equal than the

tail pointer.

68 4.2. Internals

prev

next

head

tail

proc

protocol

flags

(...)
(...)

512, 1024, 2048,

4096, or 8192-byte

buffer:

data

mbuf_t {}

lower memory

address

higher memory

address

Figure 4.2: The mbuf structure.

tail Pointer to the end of the message held by the mbuf. This is some

memory address inside the data buffer, higher or equal than the head

pointer.

proc Identifier of the process that sent the message held by the mbuf. Only

relevant if it is an inbound message.

protocol Indicates which was the latest protocol layer to process the mes-

sage.

�ags Special flags. These indicate to the mbuf manipulation functions if

some sort of special behavior is necessary when processing the mbuf .

data Buffer where the actual message held by the mbuf is stored.

A mbuf is usually created when a new message arrives from the net-

work. The RITAS network scheduler, prior to reading data from the socket,

4. RITAS: THE IMPLEMENTATION 69

creates a mbuf, then it reads the message from the socket directly into the

mbuf data buffer, and passes the mbuf to the appropriate protocol layer.

A mbuf can also be created by any specific protocol layer, for instance if it

needs to send a message to other processes, but every mbuf is reutilized as

much as possible within the protocol stack.

Regarding mbuf destruction, there are also specific rules as to when a

mbuf should be destroyed. For an outbound mbuf, the mbuf should be de-

stroyed immediatly after its message is sent to all relevant processes. The

exception is when the RITAS_MBUF_PROTECTEDflag is set. In this case,

the mbuf was explicitly marked for no destruction by a particular proto-

col layer, which then becomes solely responsible for the mbuf destruction.

For an inbound mbuf, the last protocol to which the mbuf is going to be

passed is responsible for its management. A protocol layer has three op-

tions, which are mutually exclusive, after it has processed the message

contained in the mbuf : it passes the mbuf to an upper layer protocol, it

destroys the mbuf, or it reuses the mbuf to transmit a new message. The

chosen action depends on the semantic of the protocol and the current

state of the particular protocol instance context to which the mbuf being

processed is relevant.

4.2.3 Control Blocks and Protocol Handlers

Each protocol implemented in RITAS is formed by two protocol-specific

components: the control block, and the protocol handler. The control block is

a data structure that holds the state of a specific instance of the protocol.

The protocol handler is the set of functions that implement the operation

of the protocol.

The control block data structure is responsible for holding all the nec-

70 4.2. Internals

essary context for the execution of a specific instance of the protocol. It

keeps tracks of things like the instance identification, the current protocol

step, the values received so far, etc. The code block below presents the

skeleton of a typical control block using the binary consensus protocol as

an example.

/ **

* General Control Block Information. In one form or another, all control blocks in RITAS maintain

* this information.

* /

/ * Identifier of the specific protocol instance. * /

u_short id ;

/ * Indicates if this control block is chained to an upper-layer control block. * /

u_char upper ;

/ * If so, this pointer points to it. * /

void ∗parent ;

/ * A linked list of the control blocks used by this protocol instance as primitives. In this case, the

* binary consensus protocol needs several reliable broadcast control blocks in order to communicate. * /

r i t a s _ r b c b _ t ∗∗rbcb ;

/ **

* Now we’re entering more protocol-specific state information. This can be anything the protocol

* needs in order to maintain the logical state of the protocol instance. Below are a few examples.

* /

/ * The current round the protocol is in. * /

u_short round ;

/ * The current step the protocol is in. * /

u_short s tep ;

/ * The binary majority value of the specific steps of the protocol. * /

u_char major i ty_value [3] ;

/ * (...) * /

Protocol handlers are formed by a initialization and destruction func-

tions, input and output functions, and one or more functions that export

the protocol functionality. The purpose of the initialization and destruc-

tion functions is, respectively, to allocate a new control block and initialize

all its variables and data structures, and to destroy the internal data struc-

4. RITAS: THE IMPLEMENTATION 71

tures and the control block itself. The input and output functions are used

for inter-protocol communication, and both receive as parameters the re-

spective control block and the mbuf to be processed. The code block below

depicts the skeleton of a typical protocol handler using the binary consen-

sus protocol as an example. The communication between the protocols is

depicted in Figure 4.3.
/ *

* Initialization function. Creates a binary consensus control block.

* /

r i t a s _ b c c b _ t ∗ r i t a s _ b c _ i n i t (r i t a s _ t ∗ctx , u_short id , void ∗parent) ;

/ *

* Destruction function. Destroys an existing binary consensus control block.

* /

void r i t a s _ b c _ d e s t r o y (r i t a s _ t ∗ctx , r i t a s _ b c c b _ t ∗bccb) ;

/ *

* Input function. Used by the lower-level layers to pass an mbuf to a binary consensus specific

* protocol instance referenced by the respective control block.

* /

i n t r i t a s _ b c _ i n p u t (r i t a s _ t ∗ctx , r i t a s _ b c c b _ t ∗bccb , r i tas_mbuf_t ∗m) ;

/ *

* Output function. Used by the upper-level layers to pass an mbuf to a binary consensus specific

* protocol instance referenced by the respective control block.

* /

i n t r i t a s _ b c _ o u t p u t (r i t a s _ t ∗ctx , r i t a s _ b c c b _ t ∗bccb , r i tas_mbuf_t ∗m) ;

/ *

* Function that exports the binary consensus protocol functionality to applications.

* /

i n t r i t a s _ b c (r i t a s _ t ∗ctx , u_short bcid , u_char proposal) ;

4.2.4 The RITAS Channel

The RITAS channel is a special protocol handler that sits between the broad-

cast layers and the Reliable Channel layer (the Reliable Channel layer cor-

responds to the implementation of TCP and IPSec that is accessed through

the socket interface) (see Figure 4.3). It is placed in the stack such that it

is the first layer to process messages after they are read from the network,

and the last one before they are written to the network.

72 4.2. Internals

Figure 4.3: Communication �ow between the various protocol layers.

The purpose of the RITAS channel is to build a header containing an

unique identifier for each message. Messages are always addressed to a

given RITAS Channel. The message is then passed along the appropri-

ate protocol instances by a mechanism called control block chaining, de-

scribed in the next section.

4.2.5 Control Block Chaining

One important mechanism, used in RITAS to manage the linking of differ-

ent protocol instances, is the control block chaining. This mechanism solves

several problems – it gives a means to unambiguously identify all mes-

sages, provides for seamless protocol demultiplexing, and facilitates con-

trol block management.

Control block chaining works in the following way. Suppose an ap-

plication creates an atomic broadcast protocol instance. This creation is

done by calling the corresponding initialization function that returns a

pointer to a control block responsible for that instance. Since atomic broad-

cast uses multi-valued consensus and reliable broadcast as primitives, the

4. RITAS: THE IMPLEMENTATION 73

atomic broadcast initialization function also calls the initialization func-

tions for such protocols in order to create as many instances of these pro-

tocols as needed. The returned control blocks are kept and managed in the

atomic broadcast control block. This mechanism is recursive since second-

order protocol instances may need to use other protocols as primitives and

so on. This creates a tree of control blocks that has its root in the protocol

called by the application and goes down all the way, having control blocks

for RITAS Channels as the leaf nodes. Figure 4.4 illustrates this technique.

An unique identifier is given to each outbound message when the asso-

ciated mbuf reaches the RITAS Channel layer. The tree is traversed bottom-

up starting at the RITAS Channel control block and ending at the root con-

trol block. The message identifier is generated by appending the protocol

instance ID of each traversed node to a local message identifier that was

set by the node that created the mbuf.

Protocol demultiplexing is done seamlessly. When a message arrives,

its identification defines an association with a particular RITAS Channel

control block. The RITAS Channel passes the mbuf to the upper layer by

calling the appropriate ritas_ * _input() function of its parent control

block. The message is processed by that layer and the mbuf keeps being

passed in the same fashion.

When a protocol instance is destroyed, all of its child protocol instances

become obsolete. All protocol instances are responsible for destroying its

child instances by calling the appropriate destruction functions. This way,

a tree (or sub-tree) of control blocks is automatically destroyed when its

root node is eliminated.

74 4.2. Internals

Atomic Broadcast

Control Block

Multi-valued

Consensus

Control Block

Reliable Broadcast

Control Block

Binary Consensus

Control Block

ritas_ab_init()

ritas_mvc_init()

ritas_rb_init()
ritas_bc_init()

Reliable Broadcast

Control Block

Reliable Broadcast

Control Block

Reliable Broadcast

Control Block

ritas_rb_init()
ritas_rb_init()

ritas_rb_init()

ritas_rb_init()

(...)

ritas_rb_init()

(...)

RITAS Channel

Control Block

RITAS Channel

Control Block

RITAS Channel

Control Block

RITAS Channel

Control Block

ritas_rc_init() ritas_rc_init() ritas_rc_init() ritas_rc_init()

Figure 4.4: Initialization of a tree of control blocks.

4. RITAS: THE IMPLEMENTATION 75

4.2.6 Out-of-Context Message Handling

As indicated in our design considerations, out-of-context messages cannot

simply be discarded since they are potentially necessary for the correct op-

eration of future protocol instances. What is done is that all OOC messages

are stored in a hash table. When a RITAS Channel is created, it checks this

hash table for relevant messages. If any relevant messages exist, they are

promptly delivered to the upper protocol instance.

It is also possible for a protocol instance to be destroyed before consum-

ing all of its OOC messages. To avoid a situation where OOC messages are

kept indefinitely in the hash table, upon the destruction of a protocol, the

hash table is checked and all the relevant messages are deleted.

4.3 Interface

RITAS exports a simple API for applications who wish to access the pro-

tocols provided by the stack to build distributed systems services. The

API revolves around the RITAS context ritas_t , however, this data type

is completely opaque to the application programmer. The functions pro-

vided by the API can be divided into two categories: context management

and service requests. A typical RITAS session is composed by 4 basic steps

executed by each process:

1. Initialize the RITAS context by calling ritas_init() .

2. Add the participating processes to the context by calling ritas_-

proc_add_ipv4() .

3. Call the protocols as many times as wished (however, functions are

blocking and not thread-safe).

76 4.3. Interface

4. Destroy the RITAS context by calling ritas_destroy() .

4.3.1 Context Management Functions

The context management functions allow for the basic management of a

communication session. This includes the initialization and destruction

of a session context, and the addition of processes to the session. Since

the notion of group in RITAS is static, the addition of processes can only

be performed before any kind of communication takes place. There is no

operation to remove processes from the group since this would be incon-

gruent with the system model and break the correctness of the protocols.
r i t a s _ t ∗ r i t a s _ i n i t (

u_short pid ,

u_short n ,

u_short f ,

u_short port ,

u_char ∗errbuf) ;

ritas_init() initializes a new RITAS context. It allocates the nec-

essary memory space for the ritas_t data structure and initializes its

internal variables and data structures. The main arguments are: a process

identifier pid ; the total number of processes n; the maximum number of

corrupt processes f . In case of success the function returns a pointer to a

freshly created RITAS context; otherwise, it returns NULL and an appro-

priate zero-terminated error message is copied to errbuf .
void r i t a s _ d e s t r o y (

r i t a s _ t ∗c t x) ;

ritas_destroy() destroys a previously initialized RITAS context,

ctx . The internal context data structures are freed from memory along

with the context itself.
i n t r i tas_proc_add_ipv4 (

r i t a s _ t ∗ctx , u_short pid ,

u_char ∗ip ,

4. RITAS: THE IMPLEMENTATION 77

u_short port ,

u_char ∗key) ;

ritas_proc_add_ipv4() adds a process to the context, ctx . The

functions takes as argument a pointer to the IPv4 address of the process,

ip . In case of success, the function returns 1; in case of failure returns -1.

4.3.2 Service Request Functions

The service request functions give the application programmer access to

the actual protocols provided by the stack. These functions can be divided

in two groups, one for the broadcast primitives and another for the various

consensus protocols. The service request functions can only be called after

the relevant session context has been properly initialized and the individ-

ual processes added to the group. When a session context is destroyed,

no service requests functions for that particular session can be called after-

wards.
i n t r i t a s _ r b _ b c a s t (

r i t a s _ t ∗ctx ,

u_short rbid ,

u_char ∗buf ,

u_short buf_s) ;

ritas_rb_bcast() reliably broadcasts a message to the group. The

function takes as arguments a pointer to the relevant session context ri-

tas_t . An identifier for the broadcast rbid . A pointer to a buffer buf

containing the message to be broadcasted. Finally, the size of message

buf_s in bytes. In case of success, the function returns 1; in case of fail-

ure returns -1.
i n t r i t a s _ r b _ r e c v (

r i t a s _ t ∗ctx ,

u_short txid ,

u_short rbid ,

u_char ∗buf ,

u_short buf_s) ;

78 4.3. Interface

ritas_rb_recv() delivers a message that was reliable broadcasted

by some process belonging to the group. The function blocks until it is

able to deliver the relevant message. It takes as arguments a pointer to

the session context ritas_t . The identifier of the sender process txid .

An identifier for the broadcast rbid . A pointer to a buffer buf in which

the delivered message should be stored. The maximum length buf_s in

bytes that the buffer can hold. In case of success, the function returns the

length of the message in bytes; otherwise it returns -1.
i n t r i t a s _ b c (

r i t a s _ t ∗ctx ,

u_short bcid ,

u_char proposal) ;

ritas_bc() runs a binary consensus execution with identifier bcid .

The proposal value is passed to the function as an argument, and the

latter blocks until the processes reach a decision. In case of success the

functions returns the decision value which is either 0 or 1; in case of failure

the function returns -1.
i n t r i tas_mvc (

r i t a s _ t ∗ctx ,

u_short mvcid ,

u_char ∗prop ,

u_short prop_size ,

u_char ∗decis ion ,

u_short d e c i s i o n _ s i z e) ;

ritas_mvc() runs a multi-valued consensus execution identified by

mvcid . The pointer prop points to a buffer containing the proposal value,

and prop_size is the size of this data. Another pointer decision is

used to reference the memory location where the decision value should

be stored. The maximum length of data that can be stored in this buffer

is indicated by decision_s . In case of success, the function returns the

length of the decision value in bytes; in case of failure returns -1.
i n t r i t a s _ v c (

4. RITAS: THE IMPLEMENTATION 79

r i t a s _ t ∗ctx ,

u_short vcid ,

u_char ∗proposal ,

u_short prop_size ,

u_char ∗decis ion ,

u_short d e c i s i o n _ s i z e) ;

ritas_vc() runs vector consensus executions identified by vcid .

The functions blocks until a decision is reached. The proposal value is

passed as a pointer to a buffer proposal containing the value of length

prop_s . The decision vector is stored in the buffer pointed by vec . The

maximum length of data that this buffer can hold is indicated by vec_s .

In case of success, the function returns the length of the decision vector in

bytes; in case of failure returns -1. The decision vector can be extracted

into a data structure ritas_vector_t that makes it easier to process us-

ing the ancillary function ritas_vector_extract() .
i n t r i t a s _ a b _ b c a s t (

r i t a s _ t ∗ctx ,

u_char ∗buf ,

u_short buf_s) ;

ritas_ab_bcast() atomically broadcasts a message to the group.

The message is passed as a pointer to the buffer buf that holds it. The

message length is indicated by buf_s . In case of success, the function

returns 1; in case of failure returns -1.
i n t r i t a s _ a b _ r e c v (

r i t a s _ t ∗ctx ,

u_char ∗buf ,

u_short buf_s ,

r i t a s _ a b _ h e a d e r _ t ∗abh) ;

ritas_ab_recv() delivers a message that was atomically broad-

casted by some process in the group. The functions blocks until a message

is delivered. The message is stored in the buffer pointed by buf . The max-

imum length in bytes that the buffer can hold is indicated by buf_s . The

function takes a pointer abh to a data structure ritas_ab_header_-

80 4.3. Interface

t where it is stored some meta-information about the delivered message

such as its total order number. In case of success, the function returns the

length of the message in bytes; otherwise it returns -1.

Chapter 5

Performance Evaluation

This chapter describes the performance evaluation of RITAS in a local-

area network setting (LAN). Two different performance analysis are made.

First is presented a comparative evaluation in order to gain insight into the

stack, and how protocols relate and build on one another performance-

wise. Second is conducted an in-depth analysis of how atomic broadcast

performs under various conditions. This protocol is arguably the most in-

teresting candidate for a detailed study because it utilizes all other proto-

cols as primitives, either directly or indirectly, and it can be used for many

practical applications (Castro & Liskov, 1999; Correia et al., 2006a; Reiter,

1995).

5.1 Testbeds

The experiments were carried out on two different testbeds. One with

older hardware and only four hosts, and another with modern hardware

and ten hosts.

The first, which will be refered as tb-slow, consisted on four Dell Pen-

81

82 5.2. Stack Analysis

tium III PCs, each with 500 MHz of clock speed and 128 MB of RAM,

running Linux kernel 2.6.5. The PCs were connected by an 100 Mbps HP

ProCurve 2424M network switch. Bandwidth tests taken at different oc-

casions with the network performance tool lperf have shown a consistent

throughput of 9.1 MB/s in full-duplex mode.

The second testbed, which will be referred as tb-fast, consisted of 10

Dell PowerEdge 850 servers. These servers have Pentium 4 CPUs with

2.8 GHz of clock speed, and 2GB of RAM. They were connected by a

Dell PowerConnect 2724 network switch with 10/100/1000 Mbps of band-

width capacity. The operating system was Linux 2.6.11. Bandwidth tests

showed a consistent throughput of 1.16 MB/s for the 10 Mbps setting, 11.5

MB/s for the 100 Mbps setting, and 67.88 MB/s for the 1000 Mbps setting.

All values were taken in full-duplex mode, which was used in the experi-

ments.

In both testbeds the used IPSec implementation was the one available

in the Linux kernel and the reliable channels that were established be-

tween every pair of processes employed the AH protocol (with SHA-1)

in transport mode (Kent & Atkinson, 1998).

5.2 Stack Analysis

In order to get a better understanding about the relative overheads of each

layer of the stack, we have run a set of experiments to determine the laten-

cies of the protocols. These measurements were carried out in the follow-

ing manner: a signaling machine, that does not participate in the proto-

cols, is selected to control the benchmark execution. It starts by sending a

1-byte UDP message to the n processes to indicate which specific protocol

5. PERFORMANCE EVALUATION 83

instance they should create. Then, it transmits M messages, each one sep-

arated by a two second interval (in our case M was set to 100). Whenever

one of these messages arrives, a process runs the protocol, either a broad-

cast or a consensus. In case of a broadcast, the process with the lowest

identifier acts as the sender, while the others act as receivers. In case of a

consensus, all processes propose identical initial values. The broadcasted

messages and the consensus proposals, all carry a 10-byte payload (except

for binary consensus where the payload is 1 byte). The latency of each in-

stance was obtained at a specific process. This process records the instant

when the signal message arrives and the time when it either delivers a

message (for broadcast protocols) or a decision (for consensus protocols).

The measured latency is the interval between these two instants. The aver-

age latency is obtained by taking the mean value of the sample of measured

values. Outliers were identified and excluded from the sample.

w/ IPSec (µs) w/o IPSec (µs) IPSec overhead
Echo Broadcast 1724 1497 15%
Reliable Broadcast 2134 1641 30%
Binary Consensus 8922 6816 30%
Multi-valued Consensus 16359 11186 46%
Vector Consensus 20673 15382 34%
Atomic Broadcast 23744 18604 27%

Table 5.1: Average latency for isolated executions of each protocol (with
IPSec and IP) in testbed tb-slow (100 Mbps).

The results for testbed tb-slow, shown in Table 5.1, demonstrate the

interdependencies among protocols and how much time is spent on each

protocol. For example, in a single atomic broadcast instance roughly 2/3

of the time is taken running a multi-valued consensus. For a multi-valued

consensus about 1/2 of the time is used by the binary consensus. And

for vector consensus about 3/4 of the time is utilized by the multi-valued

84 5.2. Stack Analysis

consensus. The experiments also showed that consensus protocols were

always able to reach a decision in one round because the initial proposals

were identical.

The table also shows the cost of using IPSec. This overhead could in

part be attributed to the cryptographic calculations, but most of it is due

to the increase on the size of the messages. For example, the total size

of any Reliable Broadcast message – including the Ethernet, IP, and TCP

headers – carrying a 10-byte payload is 80 bytes. The IPSec AH header

adds another 24 bytes, which accounts for an extra 30%.

n w/ IPSec (µs) relative slowdown

Echo Broadcast
4 584 -
7 805 38%
10 1045 79%

Reliable Broadcast
4 667 -
7 907 36%
10 1172 76%

Binary Consensus
4 1204 -
7 3521 192%
10 7907 557%

Multi-valued Consensus
4 4952 -
7 13335 169%
10 25652 418%

Vector Consensus
4 6022 -
7 16826 179%
10 32674 443%

Atomic Broadcast
4 6467 -
7 18496 186%
10 33474 418%

Table 5.2: Average latency and relative slowdown (w.r.t. to the four-process
scenario) for isolated executions of each protocol (with IPSec) in testbed
tb-fast in the 1000 Mbps setting.

Table 5.2 shows the performance results for testbed tb-fast. The average

latency for all protocols is presented for three different group sizes: 4, 7,

5. PERFORMANCE EVALUATION 85

and 10 processes. The relative slowdown with respect to the four-process

scenario is also shown for each protocol.

The first striking conclusion that can be extracted from these results is a

much better performance of the protocols when compared to the previous

testbed. The use of more powerful hardware had a significant impact on

the performance of all protocols. For instance, in the case of binary consen-

sus, the performance was improved seven-fold, while for atomic broad-

cast, performance was increased almost four times. The network switch

with increased bandwidth capacity, the network interface cards with bet-

ter performance, and the machines in general with greater computational

power are the obvious candidates to justify the performance gain. It is un-

clear, however, the relative weight of the various hardware components

on the faster protocol execution. Later experiments isolate some of these

parameters and demonstrate in greater depth the impact of network band-

width, and host computational power in the protocol stack performance.

Another interesting observation from the results in Table 5.2 is the rel-

ative slowdown of each protocol when the group size increases. The re-

liable and echo broadcast protocols were less sensitive to a larger group

size with a 38% (n = 4) and 79% (n = 7) slowdown for echo broadcast,

and 36% (n = 4) and 76% (n = 7) for reliable broadcast. The slowdown

for the remaining protocols was considerably accentuated due to larger

protocol headers.

5.3 Atomic Broadcast Analysis

This section evaluates the atomic broadcast protocol in more detail. The

experiments were carried out by having the n processes send a burst of k

86 5.3. Atomic Broadcast Analysis

messages and measuring the interval between the beginning of the burst

and the delivery of the last message. The benchmark was performed in

the following way: processes wait for a 1-byte UDP message from the sig-

naling machine, and then each one atomically broadcasts a burst of k
n

mes-

sages. Messages have a fixed size of m bytes. For every tested workload,

the obtained measurement reflects the average value of 10 executions.

Two metrics are used to assess the performance of the atomic broad-

cast: burst latency (Lburst) and maximum throughput (Tmax). The burst la-

tency is always measured at a specific process and is the interval between

the instant when it receives the signal message and the moment when it

delivers the kth message. The throughput for a specific burst is the burst

size k divided by the burst latency Lburst (in seconds). The maximum

throughput Tmax can be inferred as the value at which the throughput sta-

bilizes (i.e., does not change with increasing burst sizes).

The measurements were taken by varying several system parameters:

group size, network bandwidth, faultload, and message payload size.

The group size defines the number of processes n in the system and

can assume three values: 4, 7, and 10.

The network bandwidth is the amount of data that can be passed be-

tween every pair of processes in a given period of time. It can assume

three values: 10 Mbps, 100 Mbps, and 1000 Mbps.

The faultload defines the types of faults that are injected in the system

during its execution. The measurements were taken under three differ-

ent faultloads. In the failure-free faultload all processes behave correctly.

In the fail-stop faultload f processes crash before the measurements are

taken (f is always set to the maximum number of processes that can fail

as dictated by the system model, which means that f = bn−1
3
c). Finally, in

5. PERFORMANCE EVALUATION 87

the Byzantine faultload f processes permanently try to disrupt the behav-

ior of the protocols. At the binary consensus layer, they always propose

zero trying to impose a zero decision. At the multi-valued consensus layer,

they always propose the default value in both INIT and VECT messages

trying to force correct processes to decide on the default value. The im-

pact of any such attack, if successful, would be that correct processes do

not reach an agreement over which messages should be delivered by the

atomic broadcast protocol and, consequently, would have to start a new

agreement round.

The message payload size is the length of the data transmitted in each

atomic broadcast (excluding protocol headers). Four values were used in

the experiments: 10 bytes, 100 bytes, 1 Kilobyte, and 10 Kilobytes.

5.3.1 Group Size and Faultload

The set of experiments described in this section had the objective of mea-

suring the impact of both the group size and the faultload. The network

bandwidth was fixed to 100 Mbps in testbed tb-slow, and to 1000 Mbps in

testbed tb-fast. The message payload size was 100 bytes. The group size

was tested for 4, 7, and 10 processes. All the three different faultloads were

also tested: failure-free, fail-stop, and Byzantine.

Failure-free faultload. Figure 5.1 shows the performance of the atomic

broadcast in testbed tb-fast when no faults occur in the system. Each curve

shows the latency or throughput for a different group size n.

From the graph it is possible to observe that the burst latency Lburst

is linear with the burst size. The stabilization point in the throughput

curves indicates the maximum throughput Tmax. The throughput stabi-

88 5.3. Atomic Broadcast Analysis

no failures / 1000 Mbps bandwidth / 100-byte messages

Figure 5.1: Latency and throughput for atomic broadcast with failure-free
faultload, 1000 Mbps bandwidth, and 100-byte messages in testbed tb-fast.

5. PERFORMANCE EVALUATION 89

lizes around 2800 messages/s for a group size of 4 processes, 1500 ms-

gs/s for 7 processes, and 1000 msgs/s for 10 processes. The group size

had a significant impact on the protocol performance. The maximum

throughput dropped almost to half from the four-process to the the seven-

process scenario, and then about one third from the seven-process to the

ten-process scenario. These results were expected because larger group

sizes implicate that a larger number of messages must be exchanged. This

imposes a higher load on the network, which decreases the maximum

throughput.

Fail-stop faultload. The performance of the atomic broadcast protocol

for testbed tb-fast with f crashed processes is presented in Figure 5.2. In

this faultload, each correct process sends a burst of k
n−f

messages. Each

curve shows the latency or throughput for a different group size n.

Looking at the curves, it is possible to conclude that performance is

noticeably better with f crashed processes than in the failure-free situa-

tion. This happens because with f less processes there is less contention in

the network which allows operations to be executed faster. The maximum

throughput Tmax is around 3000 messages per second for a group size of 4

processes, 1700 msgs/s for 7 processes, and 1050 msgs/s for 10 processes.

Byzantine faultload. Figure 5.3 shows the performance of atomic

broadcast with different group sizes in testbed tb-fast, with f processes

trying to disrupt the protocol.

An important result is that all the consensus protocols reached agree-

ment within one round, even under Byzantine faults. This can be ex-

plained in a intuitive way as follows. The experimental setting was a LAN,

which not only provides a low-latency, high-throughput environment, but

90 5.3. Atomic Broadcast Analysis

f crashed processes / 1000 Mbps bandwidth / 100-byte messages

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

burst size (messages)

b
u

rs
t

la
te

n
c
y

(m
s
)

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

Figure 5.2: Latency and throughput for atomic broadcast with fail-stop fault-
load, 1000 Mbps bandwidth, and 100-byte messages in testbed tb-fast.

5. PERFORMANCE EVALUATION 91

Figure 5.3: Latency and throughput for atomic broadcast with Byzantine
faultload, 1000 Mbps bandwidth, and 100-byte messages in testbed tb-fast.

92 5.3. Atomic Broadcast Analysis

it also keeps the nodes within symmetrical distance of each other. Due to

this symmetry, in the atomic broadcast protocol, correct processes main-

tained a fairly consistent view of the received AB_MSG messages because

they all received these messages at approximately the same time. Any

slight inconsistencies that, on occasion, existed over this view were squan-

dered when processes broadcasted the vector V (which was built with the

identifiers of the received AB_MSG messages) and then constructed a new

vector W (which serves as the proposal for the multi-valued consensus)

with the identifiers that appeared in, at least, f + 1 of those V vectors.

This mechanism caused all correct processes to propose identical values

in every instance of the multi-value consensus, which allowed one-round

decisions. In a more asymmetrical environment, like a WAN, it is not guar-

anteed that this result can be reproduced.

In more detail, the maximum throughput Tmax is around 2800 mes-

sages per second for a group size of 4 processes, 1500 msgs/s for 7

processes, and 1000 msgs/s for 10 processes.

Testbed tb-slow vs. tb-fast. Figure 5.4 compares the performance for

the failure-free and fail-stop scenarios with four processes in both testbeds.

The curves for the Byzantine scenario were left out for legibility since, as

observed above, they are practically the same as for the failure-free sce-

nario. The bandwidth for testbed tb-slow is 100 Mbps, and for tb-fast is

set to 1000 Mbps.

Unsurprisingly, it can be observed that the performance is clearly su-

perior in testbed tb-fast. The greater computational power and network

capacity of tb-fast makes allows a maximum throughput about 4 times

larger in the failure-free scenario (2800 msgs/s vs. 650 msgs/s), and 3

5. PERFORMANCE EVALUATION 93

n = 4 / tb-fast: 1000Mbps, tb-slow: 100Mbps / 100-byte messages

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200

burst size (messages)

b
u

rs
t

la
te

n
c
y

(m
s
)

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

Figure 5.4: Latency and throughput for atomic broadcast with failure-free
faultload, and 100-byte messages in both testbeds.

94 5.3. Atomic Broadcast Analysis

times larger in the fail-stop scenario (3000 msgs/s vs. 1000 msgs/s).

5.3.2 Network Bandwidth and Message Size

This section analyzes in greater detail the impact of network bandwidth

and message payload size in the protocol performance. For all the exper-

iments the faultload parameter was set to failure-free, and the group size

to four processes. The network bandwidth was varied for the experiments

in testbed tb-fast (1000 Mbps, 100 Mbps, and 10 Mbps), and fixed to 100

Mbps in testbed tb-slow. Four message payload sizes were used: 10 bytes,

100 bytes, 1 Kilobyte, and 10 Kilobytes.

Figure 5.5 shows the performance curves for testbed tb-fast with 10-

byte message payloads. Each curve represents a different bandwidth

value.

While there is a clear performance difference between the protocol ex-

ecution in the three network bandwidth scenarios, it is not accentuated as

one would expect if considering the bandwidth as the sole performance

bottleneck. For instance, while the 1000 Mbps scenario has 100 times more

bandwidth than the 10 Mbps scenario, the maximum throughput is only

about 1.6 higher in the 1000 Mbps case (2900 msgs/s vs. 1800 msgs/s). It

seems that for small payloads (10 bytes), other than the bandwidth, there

are more factors to consider when determining the performance bottle-

neck. The candidates are the processing power of the individual nodes

and the network latency. Given the large number of messages that the

protocol stack needs to exchange, it is very likely that, for small payload

sizes, the latency restricts the performance. Nevertheless, this can only be

confirmed by controlling the average network latency and performing the

experiments with various latency values in order to measure its impact.

5. PERFORMANCE EVALUATION 95

n = 4 / failure-free executions / 10-byte messages

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200

burst size (messages)

b
u

rs
t

la
te

n
c
y

(m
s
)

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

Figure 5.5: Latency and throughput for atomic broadcast with four processes,
failure-free faultload, and 10-byte messages in testbed tb-fast.

96 5.3. Atomic Broadcast Analysis

Figures 5.6, 5.7, and 5.8 show the performance for testbed tb-fast with

100-byte, 1-Kbyte and 10-Kbyte message payloads, respectively. Besides

revealing the obvious impact of greater payload sizes on the performance,

these figures show that the bandwidth becomes increasingly important as

the payload size becomes larger. For 100-byte messages, the maximum

throughput decreases 1.15 times from 1000 Mbps (2800 msgs/s) to 100

Mbps (2400 msgs/s), and 2.66 times from 100 Mbps (2400 msgs/s) to 10

Mbps (900 msgs/s). For 1-Kbyte messages this drop is even more drastic.

It decreases 1.8 times from 1000 Mbps (2200 msgs/s) to 100 Mbps (1200

msgs/s), and 10 times from 100 Mbps (1200 msgs/s) to 10 Mbps (120 ms-

gs/s). Finally, for 10-Kbyte messages the throughput decreases 3.4 times

from 1000 Mbps (440 msgs/s) to 100 Mbps (130 msgs/s), and 10 times

from 100 Mbps (130 msgs/s) to 10 Mbps (13 msgs/s). It seems that the

network bandwidth only becomes a serious performance bottleneck when

the it approaches very small values (i.e., 10 Mbps) or the message payloads

become relatively large (i.e., 1 KB and 10 KB).

Finally, Figures 5.9 and 5.10 compare the protocol performance on both

testbeds with similar bandwidth values. The purpose is to solely compare

the impact of the individual node computational power on the protocol

performance. As can be easily observed, testbed tb-fast clearly outper-

forms tb-slow. There are other factors which can justify this difference.

The network switch was an obvious candidate, but it must be ruled out

since measurements with similar parameters were taken in testbed tb-fast

using the network switch of tb-slow (HP ProCurve 2424M) and the results

were actually just slightly better than with the network switch of tb-fast

(Dell PowerConnect 2724) in the 100 Mbps mode. With the network switch

ruled out, the remaining candidates to justify the performance difference

5. PERFORMANCE EVALUATION 97

n = 4 / failure-free executions / 100-byte messages

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

burst size (messages)

b
u

rs
t

la
te

n
c
y

(m
s
)

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

Figure 5.6: Latency and throughput for atomic broadcast with four processes,
failure-free faultload, and 100-byte messages in testbed tb-fast.

98 5.3. Atomic Broadcast Analysis

n = 4 / failure-free executions / 1-Kbyte messages

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200

burst size (messages)

b
u

rs
t

la
te

n
c
y

(m
s
)

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

Figure 5.7: Latency and throughput for atomic broadcast with four processes,
failure-free faultload, and 1-Kbyte messages in testbed tb-fast.

5. PERFORMANCE EVALUATION 99

n = 4 / failure-free executions / 10-Kbyte messages

0

10000

20000

30000

40000

50000

60000

70000

80000

0 200 400 600 800 1000 1200

burst size (messages)

b
u

rs
t

la
te

n
c
y

(m
s
)

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

Figure 5.8: Latency and throughput for atomic broadcast with four processes,
failure-free faultload, and 10-Kbyte messages in testbed tb-fast.

100 5.3. Atomic Broadcast Analysis

are the network interface cards and the computational power of the nodes.

Both seem likely to have a determinant impact on the performance, how-

ever, the relative weight of each one remains unclear.

5.3.3 Relative Cost of Agreement

On all experiments only a few agreements were necessary to deliver an

entire burst. The observed pattern was that a consensus was initiated im-

mediately after the arrival of the first message. While the agreement task

was being run, a significant portion of the burst would arrive, and so on

until all the messages were delivered. This behavior of the protocol has

the interesting effect of diluting the cost of the agreements when the load

increases.

Figure 5.11 shows the relative cost of the agreements with respect to the

total number of (reliable and echo) broadcasts that was observed in the

failure-free scenario with four processes and 100-byte messages in testbed

tb-fast. This relative cost is referred as the efficiency of the atomic broadcast

protocol. The curves for the other scenarios are almost identical, none of

the testing parameters had a noticeable effect on the efficiency. Basically,

two quantities were obtained for the transmission of every burst: the total

number of (reliable and echo) broadcasts; and the total number of (reliable

and echo) broadcasts that were necessary to execute the agreement oper-

ations. The values depicted in the figure are the second quantity divided

by the first. It is possible to observe that for small burst sizes, the cost of

agreement is high – in a burst of 4 messages, it represents about 92% of all

broadcasts. This number, however, drops exponentially, reaching as low

as 6.3% for a burst size of 1000 messages.

5. PERFORMANCE EVALUATION 101

n = 4 / failure-free executions / 100 Mbps

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200

burst size (messages)

b
u

rs
t

la
te

n
c
y

(m
s
)

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

Figure 5.9: Latency and throughput for atomic broadcast with four processes,
failure-free faultload, and 100 Mbps bandwidth in both testbeds (10-byte,
and 100-byte messages).

102 5.3. Atomic Broadcast Analysis

n = 4 / failure-free executions / 100 Mbps

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

0

2000

4000

6000

8000

10000

12000

14000

0 200 400 600 800 1000 1200

burst size (messages)

b
u

rs
t

la
te

n
c
y

(m
s
)

Figure 5.10: Latency and throughput for atomic broadcast with four
processes, failure-free faultload, and 100 Mbps bandwidth in both testbeds
(1-Kbyte, and 10-Kbyte messages).

5. PERFORMANCE EVALUATION 103

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 200 400 600 800 1000 1200

burst size (messages)

%
a
g

re
e
m

e
n

ts

Figure 5.11: Percentage of (reliable or echo) broadcasts that are due to
the agreements when a burst of messages is atomically broadcasted. Four-
process, failure-free, 1000 Mbps, and 100-byte message scenario in testbed
tb-fast.

5.4 Summary of Results

Some of the conclusions of the experimental evaluation are summarized

into the following points:

• The protocols are robust. Performance (and also correctness) is not

affected by the tested fault patterns, even when a malicious process

tries to delay the execution of the protocols.

• The protocols are efficient with respect to the number of rounds to

reach agreement. In the experiments, the multi-valued consensus

always reached an agreement with a value distinct from the default

⊥, and the binary consensus always terminated within one round.

• Since protocols do not carry out any recovery actions when a fail-

ure occurs, crashes have the effect of making executions faster. Less

104 5.4. Summary of Results

processes means less contention on the network.

• The network bandwidth only becomes a serious performance bot-

tleneck when the it approaches small values (i.e., 10 Mbps) or the

message payloads become relatively large (i.e., 1 KB and 10 KB).

• The computational capability of the individual nodes has a strong

influence on the protocol stack performance.

• On the atomic broadcast protocol, the cost of the agreements is di-

luted when the load is high. For a burst of 1000 messages, it repre-

sents only 6.3% of all (reliable or echo) broadcasts that were made.

Chapter 6

Conclusion

6.1 Conclusions

This paper presents the implementation and performance evaluation of a

stack of intrusion-tolerant protocols for distributed systems. These pro-

tocols have a set of important structural properties, such as not requiring

the use of public-key cryptography (relevant for good performance) and

optimal resilience (significant in terms of system cost). A key protocol in

the stack - binary consensus - employs randomization in order to avoid

the use of timing assumptions in the system.

Most protocols are optimized versions of the previously available algo-

rithms and were implemented in the C language. The protocol stack was

packaged as a shared library, and provides a simple interface to applica-

tions wishing to use the protocols. The goal of efficiency drove the entire

implementation process of the protocol stack.

The performance evaluation of the stack led to several insights about

randomized protocols. First, randomized binary consensus protocols that

in theory run in high numbers of steps, in practice may execute in only a

105

106 6.2. Future Work

few rounds under realistic conditions. Second, taking decisions in a dis-

tributed way and the absence of failure detectors are important to avoid

performance penalties due to the existence of faults. Besides prevent-

ing attacks against time assumptions, randomization prevents these per-

formance penalties. The protocols presented evidenced no performance

degradation with Byzantine faults, and their execution actually got faster

when some of the processes crashed. Third, with the right implementa-

tion, the impact of the agreement task in atomic broadcast protocols can

be minimal. A high number of atomic broadcasts can be done with a small

number of agreements.

Nevertheless, the main conclusion to retain from this work is that ran-

domization can, in fact, and contrary to a widespread belief in the scientific

community, be a valid solution for the deployment of efficient distributed

systems. This is true even if they are deployed in hostile environments

where they are usually subject to malicious attacks.

6.2 Future Work

The protocols presented in this thesis showed a good performance in a

local-area-network (LAN). This type of environment has some character-

istics that favor such protocols where a large number of messages are ex-

changed: it usually provides a large network bandwidth, and the latency

is considerably lower than in a wide-area-network (WAN) environment.

It would be interesting to measure the performance of randomized pro-

tocols in other types of environments such as WANs and Wireless Net-

works, and, possibly, hybrid networks with wired and wireless nodes.

Depending on the obtained results, it could be interesting to adapt the

6. CONCLUSION 107

protocols, or develop new ones to these environments.

Bibliography

AVIZIENIS, A., LAPRIE, J.-C., RANDELL, B., & LANDWEHR, C., 2004. Ba-

sic Concepts and Taxonomy of Dependable and Secure Computing. In:

IEEE Transactions on Dependable and Secure Computing, 1(1):11–33.

BEN-OR, M., 1983. Another Advantage of Free Choice: Completely Asyn-

chronous Agreement Protocols. In: Proceedings of the 2nd ACM Sympo-

sium on Principles of Distributed Computing, pages 27–30.

BRACHA, G., 1984. An Asynchronous b(n − 1)/3c-Resilient Consensus

Protocol. In: Proceedings of the 3rd ACM Symposium on Principles of Dis-

tributed Computing, pages 154–162.

BRACHA, G. & TOUEG, S., 1985. Asynchronous Consensus and Broadcast

Protocols. In: Journal of the ACM, 32(4):824–840.

CACHIN, C., KURSAWE, K., & SHOUP, V., 2000. Random Oracles in Con-

tanstinople: Practical Asynchronous Byzantine Agreement Using Cryp-

tography. In: Proceedings of the 19th ACM Symposium on Principles of

Distributed Computing, pages 123–132.

CACHIN, C. & PORITZ, J. A., 2002. Secure Intrusion-tolerant Replication

on the Internet. In: Proceedings of the International Conference on Depend-

able Systems and Networks, pages 167–176.

109

110 BIBLIOGRAPHY

CANETTI, R. & RABIN, T., 1993. Fast Asynchronous Byzantine Agreement

with Optimal Resilience. In: Proceedings of the 25th Annual ACM Sympo-

sium on Theory of Computing, pages 42–51.

CASTRO, M. & LISKOV, B., 1999. Practical Byzantine Fault Tolerance. In:

Proceedings of the Third Symposium on Operating Systems Design and Imple-

mentation, pages 173–186.

CHANDRA, T. & TOUEG, S., 1996. Unreliable Failure Detectors for Reliable

Distributed Systems. In: Journal of the ACM, 43(2):225–267.

CHOR, B. & DWORK, C., 1989. Randomization in Byzantine Agreement.

In: Advances in Computing Research 5: Randomness and Computation, pages

443–497.

CORREIA, M., NEVES, N. F., LUNG, L. C., & VERÍSSIMO, P., 2005. Low

Complexity Byzantine-Resilient Consensus. In: Distributed Computing,

17(3):237–249.

CORREIA, M., NEVES, N. F., LUNG, L. C., & VERÍSSIMO, P., 2006a. Worm-

IT – A Wormhole-based Intrusion-Tolerant Group Communication Sys-

tem. In: Journal of Systems and Software. To appear.

CORREIA, M., NEVES, N. F., & VERÍSSIMO, P., 2006b. From Consensus

to Atomic Broadcast: Time-Free Byzantine-Resistant Protocols without

Signatures. In: The Computer Journal, 41(1):82–96.

CORREIA, M., VERÍSSIMO, P., & NEVES, N. F., 2002. The Design of a COTS

Real-Time Distributed Security Kernel. In: Proceedings of the Fourth Eu-

ropean Dependable Computing Conference, pages 234–252.

BIBLIOGRAPHY 111

DOLEV, D., DWORK, C., & STOCKMEYER, L., 1987. On the Minimal Syn-

chronism Needed for Distributed Consensus. In: Journal of the ACM,

34(1):77–97.

DOUDOU, A., GARBINATO, B., & GUERRAOUI, R., 2002. Encapsulating

Failure Detection: From Crash-Stop to Byzantine Failures. In: Interna-

tional Conference on Reliable Software Technologies, pages 24–50.

DWORK, C., LYNCH, N., & STOCKMEYER, L., 1988. Consensus in the

Presence of Partial Synchrony. In: Journal of the ACM, 35(2):288–323.

FISCHER, M. J., LYNCH, N. A., & PATERSON, M. S., 1985. Impossibility of

Distributed Consensus with One Faulty Process. In: Journal of the ACM,

32(2):374–382.

FRAGA, J. S. & POWELL, D., 1985. A Fault- and Intrusion-Tolerant File

System. In: Proceedings of the 3rd International Conference on Computer

Security, pages 203–218.

GUERRAOUI, R. & SCHIPER, A., 2001. The Generic Consensus Service. In:

IEEE Transactions on Software Engineering, 27(1):29–41.

HADZILACOS, V. & TOUEG, S., 1994. A Modular Approach to Fault-

Tolerant Broadcasts and Related Problems. Tech. Rep. TR94-1425, Cor-

nell University, Department of Computer Science.

KENT, S. & ATKINSON, R., 1998. Security Architecture for the Internet

Protocol. IETF Request for Comments: RFC 2093.

KIHLSTROM, K. P., MOSER, L. E., & MELLIAR-SMITH, P. M., 1997. Solv-

ing Consensus in a Byzantine Environment Using an Unreliable Fault

112 BIBLIOGRAPHY

Detector. In: Proceedings of the International Conference on Principles of

Distributed Systems, pages 61–75.

KIHLSTROM, K. P., MOSER, L. E., & MELLIAR-SMITH, P. M., 1998. The

SecureRing Protocols for Securing Group Communication. In: Proceed-

ings of the 31st Annual Hawaii International Conference on System Sciences,

pages 317–326.

KIHLSTROM, K. P., MOSER, L. E., & MELLIAR-SMITH, P. M., 2001. The

SecureRing Group Communication System. In: ACM Trans. Inf. Syst.

Secur., 4(4):371–406.

MALKHI, D. & REITER, M., 1997. Unreliable Intrusion Detection in Dis-

tributed Computations. In: Proc.of the 10th Computer Security Foundations

Workshop, pages 116–124.

MONIZ, H., CORREIA, M., NEVES, N. F., & VERÍSSIMO, P., 2006. Ran-

domized Intrusion-Tolerant Asynchronous Services. In: Proceedings of

the International Conference on Dependable Systems and Networks (DSN’06),

pages 568–577.

NEVES, N. F., CORREIA, M., & VERÍSSIMO, P., 2005. Solving Vector Con-

sensus with a Wormhole. In: IEEE Transactions on Parallel and Distributed

Systems, 16(12).

PEASE, M., SHOSTAK, R., & LAMPORT, L., 1980. Reaching Agreement in

the Presence of Faults. In: Journal of the ACM, 27(2):228–234.

RABIN, M. O., 1983. Randomized Byzantine Generals. In: Proceedings

of the 24th Annual IEEE Symposium on Foundations of Computer Science,

pages 403–409.

BIBLIOGRAPHY 113

REITER, M., 1994. Secure Agreement Protocols: Reliable and Atomic

Group Multicast in Rampart. In: Proceedings of the 2nd ACM Conference

on Computer and Communications Security, pages 68–80.

REITER, M. K., 1995. The Rampart Toolkit for Building High-Integrity

Services. In: Theory and Practice in Distributed Systems, vol. 938 of Lecture

Notes in Computer Science, pages 99–110.

REITER, M. K., 1996a. Distributing Trust with the Rampart Toolkit. In:

Communications of the ACM, 39(4):71–74.

REITER, M. K., 1996b. A Secure Group Membership Protocol. In: IEEE

Transactions on Software Engineering, 22(1):31–42.

SCHNEIDER, F. B., 1990. Implementing Faul-Tolerant Services Using the

State Machine Approach: A Tutorial. In: ACM Computing Surveys,

22(4):299–319.

TOUEG, S., 1984. Randomized Byzantine Agreements. In: Proceedings

of the 3rd ACM Symposium on Principles of Distributed Computing, pages

163–178.

VERÍSSIMO, P., 2002. Traveling Through Wormholes: Meeting the Grand

Challenge of Distributed Systems. In: Proceedings of the International

Workshop on Future Directions in Distributed Computing, pages 144–151.

VERÍSSIMO, P. E., NEVES, N. F., & CORREIA, M. P., 2003. Intrusion-

Tolerant Architectures: Concepts and Design. In: R. Lemos, C. Gacek,

& A. Romanovsky, editors, Architecting Dependable Systems, vol. 2677 of

Lecture Notes in Computer Science.

114 BIBLIOGRAPHY

WRIGHT, G. R. & STEVENS, W. R., 1995. TCP/IP Illustrated, Volume 2: The

Implementation.

