
ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

Forensic analysis of communication records

of messaging applications from physical memory

Diogo Barradas

∗, Tiago Brito , David Duarte , Nuno Santos , Luís Rodrigues

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

a r t i c l e i n f o

Article history:

Received 2 May 2018

Accepted 23 August 2018

Available online xxx

Keywords:

Digital forensics

Instant-messaging

Memory forensics

Mobile applications

Web-applications

a b s t r a c t

Inspection of physical memory allows digital investigators to retrieve evidence otherwise

inaccessible when analyzing other storage media. In this paper, we analyze in-memory com-

munication records produced by instant messaging and email applications, both in desktop

web-based applications and native applications running in mobile devices. Our results show

that, in spite of the heterogeneity of data formats specific to each application, communica-

tion records can be represented in a common application-independent format. This format

can then be used as a common representation to allow for general analysis of digital ar-

tifacts across various applications. Then, we introduce RAMAS, an extensible forensic tool

which aims to ease the process of analysing communication records left behind in physical

memory by instant-messaging and email clients.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Instant-messaging (IM) and email applications such as Face-
book’s chat and Gmail clients, respectively, are widely used
communication services that allow individuals to exchange
messages over the Internet. Given the nature of the exchanged
data, digital artifacts left by such applications may hold highly
relevant forensic value. This is particularly true if, from such
artifacts, it is possible to recover communication records of
past conversations providing information about the content
of exchanged messages, identity of communicating parties, or
time-related information.

To assist analysts in recovering such artifacts, we aim
to develop a forensic tool for the extraction of conversa-
tion records left by messaging applications in physical mem-
ory dumps . Web-based messaging applications run inside a
browser and are becoming increasingly popular since users do
not need to install them on their computers. Unfortunately,
∗ Corresponding author.
E-mail addresses: diogo.barradas@tecnico.ulisboa.pt (D. Ba

david.duarte@tecnico.ulisboa.pt (D. Duarte), nuno.m.santos@tecnico.ul

https://doi.org/10.1016/j.cose.2018.08.013
0167-4048/© 2018 Elsevier Ltd. All rights reserved.

Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
communication records exchanged in web-applications are
not stored in desktops’ persistent storage. This fact compli-
cates the task of forensic analysts in acquiring digital ev-
idence. In contrast, while native applications (e.g. in mo-
bile devices) may leverage persistent storage, such appli-
cations’ persistent state can be tampered with or inten-
tionally deleted. By focusing on physical memory analy-
sis, our goal is to complement the functionality of exist-
ing forensic tools which focus on the analysis of persistent
state, e.g., local logs (Al Mutawa et al., 2011; Yang et al.,
2016) or databases (Anglano, 2014; Anglano et al., 2017),
and to address a latent need for the analysis of high-level
data found lingering in memory dumps (Simon and Slay,
2009).

Although prior work has employed memory forensic tech-
niques on web-messaging applications, existing tools tend to
be highly application-dependent. For example, Wong et al.
present techniques that allow for the recovery of digital ar-
tifacts for the Facebook messaging service (Wong et al., 2011).
However, the proposed techniques cannot directly be applied
rradas), tiago.de.oliveira.brito@tecnico.ulisboa.pt (T. Brito),
isboa.pt (N. Santos), ler@tecnico.ulisboa.pt (L. Rodrigues).

ommunication records of messaging applications from physical
18.08.013

https://doi.org/10.1016/j.cose.2018.08.013
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
mailto:diogo.barradas@tecnico.ulisboa.pt
mailto:tiago.de.oliveira.brito@tecnico.ulisboa.pt
mailto:david.duarte@tecnico.ulisboa.pt
mailto:nuno.m.santos@tecnico.ulisboa.pt
mailto:ler@tecnico.ulisboa.pt
https://doi.org/10.1016/j.cose.2018.08.013
https://doi.org/10.1016/j.cose.2018.08.013

2 c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

t
d

t
m
m
i
f
s
i
m

n
t
t
t
o
t
c
t

p
a
l
s
o
d
r
s
f
s
w
a
t
l
r

V

a
t
t
s
p
M
a
t
d
p
s
o
a

w
s
f
M
s
o
f
d
v

e
(

2

T
r
r
t
m
t

2

M
i
f
t

H
m
p
d
e
v
c
d
n

n
g
w
t
c
b
f
e
t

e
w
p

H
o
a
t
e
m
p
r
f

F
o
i
e
m
m
b
w

o multiple other applications due to the heterogeneity of
ata formats implemented by each application. Furthermore,
he fact that web-based applications run inside a browser

ay interfere with the durability of applications’ artifacts in

emory, for example due to the memory management pol-
cy implemented by the browser. Existing works on browser
orensics concentrate only on the extraction of browser-
pecific artifacts (e.g., browsing history, web cache) leav-
ng aside the recovery of application-specific artifacts which

ay provide evidence (Ohana and Shashidhar, 2013).
Past developments in the use of memory forensic tech-

iques have also been successful in the identification of ar-
ifacts produced by a small range of native mobile applica-
ions (Nisioti et al., 2017) such as Facebook Messenger. While
he extraction of communication records holds in the writing
f complex regular expressions, it is unknown whether this
echnique can be effectively applied in recovering communi-
ation records from several other popular messaging applica-
ions in the wild.

In this paper we make three key contributions. First, we
resent a digital forensics study aimed to systematically an-
lyze the digital artifacts left in memory by several popu-
ar IM and email applications. Our study covers the analy-
is of artifacts produced by web-applications, when executed

n various browsers, and also the analysis of artifacts pro-
uced by mobile applications. We successfully identified and

etrieved IM communication records from web-applications
uch as Facebook, Twitter and Skype, as well as email records
rom Outlook and a generic Roundcube email web-client. Our
tudy helps to characterize how the communication records of
eb-based messaging applications are typically represented

nd to identify how browser-specific mechanisms may affect
he durability of such records in memory. Our study also al-
ow us to identify and assess the durability of communication

ecords produced by mobile applications such as WhatsApp,
iber or Hangouts (Section 2).

Second, we introduce the design and implementation of
 forensic tool called RAMAS, which consists of a collabora-
ive and extensible framework for analysis of communica-
ion records from volatile memory. RAMAS is able to extract
uch records from multiple messaging applications and dis-
lay the extracted records on a user-friendly timeline. RA-
AS is designed in a modular fashion so as to accommodate

n ever-growing number of applications and allow collabora-
ive development and maintenance of the system by indepen-
ent forensic analysts. This goal is achieved through the im-
lementation of extraction modules: each module contains a
et of (simple) rules that allow RAMAS to extract the records
f a specific application and represent them on a common

pplication-independent format (Section 3).
Lastly, we present an experimental evaluation of our frame-

ork. To this end, we used RAMAS for conducting analy-
is over the data extracted from memory chips with sizes
ound in commodity hardware. Our evaluation shows that RA-
AS is efficient, e.g., it can process communication records

pawning from six different applications, in an 8 GB mem-
ry dump, in about three minutes. We also enact a use case
or demonstrating the usefulness of our framework’s evi-
ence presentation capabilities which may help digital in-
estigators in uncovering sophisticated correlations among
Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
vidence from several applications or across memory images
 Section 4).

. Digital forensics study

his section presents the digital forensics study that we car-
ied out in order to assess the existence of communication

ecords in physical memory produced by messaging applica-
ions. This study lays the ground for the subsequent develop-

ent of a forensic tool which enables the automatic extrac-
ion of such records.

.1. Goals of the forensics study

ore concretely, the goal of this study is to check whether and

n which conditions communication records can be obtained

rom memory dumps. In particular, our research is driven by
wo key questions:

ow are messages represented in memory? The program-
ers of web-based messaging applications are free to im-

lement them using a range of different technologies. Some
esign decisions comprise the choice of front-end and back-
nd programming languages (e.g. Javascript, PHP), others in-
olve selecting the data representation format of communi-
ation records (e.g. JSON, XML, binary). In a similar way, the
evelopers of mobile applications have a multitude of tech-
ologies available when programming such applications (e.g.
ative app development, HTML5-based apps). This hetero-
eneity in data representation and platforms may impact the
ay communication records are loaded into memory and con-

ribute for the absence of a common model of the structure of
ommunication records among different implementations of
rowsers, applications, and/or operating systems. Thus, this
act implies that a tool developed for analysing this kind of
vidence would exhibit the additional complexity of having to
ake into account such differences between record structures,
ven when analysing a single application. We aim to assess
hether there is a common model which allows for the inter-
retation of textual application data lingering in memory.

ow long do messages persist in memory? The persistence
f in-memory data structures pertaining to a given web-
pplication may be affected by the browser where the applica-
ion runs. First, we must ascertain whether the browser runtime
nvironment imposes limitations on the ability to recover com-
unication records from physical memory. In particular, to

rovide the interaction with web-applications, web-browsers
ely on different layout engines (e.g. Blink, Gecko) which af-
ect the way a browser hosts, renders or executes web content.
urthermore, different user interactions may trigger the erasure
r replacement of potential evidence in volatile memory. For

nstance, data pertaining to a given web-application may be
victed shall a user navigate to a different browser tab or ter-
inate her browsing session. Finally, modern browsers imple-
ent private browsing execution modes which enables users to

rowse the web while disabling both the browsing history and

eb cache. This feature is implemented by popular browser
ommunication records of messaging applications from physical
18.08.013

https://doi.org/10.1016/j.cose.2018.08.013

c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x 3

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

vendors and is known under different aliases, such as Incog-
nito, InPrivate or PrivateBrowsing. We must evaluate whether
the use of private browsing may compromise the existence of
digital artifacts lingering in memory.

Assessing the durability of digital artifacts in memory
when considering the inspection of mobile applications also
presents itself as an interesting endeavour. In fact, since
these applications are often executed in resource-constrained
devices, it is expected that mobile operating systems ap-
ply disparate low-level mechanisms for performing memory
management and possibly foster a swift eviction of digital ar-
tifacts present in memory. Determining whether communica-
tion records can still be recovered after closing an application
or blocking the mobile device is another key aspect that must
be evaluated.

2.2. Analysis of web-based applications

The ongoing shift from desktop-based to web-based appli-
cations can complicate the task of digital investigators in
getting access to evidence stored locally (Simon and Slay,
2009). Although browsers may log some data about web-
searches or history, communication records exchanged in
web-applications are not typically kept on disk. Fortunately,
even if significant evidence cannot be successfully obtained
from the analysis of static media, it is possible that digital
investigators can resort to the inspection of physical mem-
ory in order to pinpoint otherwise inaccessible communica-
tion records. Next, we detail a study over the ability to retrieve
communication records left lingering in memory by messag-
ing web-applications.

2.2.1. Experimental methodology
We performed an experimental study of several web-based
messaging applications to investigate whether and in which
conditions messages can be obtained from memory. In par-
ticular, we analyzed digital artifacts concerning IM records
for Facebook’s chat, Facebook Messenger’s chat, Skype, Twit-
ter’s Direct Messages, Google Hangouts, WhatsApp, Telegram,
and Trillian. We also analyzed communication records of three
email web-clients: Outlook, Roundcube, and Gmail.

These applications were tested on different browsers:
Google Chrome, Mozilla Firefox, Opera, Microsoft Edge, and Sa-
fari. Tests for each browser were conducted for both private
and non-private browsing sessions. For our tests, every web-
application was used in a freshly generated browser tab. We
have conducted our experiments in three widely used desk-
top operating systems: Windows 10, Ubuntu 16.04, and ma-
cOS Sierra. Each operating system was deployed in VirtualBox
5.1.8 virtual machines with 1GB of RAM. We acquired memory
dumps from all systems through atomic virtualization-aided
methods. Each virtual machine was restarted between sepa-
rate test runs.

For each individual test, we conducted a predefined set of
actions that capture real world usage of each web-application:

• Instant-Messaging test run: A user performs login in an IM
web-application and sends two messages to a given recip-
ient. The user also browses through existing contacts and
Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
inspects the current conversation, as well as past conver-
sations (by navigating back and forth between conversa-
tions or by opening different chat windows inside the same
browser tab). The aim of this set of actions is to retain rele-
vant data in memory, while simulating a typical use of this
kind of applications.

• Email test run: A user performs login in her webmail client
and browses her inbox and outbox. This allows us to sim-
ulate a common use-case for these applications and later
check which digital artifacts were retained in memory.

Simulated user interactions: Investigators may miss out the
opportunity to get access to the target machine while a sus-
pect is still logged in a given account. We assess four differ-
ent sequences of actions a user may perform after conclud-
ing a session within the web-application, before we have the
opportunity of acquiring a memory dump of the system. We
consider the following sequences of actions, sorted in an in-
creasing fashion according to their expected intrusiveness level
(IL) with the artifacts we are concerned with:

• (IL1) Logout;
• (IL2) Logout and navigate to a webpage in a different

browser tab;
• (IL3) Logout and navigate to a webpage in the same browser

tab;
• (IL4) Logout and close the tab/browser.

We contemplate these degrees of intrusiveness according
to the inner architecture of existing browsers. In all tested
browsers, each tab runs in a separate process which is respon-
sible for rendering a page’s content. As an example, we re-
fer to the recent Mozilla’s Electrolysis project (Mozilla, 2015).
In this setting, the browser’s parent process manages tabs
and the core browser functionality. This architecture brings
several advantages, such as providing inter-tab data security,
isolate crashes in individual tabs, and maintaining the over-
all browser’s responsiveness (Charlie Reis, 2008). According to
this description, we expect IL1 and IL2 sequences to be the
least intrusive ones, since the tab state after logout is expected
to be preserved. In contrast, the IL3 sequence may affect the
content of the memory allocated to the tab where the mes-
saging service was used, possibly causing the eradication of
evidence. Lastly, we expect the IL4 sequence to be the most in-
trusive one, since the OS shall reclaim the memory associated
to the tab/browser process, possibly wiping out any artifact
that could have been left behind by the application.

Extraction methodology: To assess whether a given communi-
cation record was retained in memory and to pinpoint meta-
data structures surrounding it, the messages sent in each test
run act like keywords for enabling posterior search. To look for
these keywords, we begin by extracting the strings contained
in the memory dump with the strings command-line util-
ity, followed by a grep search to match the strings which con-
tain a chosen keyword. Similarly, we attempt to match email
records by searching email addresses known to be present in
the client’s inbox/outbox. A communication record is retrieved
if the identified metadata enables for the collection of the tu-
ple 〈 Timestamp, Author, Recipient, Message 〉 , at least.
ommunication records of messaging applications from physical
18.08.013

https://doi.org/10.1016/j.cose.2018.08.013

4 c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

Table 1 – Feasibility of recovering web-based messaging application records from different browsers.

Web-Application Browser

Google Chrome
v55.0

Mozilla Firefox
v50.0.1

Opera
v42.0

Microsoft Edge
v38.14393.0.0

Safari
v10.1

Facebook � � � � �

Messenger � � � � �

Skype � – � � �

Twitter � � � � �

Hangouts – – – – –
WhatsApp – – – – –
Telegram – – – – –
Trillian – – – – –
Outlook � – � � �

Roundcube � � � � �

Gmail – – – – –

Fig. 1 – Facebook recently sent message data fields.

Fig. 2 – Twitter received message data fields.

2
T
w
n
f
u
b
r

t
s
i
b
i

r
o

b
t
s

t
c

w

a

t
b
T
w
t
o
t
c
h
g

Below, we present our main findings of this study.

.2.2. Message representation

able 1 depicts a summary of our analysis for several popular
eb-applications and web-browsers. Results show that it was
ot possible to retrieve any structured communication record

rom Gmail, Hangouts, WhatsApp and Telegram, which leads
s to conjecture that these applications may make use of a
inary data representation format which can not be directly
ecovered in the form of strings.

For all the remaining applications under test we were able
o find messages with accompanying high-level metadata
tructures in the form of strings. For instance, we can observe
n Figs. 1 and 2 two digital artifacts left in memory by Face-
ook chat and Twitter Direct Messages. In these cases, enclos-

ng metadata was found either in the form of JSON or HTML,
espectively. Albeit the metadata structures lingering in mem-
ry use a different data format and exhibit different fields,
Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
oth follow a similar model which may be used to reconstruct
he tuple 〈 Timestamp, Author, Recipient, Message 〉 which we con-
ider a communication record. In the case of Facebook chat,
he metadata fields present in Fig. 1 allow us to easily re-
onstruct the full 〈 Timestamp, Author, Recipient, Message 〉 tuple,
here 1.A corresponds to Message , 1.B to Author , 1.C to Recipient

nd 1.D to the message Timestamp .
The example in Fig. 2 helps to identify an edge-case on

he reconstruction of communication records. While 2.C can

e easily matched with Message field and 2.D to the message
imestamp , 2.B does not provide enough information to state
hether the identified Twitter alias corresponds to either Au-

hor or Recipient . However, 2.A clearly specifies the direction

f the message. Thus, the record in Fig. 2 suggests it refers
o a message where 2.B specifies its Author . The message Re-
eiver would then consist of the account which the suspect
as logged-in to and which can be known either by previously
athered intel or other data structures residing in memory. We
ommunication records of messaging applications from physical
18.08.013

https://doi.org/10.1016/j.cose.2018.08.013

c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x 5

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

experimentally verified that, for outbound messages, the 2.A
field would mark the Twitter Direct Message as sent .

Additionally, we found that the structure of communi-
cation records remains the same for each web-application
across different browsers and operating systems. This ob-
servation reinforces our conjecture that the leakage of
high-level data into memory is caused by the way web-
applications are built, as the structure of high-level records
present in memory is not tied to the particular imple-
mentation of a browser or an operating system’s inner
workings.

2.2.3. Message durability
We now ascertain how the use of different browsers and op-
erating systems, as well as the execution of intrusive actions
affects the recovery of communication records. As shown
in Table 1 , we retrieved communication logs with all tested
browsers. However, we note that for experiment IL1 we col-
lected a smaller amount of messages when using Firefox,
Edge, or Safari rather than when using Chrome or Opera. A
possible explanation for this fact is that both Chrome and
Opera are based on Chromium’s codebase and may share im-
plementation details which favour the preservation of a tab’s
resources in memory.

Browsers may implement different mechanisms for re-
freshing the contents of volatile memory, evicting the re-
sources of background tabs and favouring those of the fore-
ground tab. To check whether this fact affects the recovery
of communication records, we conducted experiment IL2 . Our
results show that Chrome, Opera and Safari still retain com-
munication records in memory while Firefox and Edge have
eliminated all remnants of communication records belonging
to the tab where our test ocurred. These results are congruent
with experiment IL1 , where Firefox and Edge were also less
amenable to retain artifacts in memory.

Since modern browsers spawn a new process for manag-
ing each different tab, our initial intuition was that by clos-
ing a tab or by killing the browser, the opportunity to gather
communication records would cease to exist. As it stands, for
experiment IL4 , we were not able to retrieve any communica-
tion record when performing this experiment over Windows
10. Upon closing a tab or killing the browser process, the op-
erating system swiftly reclaimed the process memory back,
thwarting high-level data inspection. Interestingly, when con-
ducting the same experiments over Ubuntu 16.04 and macOS
Sierra, we were able to retrieve communication records from
memory after executing such intrusive actions.

Opposed to our initial expectations, navigating to differ-
ent webpages in a given tab has triggered the most changes
on volatile memory contents. Albeit we were able to recover a
small number of high-level records in Ubuntu 16.04 and ma-
cOS Sierra, no records were recovered when conducting ex-
periment IL3 in Windows 10. In fact, the sequence of actions
performed in experiment IL3 fosters the replacement of older
resources kept in memory in favour of more recent data. Thus,
possibly useful evidence is discarded more promptly. Taking
into account the outcomes of experiments IL3 and IL4 , Linux
Ubuntu’s and macOS Sierra memory management thus seems
Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
more favourable to conduct memory analysis in the context of
our work rather than Windows 10.

Additionally, we experimentally verified that the use of pri-
vate browsing in all tested browsers does not affect the collec-
tion of targeted high-level data. No visible changes have been
observed either in the structure or the amount of communi-
cation records recovered in each test. Hence, our findings sug-
gest that some of the privacy preserving properties of private
browsing can be nullified through memory forensics.

Lastly, results show that the existence of communication
records in memory appears to be loosely dependent on the
browser/operating system in use, which leads us to infer that
our results arise from the technologies and programming
methodologies used by application/browser developers with
respect to the loading and presentation of data. Two concrete
cases are those comprising the recovery of Skype and Outlook
logs, which can be performed for all browsers tested except
Firefox when run over Windows 10.

2.3. Analysis of mobile applications

In Android, a vast majority of mobile applications logs data
into local SQLite databases. In particular, it is not uncommon
for instant messaging applications to conveniently store and
organize messaging data in these databases. Although tools
exist to automatically crawl and reconstruct communication
records from SQLite databases (Magnet Forensics, 2014), this
technique only succeeds if data is stored unencrypted, is not
tampered/erased, or the device under analysis does not lever-
age full disk encryption.

2.3.1. Experimental methodology
We selected a range of popular messaging and email client
mobile applications so as to conduct an experimental forensic
study. This study has the goal of assessing whether such appli-
cations leave traces of communication records in the memory
of mobile devices and, if so, if these can be reconstructed in
a way that enables digital investigators to extract useful ev-
idence. For this study, we analyzed the digital artifacts pro-
duced by a set of IM applications comprising Facebook Mes-
senger, WhatsApp, Viber, Signal, Twitter, Telegram, Hangouts,
and Trillian. Moreover, we inspected data produced by the
Gmail and Outlook email client applications.

Our experiments were conducted in Android 8.0. We set up
an Android emulator, by using Genymotion 2.12.0, in order to
mimic a Samsung Galaxy S8 mobile device with 4GB of RAM.
Since Genymotion relies on the use of VirtualBox to create
emulators, we resorted to the atomic virtualization-aided
method for collecting the device memory dump. The emula-
tor was rebooted between experiments. In each experiment
we conducted a set of actions aimed at reflecting the typical
usage of each mobile application. Namely, we have conducted
the Instant-Messaging test run and Email test run previously
described in Section 2.2.1 , but in each messaging application
mobile counterpart.

Simulated user interactions: The best case scenario for ana-
lyzing the communications performed by a suspect using mo-
bile applications is to seize a mobile device unlocked, or one
that does not require a PIN code. However, with the increasing
ommunication records of messaging applications from physical
18.08.013

https://doi.org/10.1016/j.cose.2018.08.013

6 c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

Table 2 – Feasibility of recovering messaging records from different mobile applications in Android OS.

Application Messenger WhatsApp Viber Signal Twitter Telegram Hangouts Trillian Gmail Outlook

Recovered Records � � � – � – � – � –

Fig. 3 – Viber received message data fields.

c
t
u
e

f

p
a
e

t
m
i
e
m
p

E
u
n
t
p

2
T
m
d
t
i

W
f
p
c
r
c

a
o
i
a

Fig. 4 – WhatsApp received message data fields.

t
G
r
o
G

a
s
b

i
a
h
i
c
3

T
n
p
c
fi
n

i
a
s
s
e
w
s

t
n
t
r

a
s

2
I
c
t

v
a
o
r

A

oncerns in user privacy, it is unlikely that digital investiga-
ors will be able to commonly seize mobile devices with an

nlocked screen and manually sweep through the messages
xchanged by a suspect.

In our experimetns, we simulate two sequences of actions
ound to be common usage patterns of mobile applications,
rior to the acquisition of a memory dump of the device. These
ctions are sorted in an increasing fashion according to their
xpected intrusiveness level (IL):

• (IL1) Exchange messages/browse email inbox, navigate to
Android’s home screen and lock the device;

• (IL2) Exchange messages/browse email inbox, close the ap-
plication, navigate to Android’s home screen and lock the
device.

The presented intrusiveness levels allow us to characterize
he digital artifacts left in memory after the common use of

obile applications, having these either continuing being run

n the background or being shutdown. In the context of our
xperiment, we expect (IL2) to trigger memory management
echanisms which foster the eviction of digital artifacts com-

rising communication records.

xtraction methodology: The methodology for pinpointing
seful digital artifacts in memory and to reconstruct commu-
ication record is the same as detailed in Section 2.2.1 . Essen-

ially, we extract the strings present in the memory dump and

erform a search for keywords present in a given message.

.3.2. Message representation

able 2 summarizes the results of obtaining structured com-
unication records from the diverse mobile applications un-

er test. Our results show that we are able to obtain struc-
ured communication records from the majority of messag-
ng applications under test, including Facebook Messenger,

hatsApp, Viber, Twitter, and Google Hangouts, as well as
rom Gmail email client. Contrary to the aforementioned ap-
lications, Signal, Telegram, Trillian, and the Outlook email
lient were found not to load into memory a structured

epresentation of data which allowed for the extraction of
ommunication records.

Figs. 3 and 4 depict the digital artifacts pertaining to Viber
nd WhatsApp, respectively, found to be lingering in mem-
ry. In both cases, metadata was found not to be enclosed

nside JSON or HTML alike structures, but represented in an

pplication-dependent data structure. This observation is also
Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
rue for the remaining applications with the exception of the
mail email client where, interestingly, the communication

ecords metadata was enclosed within HTML artifacts. This
bservation may be explained due to the fact that the Android

mail application includes an HTML rendering engine.
In contrast to the in-memory representation of web-based

pplications explored in Section 2.2 , the results of our study
how that the digital artifacts left in memory by native mo-
ile applications are substantially less detailed. For instance,

n Fig. 3 , we can observe that Viber’s communication records
re represented in fairly small strings, where metadata fields
ave no telltale delimiters. Even in the absence of such delim-

ters, 3.A can be easily matched with the Message field, field 3.B

an be matched to the message’s Author username, and field

.C contains the Author phone number (obscured in our figure).
he inclusion of a Timestamp field in Viber’s digital artifact is
ot clearly identifiable. In a similar way, the digital artifacts
roduced by WhatsApp only allow for the extraction of partial
ommunication records. We can observe in Fig. 4 that identi-
able fields consist of the Author field composed by a phone
umber (4.A), and by the Message field (4.B).

The previous examples show that, as opposed to the major-
ty of metadata-rich digital artifacts produced by web-based

pplications, native mobile applications generate significantly
hortened digital artifacts. While these artifacts may be in-
ufficient to reconstruct the full 〈 Timestamp, Author, Recipi-
nt, Message 〉 tuple, these can still convey useful information

hich digital investigators may be able to correlate with other
ources of data.

In addition, our analysis reveals that it is possible to re-
rieve communication records from several applications run-
ing on mobile devices, as opposed to these same applica-

ions’ web-based counterparts. For instance, we were able to
etrieve communication records from WhatsApp, Hangouts,
nd Gmail mobile versions, while such extraction was not pos-
ible in the respective web-applications (Section 2.2).

.3.3. Message durability
n our study, we determined that it is possible to retrieve
ommunication records when the mobile application is ei-
her open (IL1) or closed (IL2) after locking the mobile de-
ice. Similarly to our experiments with Linux Ubuntu 16.04
nd macOS Sierra, our findings suggest that Android’s mem-
ry management policies also do not swiftly evict application-
elated data from memory when applications are closed.
s shown in Section 2.3.2 , this fact allows for the retrieval
ommunication records of messaging applications from physical
18.08.013

https://doi.org/10.1016/j.cose.2018.08.013

c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x 7

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

HTML Builder

Metadata

PreProcessing

Start Delimiters

End Delimiters

Mediator

Forensic
Timelines

Database
Queries Module

Installer

Module List

Fig. 5 – RAMAS architecture.

of communication records pertaining to multiple messaging
applications.

2.4. Lessons learned

The outcomes of our study indicate that the recovery of com-
munication records from physical memory is a viable path for
uncovering otherwise ephemeral evidence. We were able to
retrieve high-level data from some of the most popular mes-
saging applications used today, which motivates the need to
develop specialized tools to recover evidence for the unfolding
of digital investigation cases. Unfortunately, the heterogeneity
of data structures found in memory significantly increases the
burden of digital investigators with the task of building and
maintaining a wealth of pattern matching expressions to au-
tomatically extract available evidence from memory dumps.

Given this fact, we suggest that a useful tool for the inspec-
tion of communication records lingering in memory should
provide the ability to easily generate and maintain such
matching expressions. In the next section, we describe the de-
sign and implementation of a novel forensic framework with
the goal of recovering communication records from physical
memory. Our framework aims at alleviating digital investiga-
tors from the hindrances associated to the generation and
maintenance of complex regular expressions which can then
be used for the extraction of evidence from digital artifacts.

3. RAMAS framework

This section presents RAMAS, a forensic tool for the extraction
of communication records from memory dumps 1 .

3.1. Design goals

We built RAMAS according to four design goals:

Simple design of extraction modules: The design of new extrac-
tion modules (composed of string matching patterns) should
be easy to perform. Practitioners should be able to contribute
1 RAMAS stands for “RAM Analysis System”.

Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
to the RAMAS framework without the need of being familiar
with a particular programming language.

Simple sharing/update of extraction modules: Modules
should be easily upgradable, without the need to change
RAMAS’ core functionality. It should be straightforward
for practitioners to share and advertise newly developed
modules.

Organized case management: The number of seized machines
in computer forensics cases may scale to large numbers. To
avoid extra work in managing data pertaining to several cases,
RAMAS should provide an integrated way to organize the col-
lected memory images and store the retrieved high-level data.

Simple inspection of results: RAMAS should provide a simple
interface to visualize extracted communication records, sup-
port queries on the recovered data, and aid investigators in
disclosing complex correlations among pieces of evidence.

3.2. Architecture

We implemented a RAMAS prototype for Linux. Our prototype
was written in Python and leverages a SQLitev3 database for
holding memory analysis results. Fig. 5 shows the several com-
ponents that implement the core functionality of the system,
the management of extraction modules, and the evidence pre-
sentation layer. Additionally, we deployed RAMAS as a GUI
desktop application as a further effort in making the system
attractive to users without compromising any of its function-
ality (Section 3.6).

Our framework is based on a carving approach to retrieve
matching records present in memory images. RAMAS matches
communication records by exploring their structure, retriev-
ing all meaningful data held between well defined delimiters.
Upon the collection of digital artifacts containing communi-
cation records, RAMAS processes the metadata associated to
these artifacts to isolate the sole components which convey
useful evidence to the investigator. This allows for the dis-
card of application dependent fields which are useless for an
high-level inspection of records, such as application versions.
Furthermore, other kinds of data forming the structure of a
ommunication records of messaging applications from physical
18.08.013

https://doi.org/10.1016/j.cose.2018.08.013

8 c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

Fig. 6 – Roundcube inbox entry data fields.

r
v
t
o

o
f
r
t

3

T
i
e
r
d
l
o
o
b
t
c

W
p
fi
r

i

T
t
n
P

t
o
o
s
m
n
r
a
q
d
t
t
a

v
u

r
p
i

M
i
c
m
s
M

ecord can also be discarded. A relevant example comprises
erbose HTML wrapper artifacts that compose the structure of
he communication record but offer no value from the point
f view of the analysis (see Fig. 2).

Analysis in RAMAS is conducted by running a selection

f the available extraction modules over the strings obtained

rom a given memory dump. After analysis, RAMAS stores the
ecovered data in a database and offers a simplified visualiza-
ion of the recovered records, organized by modules.

.3. Extraction modules

he forensic study conducted in Section 2 reveals that the
nternal representation of messaging clients is different for
ach application. Thus, the absence of a common internal
epresentation for diverse applications imply that it is hard to
evise a single regular expression to retrieve all relevant high-

evel data. Additionally, considering the ever-growing number
f messaging applications, there is not an obvious number
f extraction modules that should be integrated into RAMAS
efore-hand. Thus, users should be able to developnew ex-
raction modules without the need for changing the system’s
ore or to be familiar with a specific programming language.
e used Python’s ConfigParser configuration files for im-

lementing extraction modules. These easily allow us to de-
ne groups of values which suffice for delimiting an existing
ecord, as well as individual fields within the record.

Listing 1 provides the extraction module for recover-
ng Roundcube’s inbox email records, depicted in Fig. 6 .
Listing 1 – Extraction Module for Roundcube inbox records.

o
M
m
fi
t
a
i

M
e
o
o
t
t
r
t
o
e

3

D
d

Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
he first section of a module is named Info and con-
ains general information about the module, namely its
ame and a short description. The second section is called

reProcess and contains a single Keyword parameter,
he content of which shall be used to restrict the pool
f strings upon which record matching will be applied. In

ur example, we retain all strings which contain the sub-
tring add_message_row , since this keyword appears in the
etadata structure of the records we aim to extract. The two

ext sections declare the start and end delimiters of the whole
ecord as well as the individual fields that should be extracted

nd recorded in RAMAS’ database. As RAMAS attempts to se-
uentially match the declared record fields, the corresponding
elimiters must be declared in the order they appear within

he record. We note that this restriction must be enforced by
he module developer. Lastly, the Mediator section contains
 hint on how to interpret the date representation so as to con-
ert it to a common representation shared amongst all mod-
les.

Finally, writing a module for describing the communication

ecords produced by a given application is fairly simple. As
resented in Listing 1 , the module for extracting Roundcube

nbox records requires a total of 17 lines of code.

odule update: Application providers are free to update the
nternal representation of data. To ensure the retrieval of
ommunication records, investigators must update extraction

odules accordingly. Hence, the update of extraction modules
hould be straightforward. Due to the modular design of RA-
AS, the task of updating a module only comprises changes

n the module itself, not affecting any other component of RA-
AS’ core functionality. Similarly to the development of new

odules, updates are performed by changing the required

elds on the configuration file. This process may encompass
he addition/removal of some metadata field that has became
vailable/deprecated, or it may just involve the minor updates
n fields already declared in the configuration file.

odule sharing: To avoid repeated work due to concurrent
ndeavours by digital investigators, we envision the creation

f a centralized repository for helping a module’s creator and

ther practitioners to update existing modules while keeping
rack of changes. Additionally, RAMAS can check the reposi-
ory on start-up and update installed modules to their most
ecent version. While the implementation of such a reposi-
ory is deferred to future work, the codebase resulting from

ur work already allows for the manual install and update of
xtraction modules.

.4. Dealing with heterogeneous data

ue to the heterogeneity between applications, building a
atabase of all recovered records represents a challenge. We
ommunication records of messaging applications from physical
18.08.013

https://doi.org/10.1016/j.cose.2018.08.013

c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x 9

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

refer to classical problems in data integration. Firstly, we en-
counter a schema-matching problem, where the same con-
cept may be identified in different applications by differently
named fields. Secondly, we may encounter a semantic-matching
problem, where even fields with the same name can refer to
data with distinct underlying meanings. Moreover, the meta-
data available in some application may be richer than that
available in others. Thus, the identification of the minimal set
of fields that can be successfully used for unveiling correla-
tions between collected evidence is crucial for allowing RA-
MAS to execute data integration routines for providing better
query support to digital investigators.

The fields extracted by each module can represent seman-
tically equivalent metadata, although it is named differently
in distinct applications, e.g., a message timestamp may be
identified by fields with different names (date vs time). To offer
a single database schema which supports queries over records
extracted with different modules, RAMAS performs data inte-
gration to provide users a unified view of the communication
records coming from different sources. Each configuration file
declares the mapping between the heterogeneous schema of
different modules and the global RAMAS database schema.

RAMAS still faces a semantic integration problem where,
for different modules, the same concept may express differ-
ent meanings. As an example, for any two different modules,
author can represent a user’s name in some application and an
application-dependent identifier on another. Even with such a
limitation, RAMAS is able to maintain a global timeline of all
application activity conducted by a suspect. When ordering
records which use different representations for time, the con-
figuration file can contain a hint on how to convert a particular
timestamp representation to a common representation such
as UNIX time.

3.5. Memory dump processing pipeline

The strategy we followed in the creation of modules ensures a
flexible independence between these and the core functional-
ity of RAMAS. We now describe how RAMAS processes a mem-
ory dump with base in such modules. We assume that RAMAS
receives as input a file containing strings, instead of the raw
memory image acquired by first responders. To produce such
a file, investigators may resort to the standard command-line
utility strings which finds and prints text strings embedded
in binary files.

The strings file obtained from the raw memory image can
be analyzed simultaneously by a set of modules. To this end,
RAMAS dispatches a batch of modules to a pool of threads.
Threads filter the initial list of strings obtained from the mem-
ory image, generate regular expressions by gluing together the
delimiters of the fields declared in each module, and perform
the actual evidence extraction work.

The initial pre-processing of the strings file with a key-
word is justified by performance reasons. We discuss in
Section 4 the advantages of this preliminary filtering step. Af-
ter filtering the strings dump, the backend of RAMAS applies a
regular expression over the remaining strings, further restrict-
ing the existing digital artifacts to the strings comprising a
full communication record. In this second processing stage,
RAMAS introduces a countermeasure against the injection of
Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
delimiters in the content of messages. If RAMAS allowed for
such an injection, a miscreant would be able to inject an end-
delimiter of a message among the written text and hide in-
criminating messages after this artificial delimiter. To thwart
this attack on the inner workings of our system, RAMAS ap-
plies a find-and-replace method on each individual record.
RAMAS searches for the start delimiter of the message field
of a record starting from the far left and scans the end delim-
iter of the same field from the far right. When found, these
delimiters are replaced by a pseudo-random nonce which will
now act as start/end delimiter for the message field. Thus, the
only way an attacker would have to interfere with the correct
recovery of the message content would be to guess this nonce
and place it before his incriminating message.

In the third processing stage, RAMAS builds a second regu-
lar expression which scans every remaining record and retains
data according to each of the declared fields in the module
configuration file. Lastly, RAMAS saves the obtained records
in a database for further analysis. Details over the evidence
presentation layer are detailed next.

3.6. Evidence presentation layer

Upon completing the analysis of the high-level data con-
tained in a selected memory dump, RAMAS updates its global
database schema, adding the newly discovered 〈 Timestamp,
Author, Recipient, Message 〉 tuples. This global schema allows
investigators to pose queries at the database, enabling the cor-
relation of evidence obtained from the use of several modules
over a single memory image, or across different memory im-
ages pertaining to a case. A motivating example of such a sce-
nario is presented in Section 4.1 .

Our desktop application includes a GUI for providing ac-
cess to the tool’s functionalities, allowing investigators to con-
duct a typical investigation workflow, including the manage-
ment of cases, indexing memory dumps, and check the results
through simplified forensic timelines. We deployed RAMAS as
a desktop application by employing the QT framework and
corresponding PyQt bindings for operability with our existing
Python codebase. Forensic timelines are rendered through the
HTML rendering engine available in PyQt so as to enable inves-
tigators to inspect the generated timelines without the need
to resort to a separate web-browser.

We evaluated the performance of RAMAS by conducting
several experiments over the time it takes to complete a foren-
sic analysis. Particularly, we tested the impact of the number
of extraction modules applied, as well as the impact of the
memory image size on the forensic analysis performance.

In our experiments, we have exchanged messages on
four web-applications in order to conduct forensic analy-
sis: Facebook chat, Skype, Twitter and Roundcube. Each web-
application was operated in a different tab of Google Chrome
running over a Windows 10 virtual machine. For the experi-
ments reported in this section, we used the sequence of user
actions with intrusiveness level IL1 .

The analysis of communication records using RAMAS was
conducted on a 64-bit Linux Ubuntu 16.04 LTS virtual machine
equipped with four 2.6GHz Intel i7-6700HQ virtual CPUs, and
4GB of RAM.
ommunication records of messaging applications from physical
18.08.013

https://doi.org/10.1016/j.cose.2018.08.013

10 c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

Table 3 – Time elapsed (in seconds) in extracting printable
characters out of differently sized memory images.

Raw memory Strings file size Time elapsed

1 GB 82 MB 27.205 s
2 GB 157 MB 53.148 s
4 GB 255 MB 108.459 s
8 GB 233 MB 193.539 s

3

F
R
o
d
f
c
l
t

i
r
o
t
8
i
t
a
m

4

V
m
s
s
s
o
c
〈

t
S
s

m
p
t
d
a
e
s

b
f
s
d

Fig. 7 – Time elapsed on the forensic analysis of differently

sized memory images with Facebook recent messages
module - no pre-processing.

Fig. 8 – Time elapsed on the forensic analysis of differently

sized memory images with Facebook recent messages
module - with pre-processing.

a
s
t

s
t
f
i

i

s

a

V
t
u
t

r

.7. Measuring analysis time

inding printable characters: The strings file used as input for
AMAS is indeed smaller than the total size of the raw mem-
ry image under analysis. Table 3 depicts the time spent in re-
ucing a raw memory dump to its printable characters in a de-
ault execution of the strings utility. We note that strings
an be further instructed to ignore sequences of characters
ess than a given size constant, which may further reduce the
ime elapsed during the pre-processing step.

Table 3 also shows us a counter-intuitive result compris-
ng the amount of printable characters found in 4GB and 8GB

aw memory images. Interestingly, the size of the strings file
btained from the 4 GB memory image (255 MB) was larger
han that obtained from saving the strings contained in the
GB memory image (233 MB). We verified our results by acquir-
ng six new memory images using the same procedure. For all
he acquisitions, the amount of printable characters found in

 4 GB memory image was larger than that found in an 8 GB

emory image.

. Evaluation

arying memory image size: We studied the impact of the
emory image size on the elapsed time to complete a foren-

ic analysis with RAMAS. In this test, we fixed the use of a
ingle module while we vary the size of the memory dump (re-
pectively, the size of the produced strings file). Without loss
f generality, we selected a module for identifying Facebook
ommunication records depicted in Fig. 1 and extract the full
 Timestamp, Author, Recipient, Message 〉 tuple.

Fig. 7 presents the elapsed time for five executions of our
est without employing the pre-processing stage described in

ection 3.5 . Conversely, Fig. 8 presents the elapsed time for a
imilar experiment in which we employ pre-processing.

In a general way, our results suggest that the size of the
emory image negatively affects the time it takes to com-

lete a forensic analysis. The results depicted in Fig. 7 show

hat omitting a pre-processing step over the initial high-level
ata artifacts slows down the analysis time considerably. For
n 8GB memory dump, scanning for evidence lasts for about
ight seconds, threefold the time it takes for analyzing the
trings contained in a 1GB raw memory dump.

Fig. 8 shows that pre-processing the initial strings file
rings a whole lot of improvement to the performance of the
orensic analysis conducted by RAMAS. Indeed, reducing the
et of strings that a module must be matched against to the
ata related to the search domain drastically decreases the
Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
nalysis elapsed time. This performance improvement is of
everal orders of magnitude, being noticeable when analysing
he biggest memory images under test.

The attentive reader may notice the similarity in the time
pent while analysing a 4GB and an 8GB memory image, ei-
her applying pre-processing or not. In fact, the analysis per-
ormed over the strings collected from the 4GB memory image
s slower than the analysis for the strings of an 8 GB memory
mage. This is due to the fact that, albeit the 4 GB raw image is
maller than the 8 GB raw image, we were able to find a larger
mount of strings in the former.

arying the number of modules: A different experiment aims
o understand the impact of the number of applied mod-
les on the elapsed time to complete a RAMAS analysis. In

his test, we fixed the size of the memory dump in 8 GB, a
easonable amount of RAM widely deployed in commodity
ommunication records of messaging applications from physical
18.08.013

https://doi.org/10.1016/j.cose.2018.08.013

c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x 11

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

Fig. 9 – Time elapsed on the forensic analysis of an 8GB

memory image with increasing number of modules.

Listing 2 – Records gathered by several extraction modules.

hardware. For conducting this experiment, we attempted the
extraction of communication records from all of the different
Facebook, Skype and Roundcube Inbox artifacts we identified
in our forensic study in Section 2 . Accordingly, we developed
the corresponding extraction modules for each of the corre-
sponding web-application’s digital artifacts, spawning a total
of six modules. Fig. 9 presents the average elapsed time for five
executions of our test.

The results of our experiments show that running several
modules in parallel results in a sub-linear time for the com-
pletion of the forensic analysis. In fact, an analysis comprised
of six modules has completed in nearly double the time of the
time spent conducting an analysis with a single module. Our
study suggests that the most expensive operation consists in
the extraction of high-level data in the form of strings. When
compared to this preliminary effort, the actual forensic analy-
sis of the obtained data is several orders of magnitude smaller,
even when applying multiple extraction modules. This sug-
gests that RAMAS can be deemed a practical tool for aiding
digital investigators as its performance allows for evidence to
be quickly obtained, raging from seconds to a few minutes,
depending on the size of each memory image.

In this experiment, we recovered 17 Roundcube Inbox, 1
Skype and 26 Facebook records, where 5 of the latter were du-
plicates and 3 were corrupted (application-level data was in-
cluded beyond a partial message itself). We discuss possible
causes for the corruption of recovered records in Section 4.2 .

4.1. Use case

We enacted a use case for showing the benefits of maintain-
ing a global database schema which investigators can query
in order to unveil more sophisticated correlations among
data fetched from different modules/memory images. An
example of such a scenario is the identification of a chain
of command in a criminal organization. Let us assume that
law-enforcement suspects one individual (S 1) to be involved
in a criminal organization. While investigating this case, law-
enforcement storms through S 1 ’s household and acquires the
volatile memory of the hardware operated by the suspect.
Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
Upon analysing the memory image in search of 〈 Timestamp,
Author, Recipient, Message 〉 message tuples, investigators re-
cover the chat records depicted in Listing 2 .

This example sequence of messages allows investigators
to draw the following conclusions:

• S 1 was a surrogate in the organization. Investigators now
have digital evidence about the fact.

• S 2 represents a person in the organization that authorities
were not aware of. He was not the head of the criminal or-
ganization, but authorities now have a new lead to follow.

• S 3 seems to be the organization’s mastermind. Moreover,
Heisenberg appears to be his name.

Although we present a simple example, we expect the
number of records to be recovered in actual settings to be
much larger and harder to digest. By analysing modules’ out-
put in an isolated fashion, investigators could not be able to
directly reach the conclusion presented in the last bullet. The
connection between the name and organization rank can only
be established by joining and contextualizing the evidence re-
covered from both modules. Albeit this example suffices to
show the need for a global timeline for correlating data across
modules, the benefits of maintaining a single global timeline
can be further noticeable when attempting to correlate data
obtained from several different memory images, collected in
the scope of a single case.

4.2. Limitations and future work

Miscreants which are knowledgeable about the analysis pro-
cedure conducted by RAMAS may refresh the browser tabs
they use to conduct illegal activity often. This behavior may
cause communication records to be replaced/evicted, elimi-
nating traces of criminal activity.

Due to the nature of volatile memory, metadata structures
may be only partially available when scanning for evidence. If
RAMAS is unable to find the start/end delimiters of a record, it
ommunication records of messaging applications from physical
18.08.013

https://doi.org/10.1016/j.cose.2018.08.013

12 c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

w
e
i
a
u
i

m
m
a
i
a
w

W
a
i
r
t
o
f

5

T
c
p

5

T
p
t
o
b
t
s
F
p
c
o

s

r
a
t
e
l
o
t
t

W
t
s

A
i
a

o
o

v
c

N
v

i

a
t
a

a
b
c
c
c
q
d

5

C
i
l
n
p
O

2
o
s

t
d
w
a

o
i
s
t

s
t
t
i
m
r
t
t

b
f
d

2
a
c
s

i
o

F
a
a

ill either ignore a partial record or capture data beyond the
xpected limits, respectively. To overcome this limitation, an

mproved version of RAMAS may attempt to match the end of
 record and backtrace to fetch existing metadata, as well as
se heuristics for the record expected size and limit overruns

n adjacent artifacts.
Albeit RAMAS supports the integration of new extraction

odules, digital investigators are still required to write such

odules for a range of existing applications. It is possible that
n improved version of RAMAS can leverage a corpus of exist-
ng messaging record structures to learn models which could

utomatically scan memory dumps and identify record fields
here telltale delimiters exist (e.g. timestamp , msgTime).
hile such an approach is promising for the inspection of

pplications which load verbose content into memory, it
s unclear how such a method will perform in identifying
ecords composed by minimal field delimiters (e.g., Viber’s
ext{}no_sp{} depicted in Fig. 3). Evaluating the possibility
f reliably retrieving communication records in an automatic
ashion is an interesting direction for future work.

. Related work

his section describes related literature regarding memory
ollection procedures and the analysis of high-level data
resent in physical memory.

.1. Memory acquisition

he proper collection of evidence is a crucial step in any com-
uter forensics investigation. Typical computer investigations
argeted the hard drive of a suspect’s machine, ignoring all
f the data kept in volatile memory. Today, the analysis of
oth static media and physical memory allows digital inves-
igators to have a better picture of the original state of the
ystem and recover otherwise ephemeral data (Vömel and

reiling, 2012). Although the choice of a memory acquisition

rocedure should take into account the particularities of the
ase at hand, there are three main memory acquisition meth-
ds used by first responders, which are based on hardware,
oftware and virtualization (Vömel and Freiling, 2011).

Hardware-based methods can take advantage of DMA (Di-
ect Memory Access) requests through hardware cards and

llow for the collection of memory content while having lit-
le impact in the system. However, the target system must be
quipped with specialized hardware, and this technique may
ead to system crashes which poses reliability issues in mem-
ry collection. A different hardware-based method relies on

he remanence of data in DRAM and SRAM chips, whose con-
ents are kept even after several seconds of power being lost.

hile memory contents fade gradually over time, it is possible
o quickly replug the same RAM chips into another computer
ystem and acquire a memory dump (Halderman et al., 2009).
 similar technique can be applied on mobile devices by flash-

ng a recovery image responsible for dumping RAM contents
fter performing a cold boot (Müller and Spreitzenbarth, 2013).

Virtualization-based methods allow for a sound extraction

f memory by either collecting a file where the physical mem-
ry of the virtual machine is kept or by dumping it with the
Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
irtualization software. Clearly, this is only interesting if mali-
ious activity is being conducted on top of a virtual machine.
onetheless, the growing importance of Internet-hosted ser-
ices is expected to impose a partial shift on the focus of dig-
tal investigations to virtual machines.

Software-based methods for dumping physical memory
re widely available to digital investigators. However, some of
hese tools require special access privileges and cannot gener-
lly offer a full copy of the memory at a given time. Kernel level
cquisition tools overcome some of the limitations imposed

y user level collection tools, but are still unable to provide a
ompletely atomic memory image due to the activity of con-
urrent processes. Despite this shortcoming, software-based

ollection is often applicable in practice since it does not re-
uire a specific system configuration to be set in advance nor
oes it rely on specialized hardware.

.2. Memory analysis

ontrary to the analysis of static media, the analysis of phys-
cal memory typically presents a harder challenge due to the
ack of a completely deterministic organization. It should be
oted that many of the efforts dedicated to the analysis of
hysical memory focus on the recognition and inspection of
S-dependent low-level memory structures (Simon and Slay,
009; Vömel and Freiling, 2011). Conversely, high-level mem-
ry inspection strategies are typically bound to the search of
trings in the acquired dump.

Analysis approaches based on the search of strings con-
aining pertinent keywords related to a case exhibits several
rawbacks. In the one hand, investigators may be presented

ith thousands of matching records when analyzing large
mounts of data (Beebe and Dietrich, 2007). To make it worse,
nly few of those records may be directly related to the case

tself. In the other hand, if the terms contained in memory
lightly deviate from the keyword list used by the investiga-
or, some evidence will fail to be recognized.

A previous approach (Beebe et al., 2011) has addressed

ome of these drawbacks by improving string searching
hrough neural networks which learn a list of terms related

o the case beforehand. Analysis results are ordered accord-
ng to their relevance, allowing the investigator to inspect the

ost pertinent data first. Although the prototype yields good

esults with respect to the obtained recall, the neural network
akes a non-negligible time to learn the terms and is not able
o provide any context about the matched keywords.

A different technique based on regular expressions has
een successfully applied in order to extract evidence
rom strings accompanied by syntactically structured meta-
ata (Nisioti et al., 2017; Simon and Slay, 2010; Wong et al.,
011; Yang et al., 2016). This metadata provides context about
 given artifact, allowing investigators to reason about the
ontextual relevance of the data (Raghavan, 2013). For in-
tance, providing that the metadata contains a timestamp,
nvestigators can build a timeline and reconstruct a sequence
f actions took forth by a suspect.

However, this line of research presents several drawbacks.
irstly, prototypes are developed independently without en-
bling regular expression sharing or providing evidence visu-
lization interfaces; extraction capabilities are merely seen as
ommunication records of messaging applications from physical
18.08.013

https://doi.org/10.1016/j.cose.2018.08.013

c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x 13

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

Table 4 – Comparison of RAMAS with different memory forensic tools. ∗ Tool requires plugins to provide the functionality.

Forensic tool Memory
acquisition

Multiple
OS target

Live analysis Extensibility Investigation

workflow

Open-source High-level
analysis

RAMAS – � – � � � �

Volatility – � – � – � -
Redline – – – – � – �

Memoryze � – � – – – -
FATkit – � – � – – -
VAD Tools – – – – – � -
EnCase � �

∗ – � � – �

Rekall � � � � – � -
IEF � � – – � – �

proofs-of-concept. Secondly, string matching works only as
long as regular expressions match the syntax of the applica-
tion artifacts found lingering in memory. Since an artifact’s
structure may change due to application implementation de-
cisions, investigators must take the burden of updating reg-
ular expressions accordingly. In fact, this observation is sec-
onded by our findings in Section 2 , where Facebook chat’s
digital artifacts were found to be different than those previ-
ously documented (Wong et al., 2011). Lastly, previous regular
expressions developed for the extraction of communication
records lingering in memory are significantly complex (Nisioti
et al., 2017). RAMAS aims to tackle the aforementioned issues
by fostering the collaboration of digital investigators on main-
taining a platform for the analysis of high-level data residing
in memory, through the sharing of simple to build record ex-
traction modules.

To better lay RAMAS in the space of existing memory
forensic analysis tools, Table 4 depicts a comparison of sev-
eral properties exhibited by our system with those of well-
known memory forensic software. We can observe that RA-
MAS presents itself as the only open-source tool that pro-
vides an investigation workflow (including case management
and evidence visualization) and is extensible, while focus-
ing on the recovery of high-level data. Comparatively, al-
though EnCase can be extended through plugins, it remains
a proprietary and expensive tool, while Rekall focuses on
low-level analysis and fails to provide a proper investigation
workflow.

6. Conclusion

This paper described a forensic study over the digital artifacts
left behind in memory by popular web and mobile applica-
tions in current desktop and mobile devices. Our study con-
cludes that it is possible to retrieve communication records
from IM/email applications in various system configurations.

Motivated by the findings above, we have introduced RA-
MAS, a framework for the extraction of instant-messaging and
email client data from volatile memory. Our evaluation sug-
gests that RAMAS can efficiently extract and report the ex-
istence of communication records. RAMAS code is publicly
available and has been released as an open-source tool 2 .
2 RAMAS repository - https://www.tiagolb.github.io/CSF/ .

Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
Acknowledgments

This work was supported by Fundação para a Ciência e Tec-
nologia (FCT) via projects PTDC/EEI-SCR/1741/2014 (Abyss),
SFRH/BSAB/135236/2017, and UID/CEC/50021/2013 (INESC-ID),
and by Instituto Superior Técnico, Universidade de Lisboa.

R E F E R E N C E S

Al Mutawa N , Al Awadhi I , Baggili I , Marrington A . Forensic
artifacts of Facebook’s instant messaging service. Proceedings
of the international conference for internet technology and

secured transactions, 2011 .
Anglano C . Forensic analysis of whatsapp messenger on android

smartphones. Digital Investig 2014;11(3):201–13 .
Anglano C , Canonico M , Guazzone M . Forensic analysis of

telegram messenger on android smartphones. Digital Investig
2017;23:31–49 .

Beebe N., Dietrich G. A new process model for text string
searching; New York, NY: Springer New York. p. 179–191.
doi: 10.1007/978- 0- 387- 73742- _ 12 .

Beebe NL , Clark JG , Dietrich GB , Ko MS , Ko D . Post-retrieval search
hit clustering to improve information retrieval effectiveness:
two digital forensics case studies. Decis Support Syst
2011;51(4):732–44 .

Charlie R. Multi-process architecture. https://blog.chromium.org/
2008/09/multi-process-architecture.html ; 2008. Accessed:
2018-04-29.

Halderman JA , Schoen SD , Heninger N , Clarkson W , Paul W ,
Calandrino JA , Feldman AJ , Appelbaum J , Felten EW . Lest we
remember: cold-boot attacks on encryption keys. Commun

ACM 2009;52(5):91–8 .
Magnet F. The rise of mobile chat apps: recovering evidence from

Kik messenger, WhatsApp & BBM. https://www.
magnetforensics.com/mobile-forensics/the-rise-of-mobile-
chat- apps- recovering- evidence- from- kik- messenger-
whatsapp-bbm/ ; 2014. Accessed: 2018-04-29.

Mozilla. Electrolysis - Mozilla Wiki.
https://wiki.mozilla.org/Electrolysis ; 2015. Accessed:
2018-04-29.

Müller T , Spreitzenbarth M . Frost: Forensic recovery of scrambled

telephones. In: Proceedings of the international conference on
applied cryptography and network security. Springer; 2013.
p. 373–88 .

Nisioti A , Mylonas A , Katos V , Yoo PD , Chryssanthou A . You can

run but you cannot hide from memory: extracting IM evidence
of Android apps. In: Proceedings of the IEEE symposium on

computers and communications; 2017. p. 457–64 .
ommunication records of messaging applications from physical
18.08.013

https://www.tiagolb.github.io/CSF/
https://doi.org/10.13039/501100001871
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0003
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0003
https://doi.org/10.1007/978-0-387-73742-_12
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0004
https://blog.chromium.org/2008/09/multi-process-architecture.html
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0005
https://www.magnetforensics.com/mobile-forensics/the-rise-of-mobile-chat-apps-recovering-evidence-from-kik-messenger-whatsapp-bbm/
https://wiki.mozilla.org/Electrolysis
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0007
https://doi.org/10.1016/j.cose.2018.08.013

14 c o m p u t e r s & s e c u r i t y x x x (x x x x) x x x

ARTICLE IN PRESS

JID: COSE [mNS; October 24, 2018;11:47]

O

R

S

S

V

V

W

Y

D
C
d
s
a
a
a

T
C
a
L
c
i
p
r
c

D
p
L
t
t

H
w
i

N
I

U
S
a
2
v
i
v
a
f
A
r
j

a
M

L

(
S
a
T
a
o
r
o
1
A
m
m

t
r

r

m
c
c
n

H
o

hana DJ, Shashidhar N. Do private and portable web browsers
leave incriminating evidence?: A forensic analysis of residual
artifacts from private and portable web browsing sessions.
EURASIP J Inf Secur 2013;2013(1):6 https://jis-eurasipjournals.
springeropen.com/articles/10.1186/1687- 417X- 2013- 6 .

aghavan S. Digital forensic research: current state of the art. CSI
Trans ICT 2013;1(1):91–114 doi: 10.1007/s40012- 012- 0008- 7 .

imon M , Slay J . Enhancement of forensic computing
investigations through memory forensic techniques. In:
Proceedings of the international conference on availability,
reliability and security. IEEE; 2009. p. 995–1000 .

imon M , Slay J . Recovery of Skype application activity data from

physical memory. In: Proceedings of the international
conference on availability, reliability, and security. IEEE; 2010.
p. 283–8 .

ömel S , Freiling FC . A survey of main memory acquisition and

analysis techniques for the windows operating system. Digital
Investig 2011;8(1):3–22 .

ömel S , Freiling FC . Correctness, atomicity, and integrity:
defining criteria for forensically-sound memory acquisition.
Digital Investig 2012;9(2):125–37 .

ong K, Lai ACT, Yeung JCK, Lee WL, Chan PH. Facebook
forensics. https://www.fbiic.gov/public/2011/jul/
facebook _ forensics-finalized.pdf; 2011. Valkyrie-X Security
Research Group, Accessed: 2018-04-29.

ang TY , Dehghantanha A , Choo KKR , Muda Z . Windows instant
Messaging App forensics: Facebook and Skype as case studies.
PloS ONE 2016;11(3):e0150300 .

iogo Barradas is a Ph.D. student of Information Systems and

omputer Engineering at Instituto Superior Técnico, Universidade
e Lisboa. He received his BSc. (2014) and M.Sc. (2016) from the
ame institution. His research interests include network security
nd privacy, with particular emphasis on statistical traffic analysis
nd Internet censorship circumvention. He conducts his research

t the Distributed Systems Group at INESC-ID Lisboa.

iago Brito is a Ph.D. student of Information Systems and

omputer Engineering at Instituto Superior Técnico (IST) and

 researcher of the Distributed Systems Group at INESC-ID

isboa. His focus has been on cyber-security and privacy, which

orrespond to his biggest interests in this field of study. He is also
nterested in mobile computing, distributed systems and com-
uter forensics. Additionally, he is a co-founding member of Secu-
ity Team at Téecnico (STT), a security oriented team for solving
yber-security challenges at Capture The Flag (CTF) events.
Please cite this article as: Diogo Barradas et al., Forensic analysis of c
memory, Computers & Security (2018), https://doi.org/10.1016/j.cose.20
avid Duarte is a M.Sc. student of Engineering Systems and Com-
uter Engineering at Instituto Superior Técnico, Universidade de
isboa, where he also received is BSc. (2013) in Engineering Sys-
ems and Computer Engineering. He currently works at the Infras-
ructure Team at the IT department of Instituto Superior Técnico.
is main interests covers designing and implementing reactive
eb applications, with security as a first class citizen and design-

ng new infrastructures for organizations based on code.

uno Santos is an Assistant Professor of the Computer and

nformation Systems Department at Instituto Superior Técnico,
niversity of Lisbon, and a research member of the Distributed

ystem Group at INESC-ID Lisbon. His research interests span the
reas of security and trusted computing. He finished his Ph.D. in

013 at Max-Planck Institute for Software Systems / Saarland Uni-
ersity, Germany. During his PhD, he built several systems aimed at
mproving trust in cloud, enterprise, and mobile platforms. He de-
eloped novel policy-based trusted execution runtimes that take
dvantage of trusted computing hardware, namely Trusted Plat-
orm Module (TPM) in the context of cloud infrastructures, and

RM TrustZone in the context of mobile devices. His work has
esulted in the publication of multiple peer-reviewed articles in

ournals and conferences, such as ASPLOS, USENIX Security, PETS,
nd Middleware. He was the recipient of a best paper award in

iddleware’07.

uís Rodrigues graduated (1986), has a Master (1991) and a Ph.D.
1996) in Electrical and Computer Engineering, by the Instituto
uperior Técnico (IST), Universidade de Lisboa. He is a Professor
t Departamento de Engenharia Informática, Instituto Superior
éecnico, Universidade de Lisboa. From 1996 to July 2007 he served
t the Departmento de Informática, Faculdade de Ciências (Faculty
f Sciences), Universidade de Lisboa. He initiated his academic ca-
eer at the Electrotechnic and Computers Engineering Department
f Instituto Superior Téecnico de Lisboa (IST) in 1989. From 1986 to
996 he was a member of the Distributed Systems and Industrial
utomation Group at INESC. From 1997–2007, he was a (founding)
ember of the LASIGE laboratory at University of Lisbon, first as a
ember of the Navigators group and later as the leader of the Dis-

ributed Algorithms and Network Protocols group. He served as Di-
ector of the LASIGE in 2004–2005 and he served in the board of di-
ectors of INESC-ID Lisboa from 2010 to 2017. From July 2007 he is a

ember of the Distributed Systems Group at INESC-ID Lisboa. His
urrent interests include faulttolerant distributed systems, con-
urrency, replicated data management, cloud computing, dynamic
etworks, information dissemination, and autonomic computing.
e has more than 200 publications in these areas. He is co-author
f two books on distributed computing.
ommunication records of messaging applications from physical
18.08.013

https://jis-eurasipjournals.springeropen.com/articles/10.1186/1687-417X-2013-6
https://doi.org/10.1007/s40012-012-0008-7
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0013
https://www.fbiic.gov/public/2011/jul/facebook_forensics-finalized.pdf
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)31131-3/sbref0014
https://doi.org/10.1016/j.cose.2018.08.013

	Forensic analysis of communication records of messaging applications from physical memory
	1 Introduction
	2 Digital forensics study
	2.1 Goals of the forensics study
	2.2 Analysis of web-based applications
	2.2.1 Experimental methodology
	2.2.2 Message representation
	2.2.3 Message durability

	2.3 Analysis of mobile applications
	2.3.1 Experimental methodology
	2.3.2 Message representation
	2.3.3 Message durability

	2.4 Lessons learned

	3 RAMAS framework
	3.1 Design goals
	3.2 Architecture
	3.3 Extraction modules
	3.4 Dealing with heterogeneous data
	3.5 Memory dump processing pipeline
	3.6 Evidence presentation layer
	3.7 Measuring analysis time

	4 Evaluation
	4.1 Use case
	4.2 Limitations and future work

	5 Related work
	5.1 Memory acquisition
	5.2 Memory analysis

	6 Conclusion
	 Acknowledgments

	Reference

