
ARM TrustZone for Secure Image Processing on the Cloud

Tiago Brito, Nuno O. Duarte, Nuno Santos
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa

{tiago.de.oliveira.brito,nuno.duarte,nuno.m.santos}@tecnico.ulisboa.pt

Abstract—Nowadays, offloading storage and processing ca-
pacity to cloud servers is a growing trend. This happens
because high storage capacity and powerful processors are
expensive, whilst cloud services provide a cheaper, ongoing,
and reliable solution. The problem with cloud-based solutions
is that servers are highly accessible through the Internet and
therefore considerably exposed to hackers and malware. In this
paper, we design and implement Darkroom, a secure image
processing service for the cloud leveraging ARM TrustZone
technology. Our system enables users to securely process image
data in a secure environment that prevents exposure of sensitive
data to the operating system. We evaluate our system and
observe that our solution adds a small overhead to image
processing when compared to computer platforms that require
the entire operating system to be trusted.

I. INTRODUCTION

Over the latest years, the cloud has become immensely
popular due to the proliferation of numerous online services
for storage, streaming, and processing of content. However,
these services frequently handle user sensitive data which
have security and privacy requirements that are not always
properly considered by the providers of these services. In
some cases, this negligent behavior has even lead to serious
scandals such as celebrity photo [1], and user document [2]
leaks. To make matters worse, instead of trying to enforce
security protocols capable of preventing this type of acci-
dents, these providers end up stitching user contract terms
so they can be absolved of these incidents, giving a bad
reputation to cloud providers in general [3].

To secure user generated content in the cloud, such as
personal documents, images, or videos, a commonly used
approach has been to encrypt the content at the client side
before it is sent to the cloud. While this approach is effective
whenever the cloud is used for persistent storage, it can no
longer be applied in scenarios where content needs to be
processed by the cloud service. Notable examples include
cloud services such as Facebook or Instagram which apply
transformation functions to the images uploaded by the
users, for example to rescale, rotate, or reencode images.
To perform such operations, the image data must be in its
unencrypted format, point at which it may become vulnera-
ble, e.g., to an attacker that managed to exploit some critical
bug in the application code or in the operating system.

A promising alternative to encryption is to leverage
Trusted Execution Environments (TEE) in order to safely
perform image transformations at the cloud server without

Internet

Encrypted

Image

Normal World

Linux

Normal Execution Flow

System Call

SMC

ARM TrustZone Hardware

Darkroom Kernel

Crypto

Engine

Image

Processing

Engine

Secure World

(Darkroom)

Cloud Server

Image Cloud

Service

Darkroom API

Figure 1. Architecture

the need to rely on the rich operating system running
on the server. Thus, if the OS is compromised, the TEE
ensures that an attacker cannot access the memory regions
allocated to the TEE where security-sensitive images are
located. This approach has been recently adopted in many
mobile device studies, whether to provide safe storage [4],
enforce authentication mechanisms [5], [6], or provide OS
introspection and monitoring capabilities [7], [8], [9]. One
of the reasons this approach has been so popular in the
mobile landscape, has to do with ARM TrustZone [10], a
technology that allows the implementation of TEE systems
and is present in the majority of mobile device processors.

In this paper, we explore the adoption of ARM TrustZone
technology in order to provide an isolated environment
for processing images securely on the cloud. Specifically,
we present the design and implementation of Darkroom,
a system that leverages ARM TrustZone to offer a secure
image processing environment for cloud-hosted services.
Next, we start by describing the design of our system.

II. DESIGN

This section describes Darkroom, a TrustZone-based sys-
tem which allows for secure image processing on the cloud.
This system is capable of processing images without expos-
ing them to the operating system. This is done by storing
image data in encrypted form and using TrustZone-enabled
ARM processors to securely process such images in isolation
from the operating system.

Figure 1 shows the components of our solution and
represents a possible execution flow for the Darkroom
system. The flow starts in a client application, which is

represented by a mobile device. The client application sends
an encrypted image to the Image Cloud Service component,
which can store the image data locally. Both the Image
Cloud Service and the operating system run in the normal
world context of the TrustZone-enabled processor. After
uploading the image data, the client application issues a
transformation request for the image. Upon receiving a
transformation request, the Image Cloud Service sends the
encrypted image data to the secure world. It also sends the
transformation request and triggers a world switch via a
Secure Monitor Call (SMC). This SMC gives control to the
secure world which decrypts the image data and executes the
requested transformation on it. After processing, the image
is encrypted once again and sent to the normal world.

Note that we are primarily concerned about potential
security breaches resulting from software exploits to normal
world programs. In particular, we want to prevent external
attackers that manage to take over control of the applica-
tion or the operating system residing in the normal world
from violating the confidentiality of users’ images (e.g., by
leaking them out). We assume that both cloud provider and
cloud administrators are trusted. The trusted computing base
(TCB) of our system comprises the hardware platform and
the Darkroom components hosted in the secure world.

A. Rich OS Isolation Using ARM TrustZone

To isolate the rich operating system from Darkroom,
we leverage ARM TrustZone. ARM TrustZone is a secu-
rity extension present in ARM processors that provides a
hardware-level isolation between two execution domains:
normal world and secure world. Compared to the normal
world, the secure world has higher privileges, as it can access
the memory, CPU registers and peripherals of the normal
world, but not the other way around. Isolation is enforced
by checking and controlling the state of the CPU through
a NS bit, and partitioning the memory address space into
secure and non-secure regions. To perform a context switch
between the different worlds, TrustZone offers the SMC
instruction, which generates a software interrupt that is then
handled by the secure monitor. TrustZone follows a sim-
ilar approach with interrupts. Basically, Interrupt Requests
(IRQs) and Fast Interrupt Requests (FIQs) can be configured
to be either secure or non-secure interrupts. This means that
secure interrupts can only be intercepted by the secure world
and not the normal world. Both interrupt management and
memory isolation mechanisms are fundamental in guarantee-
ing peripheral access isolation between worlds. Additionally,
TrustZone features a secure boot mechanism that ensures the
integrity and authenticity of the system running in the secure
world.

B. System Deployment on ARM-based Cloud Servers

We envision Darkroom to be deployed on cloud servers
maintained by the service provider. As opposed to Intel-

based servers commonly adopted in today’s cloud infras-
tructures, Darkroom’s target servers must be based on ARM
TrustZone technology. To deploy the system, the cloud
provider must flash the firmware of its ARM servers so
that the servers bootstrap into the secure world and run
Darkroom’s setup code before switching to normal world
and loading up a rich operating system or hypervisor.

In this process, the cloud provider must generate a root key
for each server. A root key is a public key pair KR whose
private part (KR−) is bundled into the Darkroom image
right before the image is flashed onto a server’s firmware.
The private part of the root key will be accessible only
by Darkroom within the secure world and there will be
a unique root key for each cloud server. The public part
KR+ is certified by the cloud provider in order to assert the
authenticity of this key. This key is fundamental to ascertain
the authenticity of the Darkroom platform to a remote client
and to securely share secrets with the Darkroom runtime
without the need to trust the rich operating system. Note
also that, in addition to the root key, the Darkroom image
contains public keys of cloud administrators authorized to
perform some security-critical operations, e.g., setting up
image transformation functions, as explained next.

C. Setting Up Image Transformation Functions

Once a cloud server is up and running, the rich operating
system takes up control of system resources and Darkroom
is suspended until requests arise from the normal world
to perform image transformation operations (e.g., image
rescaling). To allow for additional flexibility, rather than
hardcoding transformation functions (TF) into the firmware,
these functions can be loaded dynamically by cloud admin-
istrators into the Darkroom runtime. This makes it easy to
upgrade the system with new or more efficient functions
without the need to reflash the servers’ firmware.

To support dynamic loading of transformation functions,
we must ensure that the code to be loaded is trustworthy.
This is because such code will have access to the raw image
data submitted by client applications and can potentially
compromise that data, e.g., by leaking it from the server. In
addition, we must provide mechanisms that allow transfor-
mation functions to be uniquely identified in order to ensure
that the correct transformation is applied to a given image.
Such mechanisms must be able to tolerate modifications in
the set of available transformation functions, as these can be
installed from the system.

To ensure that the transformation functions installed into
the Darkroom runtime are trustworthy, we require that
such functions are installed or uninstalled only by trusted
cloud administrators. In particular, to install a TF, a cloud
administrator must issue a load request which must be
signed by the administrator key (KA). Darkroom validates
the request against the public part of the authorized admin
key KA+ and allows the operation to proceed if the test

passes; otherwise the operation is aborted. To uninstall a
TF from the system, the corresponding unload request must
also be signed by a trusted cloud administrator. To allow
for unique identification of a given TF, Darkroom leverages
the hash of the TF binary. This binary is included into the
(signed) load request provided to Darkroom. This request
contains additional meta-data that indicates the TF name and
the type of input parameters, e.g., rotation (int degree).

D. Performing Image Transformation Operations

Normally, performing image transformations involves a
three-stage life cycle. First stage is to securely upload a
security-sensitive image from the client to the cloud server.
In this process, we must ensure that the image is encrypted
in such a way that it can only be decrypted within the
Darkroom runtime. Second stage corresponds to transform-
ing the image by invoking a transformation function of
Darkroom. Note that one or more transformations can be
chained together (e.g., rotation followed by scaling, etc.).
Third stage is to download the result of the transformed
image while allowing that only the client is able to decrypt
the resulting image. In addition, the client must be able
to trace the authenticity of the transformation sequence in
order to ensure that the resulting image derives from a valid
sequence of transformations properly applied to the original
image submitted by the client to the cloud provider.

But before explaining these stages, we must describe a
necessary pre-configuration step. In particular, Darkroom
must be set up with a public key pair called service key
(KS). The role of this key is to associate the image transfor-
mation operations to the context of a specific cloud service
(whose logic runs in the rich OS and client). Furthermore,
it also aims to allow image transformations to be performed
on any of the cloud servers properly configured with a root
key. To this end, cloud administrators must generate a public
key pair KS and securely load it to the Darkroom runtime
of each cloud server. Security is achieved by mutually
authenticating the cloud administrator’s key with the server’s
root key. Once the service is loaded into each server, it is
now possible to perform the following three stages:

1. Image upload: To securely upload the image to the cloud
server, the client simply generates a symmetric key KI and
encrypts the image with that key. Then, KI is encrypted
with the public key KS+ to ensure that the image can be de-
crypted only by Darkroom-enhanced servers allocated to the
service to which KS+ is bound. For integrity verification,
the client also computes the HMAC of the message using
key KI . The resulting blob {I}KIhmac{KI}KS+ is then
uploaded to the cloud service. We name this blob: envelope.

2. Image transformation: Whenever the cloud service needs
to perform some specific transformation to the encrypted
image, it makes a request to Darkroom by invoking a specific
system call (through the Image Cloud Service). Through this

system call, the service provides as input the image envelope,
the ID of the transformation function to be invoked, and
any additional parameters required by the transformation
function. The system call issues a world switch to Darkroom,
which performs three steps: 1) obtains the encryption key
KI by decrypting it with the private part of the service
key (KS−), 2) based on KI , recomputes the HMAC of
the message and validates the message integrity, and 3)
decrypts the image using KI . If all goes well, Darkroom
executes the requested transformation function and produces
another envelope containing the resulting image encrypted
with the symmetric key KI (which means that only the
original message owner and Darkroom-enhanced servers will
be able to decrypt the resulting image). To be able to trace
the transformations that were applied to a given image,
Darkroom builds a cryptographic-protected log which is
included in the resulting envelope. The log contains a hash
chain of the history of transformations applied to the image.

3. Image download: Finally, the last stage in the image
transformation life cycle is to download the resulting image
to the client and recover it. Since the client has access to
the key KI , it can perform the same sequence of steps as
Darkroom in order to validate the integrity of the image and
decrypt it. In addition, since the envelope contains a history
of transformations performed to the image, it is possible to
verify that the received image has resulted from a sequence
of transformations applied to the original image. (For space
constrains, we omit the details of this verification.)

III. IMPLEMENTATION

We implemented a prototype of Darkroom for the
Freescale NXP i.MX53 Quick Start Board. A fundamental
concern when building our system was to keep a small
Trusted Computing Base (TCB), which essentially consists
of the components that live in the secure world: Darkroom
Kernel, Cryptography Engine, and Image Processing Engine.
Next, we describe the most relevant implementation details
of the components of our prototype.

The Darkroom kernel is a fundamental component of our
system. It lives in the secure world and is responsible for
memory management, thread execution, and context switch
operations between worlds. To reduce the chance of code
vulnerabilities and keep the kernel size small, we adopted
the Genode [11] framework to build our secure world kernel.
Genode contains a custom kernel called base-hw which runs
in the secure world and has a codebase of 20 KLOC (thou-
sand lines of code), which is much smaller than the Linux
kernel. In addition, Genode implements a Virtual Machine
Monitor (VMM) which can manage a paravirtualized full-
featured operating system running in the normal world. In
the normal world, we run a paravirtualized Linux kernel,
custom-made for Genode. This is because resources such as
the framebuffer, and signals such as the data abort interrupt
must be trapped and managed by the secure world.

Name Description
T1 Grey-scale transformation
T2 Color invert transformation
T3 Color swap transformation
T4 90 degree rotation transformation
T5 180 degree rotation transformation
T6 Mirror transformation

Table I
DESCRIPTION OF THE TRANSFORMATION FUNCTIONS IMPLEMENTED.

Genode also provides basic mechanisms for context
switching. The VMM saves the processor state (registers
and stack) when a SMC instruction is executed and restores
this state whenever the control is given back to the normal
world. Although Genode implements a VMM for the normal
world OS, the secure world needs to identify the source of
SMC. To solve this problem we used CPU registers to send
arguments for the secure world to interpret. Since the VMM
saves the state of the processor before switching security
contexts, the secure world can read the saved register values
and interpret them as arguments.

To communicate between worlds, we adopt a shared
memory strategy. ARM TrustZone provides low-level mech-
anisms that allows for memory regions to be securely
shared. In Darkroom, we use the so called watermarking
feature implemented by the i.MX53 QSB board to protect
secure world’s memory regions from normal world accesses.
However, using this feature it is possible to allocate a region
of memory in the normal world and access it in the secure
context once the secure world controls the execution. This
effectively creates a shared memory region between both
worlds which can be used for the exchange of messages. We
leverage this mechanism in Darkroom as follows. Whenever
the system call is invoked by an image server, we allocate
a memory region with the same size as the image to be
processed using kmalloc. After allocating this memory
region the virt_to_phys function is used to translate
the array’s virtual address to a physical address so it can be
used by the secure world to retrieve the image.

Before triggering the SMC instruction, the array’s physical
address is written to register one (r1) so it can be used by
the secure world. Darkroom must then copy the contents of
the shared memory region to a secure memory region so it
can be processed and avoid exposing the decrypted data to
normal world memory regions.

The Cryptographic Engine runs on top of the secure world
kernel and must support the management of both sym-
metric and asymmetric cryptographic keys and implement
core cryptographic algorithms, including a random number
generator. In order to maintain a reduced code base, we used
the AES-128 implementation from the mbed TLS library [12]
as the symmetric key encryption and decryption algorithms.
We also adapted RSA from mbed TLS.

The Image Processing Engine runs on top of the Dark-
room kernel and manages the transformation functions

for(i = 0; i < length(oldp); i++) {
color = oldp[i];
alpha = (color >> 24) & 0xff;
red = (color >> 16) & 0xff;
green = (color >> 8) & 0xff;
blue = color & 0xff;
lum = (red * 0.299 + green * 0.587 + blue * 0.114);
newp[i] = (alpha<<24) | (lum<<16) | (lum<<8) | lum;

}

Listing 1. Sample code of gray-scale transformation function.

loaded into the system. These functions are responsible
to effectively process the image data sent from the client
in an isolated environment managed by the kernel. In our
current prototype, we implemented a small set of simple
transformation functions just to demonstrate the feasibility
of our approach. In a real world setting, more sophisticated
functions could be developed in order to serve the needs
of external services such as image managing websites,
social networks and personal record management services.
The transformation functions currently implemented in our
system are listed in Table I. All transformations offered
by this component were implemented from scratch without
having to rely on any image library. Listing 1 provides the
sample code of a transformation function to change the color
palette of the image to gray scale.

IV. EVALUATION

To study the performance of our prototype, we measure
the execution time of the image transformations it supports
through micro-benchmarking. To be able to do a more in-
depth analysis of these numbers, we performed measure-
ments both in the normal and secure worlds. Our evaluation
testbed consisted of an i.MX53 Quick Start Board, featuring
a 1 GHz ARM Cortex-A8 Processor, and 1 GB of DDR3
RAM memory. The board executed our system from a mini
SD card, which was flashed with the modified Genode and
Linux versions. For each experiment, we report a mean of
50 runs, and provide no standard deviation values because
these were negligible (less than 3 milliseconds). We also
stress that the results recorded in these experiments were
collected after both the normal and secure world components
were compiled with the O3 optimization flag.

Table I presents the six different image transformations
supported by our system, as well as the names we picked
to identify them during our result analysis. To get a clear
perspective of the performance costs of these transforma-
tions, we chose to measure their execution time over a single
image. The image we picked is 1024x1024 pixels, not only
because it is a resolution supported by many of today’s
mobile devices, but also because it is a common resolution
for network computing devices.

Figure 2 shows the execution times of all these transfor-
mations. As we can see, the grey-scale transformation (T1) is
by far the most expensive. This happens because even though
every transformation consists on a simple for-loop with

 0

 200

 400

 600

 800

 1000

T1 T2 T3 T4 T5 T6

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Normal World Image Processing
Secure World Image Processing

Figure 2. Execution time of all transformations.

complexity O(N × M), where N is the width and M is the
height of the image, T1 features additional math and bit shift
operations. In addition, since this transformation requires
mathematical and bit shift operations, the execution time
difference becomes more prominent because the compiler
cannot optimize it as much as the other transformations. Re-
garding the execution time differences between both worlds,
we observe an almost constant penalty in the secure world,
associated to the world switch operation, but mostly to buffer
allocations necessary to share data between worlds.

To study the performance variations of these transforma-
tions, we measured the execution time of transformation T1
for different image resolutions. We focused on T1 since it
is the most computationally demanding of all transforma-
tions supported by the system. For consistency reasons, we
downgraded the original 1024x1024 picture resolution and
tested T1 with three additional lower resolutions. Figure 3
shows the impact of T1 on a 128x128, 256x256, 512x512,
as well as on the original 1024x1024 picture. The execution
time is broken up into three parts: the transformation itself,
context-switch, and cryptographic operations. As we can see,
the cryptographic operations, more specifically decryption
of input image and encryption of the resulting image, are
slower in the secure world than in the normal world. This
happens because the measurements in the secure world
involve copying contents from a world-shared buffer to a
buffer in secure memory, and then from this buffer back
to the shared buffer after the transformation. On the other
hand, the context-switch times are almost negligible, cor-
responding to the times taken by the system to execute
our custom syscall, allocate memory for the shared buffer,
translate a virtual to a physical address, and call SMC, which
triggers the context-switch. In this case, the larger the image,
the longer it takes to allocate the shared memory region,
which explains why we see an increase in the time the
context-switch takes from smaller images to bigger images.
Regarding transformation times, we can see the execution
times between the normal and secure worlds are very similar.

V. RELATED WORK

Over the past years, extensive work has been focused on
data security for untrusted cloud-hosted storage services.

 0

 200

 400

 600

 800

 1000

NW SW NW SW NW SW NW SW

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Crypto

Context-Switch

Transformation

1024x1024512x512256x256128x128

Figure 3. Execution time of the grey-scale transformation.

Systems such as Venus [13] or DEPSKY [14] protect
data confidentiality by relying exclusively on cryptographic
techniques performed at the client side. This approach tends
to be attractive for users because it precludes the need to trust
in specific components controlled by the cloud provider. The
downside of this approach, however, is that encrypted data
cannot be processed by applications, e.g., for performing
image transformations, which reduces the applicability of
this technique in the cloud. To overcome this limitation, re-
searchers have studied ways to allow for encrypted data pro-
cessing by leveraging advanced cryptographic techniques.
CryptDB [15] is a representative example of such a system
which employs homomorphic encryption to enable SQL
query processing over encrypted relational databases. Never-
theless, systems such as CryptDB tend to limit the functions
that can be executed, introduce considerable performance
overheads, and depend on weaker cryptographic schemes
when compared with traditional ones.

An alternative approach to securing cloud processing is
to leverage Intel’s upcoming technology Security Guard Ex-
tensions (SGX). SGX is a set of hardware extensions to the
Intel architecture which enables processes to maintain secure
address space regions. These regions are called enclaves and
provide a Trusted Execution Environment (TEE) for running
security-sensitive application code in isolation from the OS.
Although this approach requires users to trust the SGX-
enabled hardware deployed by the cloud provider, enclaves
can run arbitrary functions at native processor speed, hence
faster than homomorphic encryption schemes, and provide
strong security properties. In particular, enclaves’ inter-
nal state cannot be accessed neither by privileged system
code nor through memory probe attacks. Projects such as
Haven [16] and V3 [17] have started to explore ways to
run unmodified legacy code and verified code, respectively,
inside enclaves. However, some fundamental limitations
need to be overcome in order to make this technology fully
practical and robust [16]. Thus, similarly to SGX, we take a
TEE-based approach in the design of Darkroom, but explore
the use of ARM TrustZone technology, which is more
mature than SGX and available in commodity hardware.

Given that the majority of mobile devices are equipped
with ARM processors, ARM TrustZone has been studied
mostly to overcome security issues on mobile platforms.
Many authors propose solutions based on TrustZone-enabled
TEE for hosting mobile security services, which allow
for: detecting and preventing mobile app ad frauds [18],
implementing OS introspection mechanisms [7], enabling
secure storage of sensitive data [4], providing secure authen-
tication mechanisms [5], implementing one-time-password
solutions [6], or providing forensic tools for trusted mem-
ory acquisition [8]. Other systems provide general-purpose
frameworks for splitting mobile app code and run it in the
TEE [19] or enabling trusted I/O between the user and
TrustZone-based services [20]. Existing systems, however,
are not directly applicable to the cloud setting due to
the cloud’s specificity in terms of application requirements
and system administration model. Brenner et al. [21] took
some first steps to using ARM TrustZone on the cloud
by building a TEE-protected privacy proxy for Zookeeper.
Their system provides a confidential coordination service
for distributed applications, which constitutes a different
application scenario than the focus of our work.

VI. CONCLUSION

We presented Darkroom, a system that leverages ARM
TrustZone to bootstrap trust in a cloud based image pro-
cessing service. Darkroom provides clear isolation between
a potentially compromised cloud server OS and a smaller
trusted execution environment and guarantees that all users’
data stored or processed in a cloud server is handled by
a smaller code base. For Darkroom, we designed a set
of cryptographic protocols that builds trust when cloud
administrators add dynamic code in the server, and pro-
vides integrity and authenticity properties to users’ image
processing requests to cloud servers. The image processing
performance in Darkroom incurs a reduced time penalty.

Acknowledgments: This work was partially supported by the
EC through project H2020-645342 (reTHINK), and by national
funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2013 (INESC-ID).

REFERENCES

[1] BBC, “FBI investigates ’Cloud’ celebrity picture leaks,” http:
//www.bbc.com/news/technology-29011850.

[2] N. Security, “Google Drive security hole leaks users’ files,”
https://nakedsecurity.sophos.com/2014/07/10/google-drive-
security-hole-leaks-users-files.

[3] C. Weekly, “Why unfair contract terms put end-user trust in
cloud at risk,” http://www.computerweekly.com/blog/Ahead-
in-the-Clouds/Why-unfair-contract-terms-put-end-user-
trust-in-cloud-at-risk.

[4] X. Li, H. Hu, G. Bai, Y. Jia, Z. Liang, and P. Saxena,
“DroidVault: A Trusted Data Vault for Android Devices,” in
Proc. of ICECCS, 2014.

[5] D. Liu and L. P. Cox, “Veriui: Attested Login for Mobile
Devices,” in Proc. of HotMobile, 2014.

[6] H. Sun, K. Sun, Y. Wang, and J. Jing, “TrustOTP: Transform-
ing Smartphones into Secure One-Time Password Tokens,” in
Proc. of CCS, 2015.

[7] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing
Kernel Code Integrity on the TrustZone Architecture,” in
Proc. of MoST, 2014.

[8] H. Sun, K. Sun, Y. Wang, and J. Jing, “Reliable and Trust-
worthy Memory Acquisition on Smartphones,” Transactions
on Information Forensics and Security, vol. 10, no. 12, pp.
2547–2561, 2015.

[9] B. Yang, K. Yang, Y. Qin, Z. Zhang, and D. Feng, “DAA-
TZ: An efficient DAA scheme for mobile devices using ARM
TrustZone,” in Trust and Trustworthy Computing, 2015, pp.
209–227.

[10] ARM, “ARM Security Technology – Building a Secure
System using TrustZone Technology,” ARM Technical White
Paper, 2009.

[11] “The Genode OS Framework,” http://genode.org/.

[12] “mbed TLS,” https://tls.mbed.org/.

[13] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and
D. Shaket, “Venus: Verification for untrusted cloud storage,”
in Proc. of CCSW, 2010.

[14] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa,
“DEPSKY: Dependable and Secure Storage in a Cloud-of-
Clouds,” in Proc. of EuroSys, 2011.

[15] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakr-
ishnan, “CryptDB: Protecting Confidentiality with Encrypted
Query Processing,” in Proc. of SOSP, 2011.

[16] A. Baumann, M. Peinado, and G. Hunt, “Shielding Appli-
cations from an Untrusted Cloud with Haven,” in Proc. of
OSDI, 2014.

[17] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich, “VC3: Trustworthy
Data Analytics in the Cloud Using SGX,” in Proc. of IEEE
S&P, 2015.

[18] W. Li, H. Li, H. Chen, and Y. Xia, “Adattester: Secure Online
Mobile Advertisement Attestation Using Trustzone,” in Proc.
of MobiSys, 2015.

[19] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM
Trustzone to Build a Trusted Language Runtime for Mobile
Applications,” in Proc. of ASPLOS, 2014.

[20] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and
T. Li, “Building Trusted Path on Untrusted Device Drivers
for Mobile Devices,” in Proc. of APSys, 2014.

[21] S. Brenner, C. Wulf, and R. Kapitza, “Running ZooKeeper
Coordination Services in Untrusted Clouds,” in Proc. of
HotDep, 2014.

