
Testing for Race Conditions
in Distributed Systems via SMT Solving

João Carlos Pereira1(B) , Nuno Machado2 , and Jorge Sousa Pinto1

1 HASLab - INESC TEC & U. Minho, Braga, Portugal
joao.c.pereira@inesctec.pt, jsp@di.uminho.pt

2 Teradata Iberia, Madrid, Spain
nuno.machado@teradata.com

Abstract. Data races, a condition where two memory accesses to the
same memory location occur concurrently, have been shown to be a major
source of concurrency bugs in distributed systems. Unfortunately, data
races are often triggered by non-deterministic event orderings that are
hard to detect when testing complex distributed systems.

In this paper, we propose Spider, an automated tool for identify-
ing data races in distributed system traces. Spider encodes the causal
relations between the events in the trace as a symbolic constraint model,
which is then fed into an SMT solver to check for the presence of conflict-
ing concurrent accesses. To reduce the constraint solving time, Spider
employs a pruning technique aimed at removing redundant portions of
the trace.

Our experiments with multiple benchmarks show that Spider is effec-
tive in detecting data races in distributed executions in a practical
amount of time, providing evidence of its usefulness as a testing tool.

1 Introduction

Distributed systems are at the core of a wide range of applications nowadays,
namely large-scale processing and storage, service synchronization, and cluster
management [18]. Unfortunately, their inherent heterogeneity and complexity
renders testing and debugging notoriously hard. As a consequence, bugs often
surface in production, hampering the availability of services that are used every-
day by millions of people which leads to huge economic costs [28,32].

A recent study has shown that, among the different types of distributed
system bugs, data races are particularly challenging to find and debug, as they are
non-deterministic and rarely manifest [18]. A data race consists in two concurrent
accesses to the same memory location, where at least one access is a write. Such
races in distributed systems typically stem from unpredictable message arrivals
that violate the order or the atomicity of the protocols [18,20].

Over the last years, there have been multiple efforts to test and debug
data races, although prior work has mostly focused on multithreaded programs
[7,10,13,19]. Alongside, there has also been an increasing interest in applying

c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 122–140, 2020.
https://doi.org/10.1007/978-3-030-50995-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_7&domain=pdf
http://orcid.org/0000-0003-4671-4132
http://orcid.org/0000-0003-1531-1875
http://orcid.org/0000-0002-0892-3577
https://doi.org/10.1007/978-3-030-50995-8_7


Testing for Race Conditions in Distributed Systems via SMT Solving 123

formal verification techniques to prove correctness properties of distributed pro-
tocols, including the absence of race conditions [9,35]. However, these techniques
are not yet suitable for mainstream usage because they require writing lengthy
correctness proofs, which becomes a daunting task for complex systems [36].

More recently, Liu et al. proposed DCatch [20], a tool to discover distributed
concurrency bugs that operates by employing a happens-before (HB) analysis
on traces captured at runtime. DCatch was effective in finding races in popular
applications, such as Apache Cassandra and ZooKeeper, even when monitor-
ing correct executions. To keep the trace analysis tractable, DCatch relies on
static analysis and hints provided manually by the programmer to capture solely
events that lead to explicit failures. Despite that, its approach scales poorly, as
the experimental results in the paper revealed that DCatch consumes GBs of
memory for processing traces with a few MBs.

In this paper, we make the observation that distributed protocols typically
involve inter-node communication steps that occur repeatedly along the exe-
cution (e.g. the leader election protocol in Zookeeper or the node heartbeats
in Cassandra). Such redundant patterns, although useful to accurately under-
stand the behavior of the system, not only produce large event traces that are
prohibitively expensive to process, but also typically do not contribute to the
occurrence of new data races. We thus believe that removing redundant events
from traces can improve the performance and scalability of distributed system
testing solutions without compromising their accuracy.

This paper proposes Spider, an automated approach to detect data races in
distributed systems using redundancy pruning and symbolic constraint solving.
Given a trace of a distributed system under test, Spider starts by perform-
ing a trace analysis aimed at eliminating events that appear recurrently in the
execution and whose absence does not lead to any missed races. To this end,
we leverage prior work on redundancy pruning for single-machine multithreaded
applications [11] and extend it to message-passing systems.

After trimming the trace, Spider builds a causality model by encoding the
HB relationships between events into a system of constraints over logical order
variables. Finally, Spider resorts to an off-the-shelf SMT solver to compute the
pairs of conflicting events that can run concurrently and, thus, form a data race.

Prior work has shown that SMT constraint solving can be successfully applied
to reproduce [12], expose [24], and isolate [23,31] concurrency bugs in multi-
threaded programs. Alongside, SMT solving has also been employed to detect
message races in models of distributed systems that are partially synchronous
[33] or written as BPEL processes [5]. However, to the best of our knowledge,
this is the first application of SMT solvers for race detection in arbitrarily large
traces of distributed executions captured when testing unmodified source code.

We conducted an experimental evaluation of Spider using multiple bench-
marks with distributed data races. Our results show that Spider is effective
in detecting the bugs and that our redundancy pruning algorithm dramati-
cally reduces the size of the traces (especially for distributed protocols based
on rounds of message exchanges), which is paramount to scale our constraint



124 J. C. Pereira et al.

solving approach. In fact, our redundancy pruning strategy was able to remove
between 22% and 48% of the total amount of events in our experiments
(Sect. 4.3).

In summary, this paper makes the following contributions.

– We present an algorithm, which draws on prior work [11], to eliminate redun-
dant events from distributed system traces without hampering the race detec-
tion accuracy.

– We propose Spider, a tool that leverages redundancy pruning and SMT
constraint solving for finding data races in distributed systems.

– We assess the performance and effectiveness of Spider on several benchmarks
and show that our tool is capable of finding distributed races in a practical
amount of time, even for executions with thousands of events.

The rest of the paper is organized as follows. Section 2 discusses some back-
ground concepts relevant to this work. Section 3 presents Spider and details
both its architecture and modus operandi. Section 4 describes the experimen-
tal evaluation of Spider. Section 5 overviews the related work. Finally, Sect. 6
concludes the paper by summarizing its main findings.

2 Background

This section discusses some background aspects relevant to this paper, namely
the types of data races in distributed systems and Satisfiability Modulo Theories.

2.1 Data Races in Distributed Systems

In general, a data race occurs when two accesses compete for the same resource
in a non-synchronized fashion and at least one is modifying the resource. Since
there is no causal relationship enforced between the two accesses, their ordering
can vary across executions, which in some cases leads to failures.

Addressing data races in multithreaded applications has been the subject
of extensive research over the years [7,10,13,19]. Unfortunately, data races in
distributed systems are much more challenging than their single-machine coun-
terparts. A distributed system comprises multiple nodes that interact with each
other by exchanging messages, therefore concurrency occurs not only at the
thread level but also at the node level and in a much larger scale. As message
handlers often change the node’s local state and trigger additional actions (e.g.
sending a new message to another node), the timing in which messages are deliv-
ered and processed plays a decisive role in the correct execution of distributed
protocols. In fact, most concurrency bugs in real-world distributed systems stem
from the untimely delivery of messages [20]. Since those problematic execution
interleavings are typically rare, they go unnoticed during testing and only surface
in production with serious consequences.

According to the TaxDC study [18], distributed data races can be classified
into two categories based on their message timing conditions:



Testing for Race Conditions in Distributed Systems via SMT Solving 125

– Order violation: An order violation occurs when the correct execution of a
protocol in a node N requires that two events e1 and e2 run in a determined
order (say, e1 should execute before e2) but the program code wrongly permits
an execution interleaving in which e2 occurs before e1, thus causing an error.
At one node, order violations can occur due to races between: i) two message
arrivals, ii) a message arrival and a message sending, and iii) a message arrival
and a local computation. In turn, across multiple nodes, they are caused by
races between two message arrivals at different nodes.

– Atomicity violation: An atomicity violation occurs when the correct exe-
cution of a protocol in a node N requires that a critical region of events,
denoted as e1, e2, ..., en, executes atomically but the program code wrongly
permits an execution interleaving in which an external event x executes in-
between e1 and en, thus causing an error. The error would not manifest if x
happens either before or after the critical region.
At one node, atomicity violations can occur due to data races between a
message arrival and an atomic local computation, whereas across multiple
nodes they stem from races between a message arrival and an atomic global
computation.

Figure 2 illustrates several of the aforementioned scenarios of order and atom-
icity violations, which were implemented as micro-benchmarks for the experi-
mental evaluation conducted in this paper.

We now discuss SMT constraint solving, which is at the heart of our approach
to detect distributed data races.

2.2 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is the decision problem of determining
whether a first-order logical formula is satisfiable with respect to a background
theory. A background theory provides interpretations for function and predicate
symbols. For example, the theory of integers TZ provides interpretations for the
symbols 0, 1, +, − and ≤. It is possible to devise theories to reason about varied
kinds of objects, from real numbers to data structures such as arrays [30].

The SMT problem can be seen as a generalization of the SAT [3] problem
where, in the place of propositional boolean variables, formulas may have pred-
icates over non-binary variables (i.e. binary-valued functions of non-binary vari-
ables) whose interpretations are given by a background theory. As an example,
consider the following two formulas:

x + y ≤ z ∧ z ≤ x − y (1)

x ≤ 0 ∧ 1 ≤ x (2)

Assuming the TZ theory (also called Presburger arithmetic), formula (1) is
satisfiable, for example with the assignment {x = 1, y = −1, z = 1}. In turn,



126 J. C. Pereira et al.

formula (2) is unsatisfiable because there is no assignment of variables that eval-
uates the formula to true.

Programs which take as input a set of first-order formulas written in the con-
text of a background theory and determine the satisfiability of the set are called
SMT solvers. Modern SMT solvers, like Z3 [25], are already capable of solv-
ing formulations with thousand of constraints in a timely manner. Nevertheless,
there is extensive ongoing research aimed at further improving their performance
and features. SMT solvers have been employed in a wide range of applications,
from program synthesis [6] to testing and debugging [10,12,23,24,31], as seen
on this paper.

3 SPIDER

This section details Spider, a scalable approach to detect data races in dis-
tributed systems via SMT solving. We start by providing an overview of the
solution, then describe the redundancy pruning algorithm and the happens-
before SMT constraint model.

3.1 Overview

Spider assumes the existence of a trace with events captured from the execution
of a distributed system either during testing or in production. We assume that
traces contain the following events of interest, already considered in previous
work [21,26]:

– Intra-node thread events: fork, join, start and end events which respec-
tively represent the spawn of a new thread in a node, the termination of a
thread, and the start and end of a thread’s execution;

– Inter-node communication events: events send or receive representing
respectively the sending and receiving of a message through sockets;

– Intra-node events: read or write accesses to shared variables, as well as lock
and unlock events;

– Message handling region delimiters: events signaling the beginning and
the end of a message handler.

Given an execution trace, Spider operates in three steps (see Fig. 1):

1. Redundancy Pruning: Spider employs a trace analysis to identify patterns
of shared-memory accesses and message exchanges that appear replicated in
the trace. These events, once removed, do not affect the causal dependencies
of the remaining ones. In other words, these events are not relevant to the
occurrence of new races and, therefore, can be safely excluded from the trace
in order to reduce the size of the search space.

2. HB Model Generation: The pruned trace is then used to generate an SMT
model that represents the events’ logical clocks as symbolic variables and
encodes the causality dependencies as constraints over those variables. This
way, Spider is able to search for races over the entire set of possible logical
time orderings of events, regardless of the execution recorded at runtime.



Testing for Race Conditions in Distributed Systems via SMT Solving 127

Fig. 1. Execution flow of Spider.

3. Race Detection: Once the HB model is generated, Spider produces a list
of potential data race candidates. For each candidate, Spider then resorts
to an off-the-shelf SMT solver to check whether the two accesses can have
the same logical clock, meaning they execute concurrently and thus form an
actual race. The list of valid data races is output at the end of the verification
procedure.

The next sections describe each step in more detail, starting with a definition
of the system model and its terminology.

3.2 System Model

For the purposes of this paper, a distributed system is modeled as a set of nodes,
with at least one thread running at each node. Different threads communicate
through message sending, with no further assumptions on message losses and
network delays. Each thread can be viewed as a sequence of events of different
types as defined in Sect. 3.1.

Spider is able to model multiple distributed execution orderings from the
same event trace by leveraging the Happens-Before (HB) ≺hb relationship
between events. This relationship states that, for two events e1 and e2 in the
trace, if e1 ≺hb e2 then event e1 occurs before event e2 at runtime [16]. In
other words, the ≺hb relation encodes event causal dependencies in a strict par-
tial order, which means that it has the following properties: i) irreflexivity – no
event can happen before itself; ii) transitivity – if an event a happens before
an event b and b happens before another event c, then a happens before c; iii)
asymmetry – no event a can simultaneously happen before and after another
event b.

The HB relation is commonly captured by means of logical clocks (also known
as Lamport clocks) [16], which are integer values that indicate the logical time in
which events occur in the execution. If an event e1 happens-before an event e2,
then their respective logical clocks C(e1) and C(e2) will reflect that dependency:
e1 ≺hb e2 → C(e1) < C(e2).

Spider casts the problem of assigning logical clocks to events as an SMT con-
straint solving problem. However, since the time necessary to solve an SMT for-
mulation increases proportionally to its number of constraints, it is of paramount
importance to reduce them as much as possible in order to obtain a solution in a
practical amount of time. In the next section, we describe how Spider employs
redundancy pruning to achieve this goal.



128 J. C. Pereira et al.

3.3 Redundancy Pruning

The performance of Spider’s constraint solving approach is mainly determined
by the number of events present in the trace. Thus, by reducing the trace length,
one is able to decrease the time necessary to discover data races. Alas, blindly
removing events can affect the causality originally present in the execution and
lead to both false negatives and false positives during race detection [11].

To address this issue, we leverage the ReX algorithm proposed by Huang
et al. [11], which allows eliminating redundancy in multithreaded traces. In this
context, a memory access is deemed redundant if its removal from the trace does
not hamper the soundness or precision of race detectors.

ReX identifies redundant events using the concept of concurrential-subsume
equivalence. Let ei and ej be two memory accesses made by a thread t, then ei
concurrentially-subsumes ej when the following three conditions hold:

i) Lexical Equivalence: ei and ej originate from the same program instruction
and have the same access type (i.e., both are reads or both are writes);

ii) Memory Equivalence: ei and ej access the same dynamic memory location;
iii) HB-subsume: for every event ek such that tek �= tei ∧ tek �= tej : ek ≺hb ei →

ek ≺hb ej and ei ≺hb ek → ej ≺hb ek.

According to this concept, an event is considered redundant if the trace
contains one concurrential-subsuming event from the same thread or two
concurrential-subsuming events from different threads. ReX’s redundancy prun-
ing algorithm thus consists of checking, for each event in the trace, whether it is
concurrential-subsumed by other events already in the trace and, if so, the event
is eliminated.

To improve the efficiency of the analysis (especially for assessing condition
iii), ReX computes the concurrency context for each thread while processing the
trace in a stream-based fashion. The concurrency context of a thread consists
in the sequence of send and unlock events observed up to a certain point. Since
these events are the ones generating inter-thread HB dependencies, one can
easily check whether condition iii) holds for ei and ej simply by comparing
their threads’ concurrency context. If the concurrency contexts match, then ej
is concurrential-subsumed by ei, otherwise, it is not. We defer further details on
the ReX algorithm to the original paper by Huang et al. [11].

Inspired by this work, we have implemented a redundancy pruning strategy
that improves the performance of Spider’s data race detection approach while
maintaining its accuracy. Our strategy consists in a sequence of two passes over
the traces that filter redundant events.

First, we apply a version of the ReX algorithm adapted to our system’s
model, namely by augmenting the concurrency context with fork events.1 After
this pass, the trace will be left with all but redundant read and write events.

1 The original ReX algorithm does not take into consideration the existence of fork
and join events signaling the creation and joining of threads.



Testing for Race Conditions in Distributed Systems via SMT Solving 129

We then perform a second pass on the trace designed to filter out redundant
message handlers and redundant threads. These two terms can be defined by gen-
eralizing the redundancy criterion for a block of events: a block β of contiguous
events occurring in the same thread is redundant if the removal of every event
in β from the trace does not change the number of unique races detected. This
means that, in order to be redundant, β must exhibit the following properties:

i) it does not contain non-redundant read or write events2;
ii) it does not contain send or receive events;
iii) it does not contain fork events that spawn non-redundant child threads;
iv) all locks acquired in the block are released within its boundaries.

Based on the definition of redundant block, we can now define a redundant
message handler as a redundant block that starts (resp. ends) with an event sig-
naling the beginning (resp. the end) of a message handler. Alongside, a redundant
thread is defined as a redundant block comprising all events of a thread.

Note that the second pass does not remove any memory access nor does it
modify the HB relation between non-redundant events. As such, the number of
unique data races computed by an HB-based race detector after applying the
two filters will not differ from those obtained using the full original trace.

3.4 Happens-Before Model Generation

After pruning the trace, Spider builds the HB model, denoted Φhb, by i) repre-
senting each event’s logical clock as a symbolic integer variable and ii) encoding
their causal dependencies ≺hb as constraints over those symbolic variables. Con-
sidering the types of the events, the Φhb model can be defined as a conjunction
of following sub-formulae:

– Program Order: Let E1 and E2 be the logical clocks of two events e1 and
e2 occurring in the same thread context (meaning that either e1 and e2 are
outside of any message handler or both are inside the same handler). If e1
appears before e2 in the trace, then: E1 < E2.

– Thread Synchronization: assuming that Forkt, Startt, Endt, and Joint

represent, respectively, the logical clocks of the creation, beginning, end, and
join operations of a thread t, then:

Forkt < Startt (3)
Endt < Joint (4)
Startt < Endt (5)

– Message Exchange: let Sndm,l1 and Rcvm,l2 represent the logical clocks of
the events of sending a message m on location l1 and receiving m on location
l2, respectively. Then:

2 Note that the second pass is performed after ReX, so any memory access existing
in the block is guaranteed to be non-redundant. Thus, condition i) is automatically
satisfied when block β does not contain any memory accesses.



130 J. C. Pereira et al.

Sndm,l1 < Rcvm,l2 (6)

Simply put, a message can only be received if it was previously sent.
– Message Handling: let Rcvm,l denote the event logical clock for receiving

m on location l, and let H Beginm and H Endm represent, respectively, the
logical clocks signaling the beginning and the end of m’s message handler.
Then:

Rcvm,l = H Beginm (7)
H Beginm < H Endm (8)

Assuming that the handler is the region of the program responsible for processing
the message, the first constraint states that a message m cannot be processed
before it was received, as m’s handler can only begin when m arrives. Moreover,
the constraint also guarantees that no other message m′ can be processed in-
between Rcvm,l and H Beginm.

The second constraint ensures that the event signaling the beginning of an
handler occurs before the event signaling its end.

– Mutual Exclusion: let Lockt,v,l1 and Unlockt,v,l2 represent, respectively,
the logical clocks of the lock acquisition and release operations by thread t
on a synchronization variable v at locations l1 and l2. Then:

Lockt,v,l1 < Unlockt,v,l2 (9)

Moreover, when different threads compete to execute the same critical region,
we need additional constraints to ensure mutual exclusion, i.e., that only one
thread at a time accesses the variables encompassed by the lock.

Let P denote the set of locking pairs on a synchronization variable and let
(L,U) and (L′, U ′) be any two different locking pairs in P . The constraint encod-
ing the mutual exclusion between locking pairs is as follows:

∀(L,U),(L′,U ′)∈P : U < L′ ∨ U ′ < L (10)

Solving the constraint model thus consists in assigning an integer value to
each symbolic variable (i.e. to each logical clock), such that all constraints are
satisfied. In other words, by solving the model, Spider is able to obtain a feasible
execution interleaving, in which events are guaranteed to be ordered according
to their happens-before relations.

3.5 Race Detection via SMT Solving

The last step of Spider’s approach consists in using an SMT solver to identify
race conditions. Let (e1, e2) represent a pair of conflicting accesses (i.e., read-
write events to the same variable on the same node, with at least one write),
and let E1 and E2 be the respective logical clocks of e1 and e2. The pair (e1, e2)
is considered a data race iff it verifies the following race property:



Testing for Race Conditions in Distributed Systems via SMT Solving 131

race(e1, e2) ≡ Φhb ∧ (E1 = E2) (11)

The data race property Φrace requires that the logical clocks E1 and E2 to
have identical values while satisfying all other constraints in Φhb, which can only
occur when the events e1 and e2 are not causally ordered. In other words, e1 and
e2 form a data race because they do not have a happens-before relationship.

Spider resorts to an SMT solver to check whether Eq. 11 holds for each
candidate pair (e1, e2). If the solver returns satisfiable, then (e1, e2) is considered
an actual data race. Conversely, if the formula is unsatisfiable, then e1 and e2
cannot execute concurrently, hence (e1, e2) is not reported as a race.

After validating all candidate pairs of conflicting accesses, Spider outputs
the list with the data races detected in the execution trace. It should be noted
that the checking procedure is embarrassingly parallel, as each pair can be
checked independently from the others.

Handling Intra-thread Data Races. Contrary to shared-memory programs on a
single machine, in which data races can only occur in the presence of multiple
threads, distributed systems can suffer from race conditions in a single thread.
This scenario happens when there is an order violation due to a race between
the arrival of two messages processed by the same thread, where at least one of
the message handlers changes the node’s state (see Fig. 2b for an example).

Spider addresses these type of data races in a two-fold fashion. First, it
identifies message races in each thread. This is done by applying Eq. 11 to pairs
of send events. Let m1 and m2 be two different messages processed by thread
t and let Sndm1 and Sndm2 be the logical clocks of their sending events. If
race(Sndm1 , Sndm2) is satisfiable, then both messages are racing.

Second, Spider detects conflicting accesses in the message handlers by com-
puting the intersection of their read-write sets. Let rw1 and rw2 be two events
belonging to the handlers of m1 and m2, respectively, that access the same vari-
able and at least one is to write. If m1 and m2 are racing, then (rw1, rw2) form
a intra-thread data race.

4 Evaluation

To assess the benefits and limitations of Spider, we conducted an experimental
evaluation focused on answering the following four questions:

– How effective is Spider in finding data races in distributed executions?
(Sect. 4.2)

– How does the Spider’s efficiency vary with the size of the execution trace?
(Sect. 4.3)

– How does redundancy pruning affect Spider’s effectiveness and efficiency?
(Sect. 4.3)

– Is Spider sound and precise? (Sect. 4.4).

Our prototype of Spider was implemented in Java in around 1.9K lines of
code and is publicly available at https://github.com/jcp19/SPIDER.

https://github.com/jcp19/SPIDER


132 J. C. Pereira et al.

In the experiments, we used testing framework Minha [21] to collect the
execution traces, and the SMT solver Z3 (version 4.4.1) to solve the constraints.
We assumed a timeout of 2 h for constraint solving, after which the Z3 process
was killed. All the experiments were ran on commodity hardware equipped with
an Intel Core i7-8550U CPU and 16 GB of RAM.

The next sections describe the benchmarks used to evaluate Spider and
discuss the results obtained.

4.1 Benchmarks

We used the following test cases to evaluate Spider’s race detection approach.

TaxDC Micro-benchmarks. We designed five micro-benchmarks that were
inspired by real-world races on popular distributed systems, namely HBase [2]
and Hadoop MapReduce [1], as described in the TaxDC database [18]. These
micro-benchmarks contain different types of data races (see Sect. 2) and are

Fig. 2. Overview of the TaxDC micro-benchmarks with distributed data races. Boxes
on the left describe the steps of the failing executions, as well as how the bugs are
prevented. Message diagrams containing, respectively, the failing and correct executions
are depicted on the right of the figure. Data races detected by Spider are represented
by red dashed boxes. (Color figure online)



Testing for Race Conditions in Distributed Systems via SMT Solving 133

publicly available [22], therefore we believe they can be useful for the community
to evaluate similar testing tools in the future.

Figure 2 depicts the distributed data races considered in our micro-
benchmarks. Following TaxDC’s notation, in Fig. 2, each race condition is asso-
ciated with a label that indicates the real-world bug on which the test case is
inspired: the starting letter indicates the system (H stands for HBase, whereas
M stands for MapReduce) and the number denotes the issue identifier (e.g.
H5780 represents the issue 5780 in HBase’s issue tracking system). In turn, the
node subscript indicates the system component present in the original buggy
scenario: ZK stands for ZooKeeper, RS for region server, Master for master
node, AM for application master, RM for resource manager, and NM for node
manager.

Since the purpose of these benchmarks is to allow evaluating Spider’s abil-
ity to automatically detect different types of distributed data races rather than
mimicking real-world workloads and code complexity, we developed them focus-
ing solely on the aspects that contribute to the occurrence of the bug. As such,
we represent local state queries and updates respectively as reads and writes on
shared variables, and confine the behavior of each node to its message handlers.

a) Message-message race between arrival/sending (H5780). BRS

attempts to join the cluster by sending CMaster a JOIN message. However,
since it does so before receiving the security-key message from AZK , the value
null is sent to CMaster, thus causing an error.

b) Message-message race at one node (M3724). BRM schedules a con-
tainer for CNM to work on a reduce task by sending the message CONTNR.
Concurrently, AAM sends a KILL message to CNM in order to preempt the
reduce task. Since the two messages race with each other, the KILL message
can arrive before CONTNR and be ignored by CNM because no container
exists yet (i.e. container = null). This untimely message arrival will cause
CNM to later reply to AAM with a task-completion message, instead of the
expected ACK.

c) Message-message race across two nodes (M5358). AAM assigns a task
to CNM1 along with a backup speculative task to BNM2. When receiving
the success confirmation from CNM1, AAM changes the state of the task to
succeeded (tState = OK) and sends a KILL message to BNM2. However, if
BNM2 manages to finish the task and also send the confirmation message
OK to AAM prior to receiving the KILL signal, AAM will consider BNM2’s
message as a wrong state transition and throw an exception.

d) Message-compute race (M4157). In the original bug, after finishing the
task, AAM unregisters itself to BRM and starts removing its local temporary
files. Concurrently to the local cleanup, BRM sends a KILL message to AAM

for stopping its execution. As a consequence, AAM does not finish removing
all files, which might cause storage space issues in the future.
This error is illustrated in our benchmark by means of a flag isCleaning
in AAM . In particular, AAM spawns a worker thread to perform the local
cleanup. This thread sets flag isCleaning to true (resp. true) at the beginning



134 J. C. Pereira et al.

(resp. end) of the cleaning task. If AAM receives BRM ’s KILL before its
working thread completes the cleanup, an error will occur.

e) Atomicity violation (M5009). After finishing a reduce task, BNM starts
committing the results to CAM (which sets the flag commit to true). Simul-
taneously, ARM sends a KILL message to BNM , thus preempting the task
without resetting the commit states on CAM . As a result, when later BNM

reruns the task and attempts to initiate a new commit transaction, CAM fails
due to a double-commit exception. The error does not manifest if the KILL
message arrives either before or after the transaction.

Peer Sampling Service. To assess how Spider’s constraint solving time varies
with the increase in the number of events in the execution, we used the imple-
mentation of a popular peer sampling service (PSS), named Cyclon [34], already
used by prior work [21]. The goal of a PSS is to provide a gossip-based application
with a churn-tolerant logical overlay for message dissemination.

Briefly, the Cyclon protocol operates as follows. For each node of the system,
Cyclon maintains a view, which is a set of references to other nodes in the network
associated with a timestamp. To ensure that this view remains consistent with
the nodes alive at each moment, Cyclon performs periodic shuffle cycles, in
which a node A sends a subset of randomly sampled peers to another node B,
and receives a random subset of B’s entries in return. Upon receiving a shuffle
response, A replaces the oldest entries in its view by those received from B.

As noted by Machado et al. [21], the atomicity of the shuffle operation is
not guaranteed by the original description of the Cyclon. This scenario happens
when a node A requests a shuffle to a node B and, before receiving the response
from B, A receives a shuffle request from another node C. As a result, the
state of A’s view upon receiving the references from B will not be the expected,
as it was already updated with the entries sent by C. In the long term, this
atomicity violation may generate corrupted views and break the connectivity of
the dissemination overlay provided by Cyclon.

We picked the Cyclon PSS to evaluate Spider due to the possibility of obtain-
ing arbitrarily large traces simply by changing the number of nodes and cycles
used by the protocol. Moreover, we note that Cyclon is an adversarial example
for race detection, as the message race scenario described above might not man-
ifest in every the execution of the protocol and, when it does, the nodes involved
and the cycles in which the violation occurs might vary across test runs.

4.2 Effectiveness

Table 1 reports the results of running Spider over traces captured from the
benchmarks’ execution. The experiments show that Spider successfully found all
the pairs of racing instructions that caused the concurrency bugs. In particular,
for test case H5780, Spider detects that there is a data race between the read
of and the write to variable code, in steps 2 and 4. For M3724, Spider finds the
data race on variable container. For M5358, Spider is able to detect that the
state of variable tState can be concurrently modified by the message handlers of



Testing for Race Conditions in Distributed Systems via SMT Solving 135

Table 1. Race detection results without redundancy pruning. Column “Actual Races
(Unique)” reports the number of data race candidate pairs that were confirmed by
the SMT solver (the value within parenthesis indicates the amount of data races with
unique code locations). Benchmarks whose names are of the form Cyclon-XN-Y C indi-
cate that the trace was obtained from runs of the protocol with X nodes and Y cycles.
“-” means that Spider did not output any results due to timeout.

Benchmark Trace size #Trace events #Constraints #Race

candidates

#Actual

races

(unique)

Solving time

h5780 3KB 15 12 3 1 (1) <1 s

m3274 3KB 18 14 1 1 (1) <1 s

m5358 5KB 27 19 2 2 (2) <1 s

m4157 2KB 12 11 4 2 (2) <1 s

m5009 4KB 19 14 2 2 (2) <1 s

Cyclon-5N-5C 74KB 420 488 325 121 (1) <1 s

Cyclon-5N-10C 145KB 820 1464 1150 481 (1) 1.8 s

Cyclon-5N-100C 1433KB 8020 104505 101500 49835 (1) 1 h 43m

Cyclon-10N-5C 147KB 840 976 650 243 (1) <1 s

Cyclon-10N-10C 290KB 1640 2920 2300 969 (1) 7.8 s

Cyclon-10N-100C 2869KB 16040 6031 203000 - Timeout

Cyclon-100N-5C 1486KB 8401 9800 6500 2394 (1) 2min 53 s

Cyclon-100N-10C 2934KB 16401 29298 23000 9651 (1) 1 h 03min

Cyclon-100N-100C 29076KB 160400 60301 2030000 - Timeout

CNM1 and BNM2. For M4157, Spider correctly signals the flag set in the worker
thread and the flag check in the message handler as a data race. Alongside, for
M5009, Spider warns that the write to flag commit on step 2 and the read of
the same variable on step 5 are not causally ordered (because they occur on two
independent message handlers) and thus form a data race.

Finally, for Cyclon test cases, Spider is also effective in discovering problem-
atic data races in the different execution scenarios. We note, however, that all
of the races actually refer to the same unique pair of instructions in the source
code. The reason why Spider reports them individually is that they correspond
to events on different nodes and at different cycles. As shown in previous work
[11], not all data race candidates with lexical equivalence are true data races.

4.3 Efficiency

We assessed the efficiency of Spider’s data race detection technique by mea-
suring its time and space overhead, respectively in terms of constraint solving
time and trace sizes. To this end, we executed Spider with multiple configu-
rations of Cyclon, varying the number of nodes in the system and the number
of cycles of the protocol between the values {5, 10, 100}. The different config-
urations show how the constraint solving approach scales with the increase in
the number of events in the execution and, consequently, the constraints in the



136 J. C. Pereira et al.

Table 2. Race detection results with redundancy pruning.

Benchmark #Redundant

events

#Constraints #Candidate

data races

#Actual

races

(unique)

Solving time (speed up)

Cyclon-5N-5C 122 (29%) 196 62 27 (1) <1 s

Cyclon-5N-10C 296 (36%) 339 99 45 (1) <1 s

Cyclon-5N-100C 3875 (48%) 2179 135 65 (1) 8.0 s (↓ 777.5x)

Cyclon-10N-5C 207 (24%) 446 173 78 (1) <1 s

Cyclon-10N-10C 520 (32%) 838 348 149 (1) <1 s (↓ 7.8x)

Cyclon-10N-100C 7466 (47%) 5180 1028 509 (1) 4min 44 s

Cyclon-100N-5C 1980 (24%) 4437 1668 753 (1) 30.3 s (↓ 5.7x)

Cyclon-100N-10C 3719 (22%) 11893 6615 3134 (1) 22min 25 s (↓ 2.8x)

Cyclon-100N-100C 47800 (30%) 47601 350202 - Timeout

model. Table 1 reports the results of our experiments. The columns of the table
indicate, respectively, the benchmark name, the size of the trace, the number of
events in the trace, the number of constraints in the SMT model, the number
of candidate data race pairs (i.e. the number of pairs of events with conflicting
memory accesses in the trace), the number of confirmed pairs of events which
contain data races, and the time the SMT solver took to check all candidate
pairs.

The results show that, as expected, the constraint solving time increases with
the number of events in the trace. From our experiments, it also became clear
that the traces contain a large portion of redundant events, varying between
22% and 48% of the total number of events. Table 2 summarizes our observa-
tions. The columns of the table indicate, respectively, the benchmark that was
run, the number of redundant events and its percentage of the total trace, the
number of constraints in the generated SMT model after removing redundant
events, the number of candidate data race pairs, the number of confirmed pairs
of instructions which contain data races, and the time the SMT solver took to
check all candidate pairs. Table 2 shows that removing redundant events before
looking for data races can lead to big speedups in the time that the analysis
takes. Despite this fact, there’s still a timeout when Spider runs with the largest
benchmark (Cyclon-100N-100C). We believe that this problem can be mitigated
in future versions of Spider by optimizing the number of queries that are per-
formed: instead of determining wether the events are concurrent for all pairs of
candidates, we can analyse only the pairs whose corresponding code locations
haven’t yet been shown to produce concurrent events. Finally, we observe that
even though the elimination of redundancy causes a decrease in the number of
data race candidate pairs that were confirmed by the SMT solver, the number
of data races with unique code locations remains unchanged and thus, no race
was missed by removing redundant events.



Testing for Race Conditions in Distributed Systems via SMT Solving 137

4.4 Discussion About the Soundness and Precision of the Approach

In this section, we discuss why the results of data race analysis using Spider are
to be trusted. First, we observe that Spider is sound in the sense that, given any
trace, Spider is always able to find all pairs of instructions which lead to data
races present in the trace. The analysis performed by Spider always terminates
because, for each trace, there is a finite number of data race candidates, and the
SMT constraints used to encode the causality model, and to find which pairs
of instructions are concurrent, are encoded in Quantifier-Free Integer Difference
Logic (QF IDFL), a decidable fragment of first-order logic.

Furthermore, we claim, without giving a formal proof, that redundant events
are indeed of no importance for data race detection. As such, the redundancy
pruning algorithm does not affect the soundness of Spider.

Assuming that the tracing mechanism captures all relevant synchronization
events, no false positives will be reported by Spider, i.e. Spider will only report
pairs of instructions if they can indeed produce non-synchronized (and thus,
concurrent) memory accesses. Given that the redundancy pruning algorithm
does not modify the HB relation between non-redundant events, it cannot lead
to false positives being introduced in the results. As such, the elimination of
redundant events does not affect the precision of the results.

It is important to stress that Spider should be used with traces captured
during executions which exercise as much code as possible from the traced pro-
gram, since Spider can only detect a race between two instructions if there are
events in the trace pertaining to both instructions. Alternatively, Spider can be
used with multiple traces to achieve a considerable coverage of the code of the
traced program.

5 Related Work

SMT constraint solving has been successfully employed in the past to test and
debug concurrent programs. For instance, CLAP [12] uses SMT solving to replay
failing interleavings, MCR [10] and Cortex [24] to uncover latent concurrency
bugs, and Symbiosis [23,31] to isolate their root cause.

Prior research efforts have also shown that SMT constraint solving can be
useful to find races in distributed systems. However, contrary to Spider, these
solutions assume that the system is either partially synchronous [33] or modeled
as BPEL processes [5].

Like Spider, DCatch [20] also aims at detecting distributed concurrency
bugs based on an HB model. This work abstracts the causality of events into
HB rules and builds a graph representing the timing relationships of several
distributed concurrency and communication mechanisms. However, DCatch does
not attempt to remove redundant portions of the state space, thus incurring
unnecessary slowdowns during the analysis of the trace.

Another approach for testing distributed systems is model checking. Model
checkers, such as MaceMC [14], Demeter [8], MoDist [37], dBug [29] and SAMC



138 J. C. Pereira et al.

[17], systematically explore different execution orderings by permuting message
arrivals and injecting node crashes and timeouts. Despite being effective in dis-
covering failures, this approach falls short for large distributed systems due to
the exponential increase of the state space [17].

The verification of the correctness of distributed systems can also be achieved
through formal methods, typically through soundness proofs based on the notion
of inductive invariant [9,27]. Coq [4] and TLA+ [15] are frameworks that have
been used to build formal models of distributed systems and prove their correct-
ness. Verdi [35] is another verification framework based on Coq, that supports
automatic transformation of soundness proofs to assume different fault network
models. Verification techniques are useful to prove the absence of errors in exe-
cutions. Alas, they require a thorough formal model of the system, which may be
time-consuming to write and significantly longer than the implementation code.

6 Conclusion

In this paper, we propose Spider, a tool that relies on SMT constraint solving to
detect data races in execution traces captured during the testing of distributed
systems. To reduce the time necessary to solve the constraints and scale to
executions with thousands of events, Spider employs a redundancy pruning
step aimed at eliminating portions of the trace that are not relevant to the
occurrence of new races.

Our experiments with multiple benchmarks show that Spider is capable of
discovering different types of distributed data races in a timely fashion and that
our redundancy pruning algorithm is effective at reducing the size of the trace
with no consequences to the accuracy of our tool.

Acknowledgements. This work is financed by the ERDF - European Regional
Development Fund through the North Portugal Regional Operational Programme -
NORTE2020 Programme and by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia within project NORTE-01-
0145-FEDER-028550-PTDC/EEI-COM/28550/2017.

References

1. Apache Hadoop. http://hadoop.apache.org
2. Apache HBase. http://hbase.apache.org
3. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC 1971. ACM

(1971)
4. The Coq proof assistant. https://coq.inria.fr/
5. Elwakil, M., Yang, Z., Wang, L., Chen, Q.: Message race detection for web services

by an SMT-based analysis. In: Xie, B., Branke, J., Sadjadi, S.M., Zhang, D., Zhou,
X. (eds.) ATC 2010. LNCS, vol. 6407, pp. 182–194. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16576-4 13

6. Feng, Y., Martins, R., Bastani, O., Dillig, I.: Program synthesis using conflict-
driven learning. In: Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2018. ACM (2018)

http://hadoop.apache.org
http://hbase.apache.org
https://coq.inria.fr/
https://doi.org/10.1007/978-3-642-16576-4_13


Testing for Race Conditions in Distributed Systems via SMT Solving 139

7. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection.
In: PLDI 2009 (2009)

8. Guo, H., Wu, M., Zhou, L., Hu, G., Yang, J., Zhang, L.: Practical software model
checking via dynamic interface reduction. In: SOSP 2011 (2011)

9. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:
SOSP 2015. ACM (2015)

10. Huang, J.: Stateless model checking concurrent programs with maximal causality
reduction. In: PLDI 2015. ACM (2015)

11. Huang, J., Rajagopalan, A.K.: What’s the optimal performance of precise dynamic
race detection? - a redundancy perspective. In: ECOOP (2017)

12. Huang, J., Zhang, C., Dolby, J.: CLAP: recording local executions to reproduce
concurrency failures. In: PLDI 2013. ACM (2013)

13. Kasikci, B., Zamfir, C., Candea, G.: Data races vs. data race bugs: telling the
difference with portend. In: ASPLOS 2012. ACM (2012)

14. Killian, C., Anderson, J.W., Jhala, R., Vahdat, A.: Life, death, and the critical
transition: finding liveness bugs in systems code. In: NSDI 2007. USENIX Associ-
ation (2007)

15. Lamport, L.: The TLA+ home page. https://lamport.azurewebsites.net/tla/tla.
html. Accessed 10 Oct 2019

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

17. Leesatapornwongsa, T., Hao, M., Joshi, P., Lukman, J.F., Gunawi, H.S.: SAMC:
semantic-aware model checking for fast discovery of deep bugs in cloud systems.
In: OSDI 2014. USENIX Association (2014)

18. Leesatapornwongsa, T., Lukman, J.F., Lu, S., Gunawi, H.S.: TaxDC: a taxon-
omy of non-deterministic concurrency bugs in datacenter distributed systems. In:
ASPLOS 2016. ACM (2016)

19. Li, G., Lu, S., Musuvathi, M., Nath, S., Padhye, R.: Efficient scalable thread-
safety-violation detection: finding thousands of concurrency bugs during testing.
In: SOSP 2019. ACM (2019)

20. Liu, H., et al.: DCatch: automatically detecting distributed concurrency bugs in
cloud systems. SIGOPS Oper. Syst. Rev. 51(2), 677–691 (2017)

21. Machado, N., Maia, F., Neves, F., Coelho, F., Pereira, J.: Minha: large-scale dis-
tributed systems testing made practical. In: OPODIS 2019. Leibniz International
Proceedings in Informatics (LIPIcs) (2019)

22. Machado, N.: TaxDC Micro-benchmarks Repository (2018). https://github.com/
jcp19/micro-benchmarks

23. Machado, N., Lucia, B., Rodrigues, L.: Concurrency debugging with differential
schedule projections. In: PLDI 2015. ACM (2015)

24. Machado, N., Lucia, B., Rodrigues, L.: Production-guided concurrency debugging.
In: PPoPP 2016. ACM (2016)

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

26. Neves, F., Machado, N., Pereira, J.: Falcon: a practical log-based analysis tool for
distributed systems. In: DSN 2018 (2018)

27. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifica-
tion by interactive generalization. SIGPLAN Not. 51(6), 614–630 (2016). https://
doi.org/10.1145/2980983.2908118

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/tla.html
https://github.com/jcp19/micro-benchmarks
https://github.com/jcp19/micro-benchmarks
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2980983.2908118
https://doi.org/10.1145/2980983.2908118


140 J. C. Pereira et al.

28. Popper, N.: The stock market bell rings, computers fail, wall street
cringes (2015). https://www.nytimes.com/2015/07/09/business/dealbook/new-
york-stock-exchange-suspends-trading.html. Accessed 06 Aug 2019

29. Simsa, J., Bryant, R., Gibson, G.: DBug: Systematic evaluation of distributed
systems. In: Proceedings of the 5th International Conference on Systems Software
Verification, SSV 2010, p. 3. USENIX Association, Berkeley (2010)

30. SMT-LIB: Logics. http://smtlib.cs.uiowa.edu/logics.shtml
31. Terra-Neves, M., Machado, N., Lynce, I., Manquinho, V.: Concurrency debugging

with MaxSMT. In: AAAI 2019. AAAI Press (2019)
32. Summary of the Amazon EC2 and Amazon RDS Service Disruption in the US

East Region (2011). https://aws.amazon.com/message/65648/. Accessed 03 Mar
2019

33. Tekken Valapil, V., Yingchareonthawornchai, S., Kulkarni, S., Torng, E., Demirbas,
M.: Monitoring partially synchronous distributed systems using SMT solvers. In:
Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 277–293. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 17

34. Voulgaris, S., Gavidia, D., van Steen, M.: CYCLON: inexpensive membership man-
agement for unstructured P2P overlays. J. Netw. Syst. Manag. 13(2), 197–217
(2005)

35. Wilcox, J.R., et al.: Verdi: A framework for implementing and formally verifying
distributed systems. In: PLDI 2015. ACM (2015)

36. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.: Planning
for change in a formal verification of the Raft consensus protocol. In: CPP 2016.
ACM (2016)

37. Yang, J., et al.: MODIST: transparent model checking of unmodified distributed
systems. In: NSDI 2009. USENIX Association (2009)

https://www.nytimes.com/2015/07/09/business/dealbook/new-york-stock-exchange-suspends-trading.html
https://www.nytimes.com/2015/07/09/business/dealbook/new-york-stock-exchange-suspends-trading.html
http://smtlib.cs.uiowa.edu/logics.shtml
https://aws.amazon.com/message/65648/
https://doi.org/10.1007/978-3-319-67531-2_17

	Testing for Race Conditions in Distributed Systems via SMT Solving
	1 Introduction
	2 Background
	2.1 Data Races in Distributed Systems
	2.2 Satisfiability Modulo Theories

	3 SPIDER
	3.1 Overview
	3.2 System Model
	3.3 Redundancy Pruning
	3.4 Happens-Before Model Generation
	3.5 Race Detection via SMT Solving

	4 Evaluation
	4.1 Benchmarks
	4.2 Effectiveness
	4.3 Efficiency
	4.4 Discussion About the Soundness and Precision of the Approach

	5 Related Work
	6 Conclusion
	References




