
ShareIff: A Sticky Policy Middleware for Self-Destructing Messages in Android
Applications

António Goulão, Nuno O. Duarte, Nuno Santos
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa

Lisbon, Portugal
Email: {antonio.m.goulao,nuno.duarte,nuno.m.santos}@tecnico.ulisboa.pt

Abstract—Self-destructing messaging applications have gar-
nered immense popularity due to the arrival of Snapchat.
However, Snapchat’s history has shown that building such
services on modern mobile platforms is very challenging. In
fact, either caused by programming errors or due to the limi-
tations of existing mobile operating systems, in Snapchat and
other similar applications it is possible to recover supposedly
deleted messages against the senders’ expectations, therefore
leaving millions of users potentially vulnerable to privacy
breaches. This paper presents ShareIff, a middleware for
Android that provides an API for secure sharing and display
of self-destructing messages. Using this middleware, Snapchat
or any similar application, is able to encrypt the message on
the sender’s endpoint and send it to the recipient such that
the message can be decrypted and securely displayed only on
the recipient’s device for the amount of time specified by the
sender. ShareIff provides this property by relying on specialized
cryptographic protocols and operating system mechanisms.
ShareIff offers application developers a simple programming
abstraction and adds marginal overheads to system and app.

I. INTRODUCTION

Although the research community has explored the notion
of self-destructing digital messages [1], this concept has
become truly widespread by Snapchat. Snapchat is a mobile
application that allows users to share photos that “self-
destruct” a few seconds after being viewed by the recipients.
A sender can take a picture (e.g., a photo from the camera)
and share it with a friend specifying a visibility timeout,
which by default is 10 seconds. When the recipient opens
the picture – named snap – Snapchat displays it on the
recipient’s screen for the duration of the visibility timeout.
As soon as the timeout expires, the picture vanishes from
the screen and cannot be read again by the recipient. Since
2011, the year of Snapchat’s first release, the service has
been upgraded to support other kinds of content sharing
(e.g., videos, and text) and richer sharing policies (e.g.,
replayed for three times before permanent deletion). As of
2014, Snapchat had grown incredibly popular, reaching a
user base of 100 million users and a content exchange rate
of 700 million photos and videos per day [2].

However, in spite of all its success, Snapchat has been
troubled by a history of security flaws, enabling supposedly
deleted snaps to be recovered by receivers or even by
untrusted third-parties. For example, in a high-profile data

breach, named “the snappering”, over 100K snaps were
leaked by an API exploit [3]. In many cases, security flaws
come from application programming errors, ill-designed
cryptographic protocols, or insecure RESTful APIs. In other
cases, insecurity is due to existing limitations of Android or
other mobile operating systems, which, for example, allow
users to take screen shots while snaps are being displayed.
Security flaws have motivated a formal complaint to the US
Federal Trade Commission [4], forcing Snapchat to modify
its privacy policy to clearly state that: “We can’t guarantee
that messages and corresponding metadata will be deleted
within a specific timeframe” [5].

Nevertheless, Snapchat remains a highly popular applica-
tion, which makes us wonder whether security is important
at all for its users. In 2014, researchers from the University
of Washington conducted a user survey [6] to help under-
stand how people use Snapchat. This study shows that for
most respondents, security is not the main concern: they
enjoy the fact that messages “disappear”, but may not need
messages to disappear securely. However, while it appears
that security is unimportant, up to 25% of the respondents
admitted to having sent sensitive content: sexual content,
legally questionable material, private documents, and in-
sulting or offensive messages. Moreover, a non-negligible
fraction (38.6%) reported that, in response to learning that
message destruction is not secure, their behavior would have
been different, e.g., by avoiding using Snapchat, sending
different content, or sending messages to different people.
For such users, a security breach could bring serious and ir-
reversible consequences. Given the large size of the Snapchat
user base, millions of users could be affected. Therefore,
this study suggests that there is room for more secure self-
destructing messaging applications.

To support the development of secure self-destructing
mobile applications, we built ShareIff. ShareIff is a mid-
dleware for Android platforms. It provides an API that
allows mobile applications to encrypt a message on the
sender’s endpoint and send it to a recipient such that the
message can be decrypted and securely displayed only on
the recipient’s device for the amount of time specified by
the sender. ShareIff ensures that the message (1) cannot be
recovered while traveling from the sender to the receiver,

(2) cannot be digitally captured while it is being displayed
on the receiver’s device, and (3) is effectively deleted after
the visibility timeout elapses.

To enforce remote message self-destruction, ShareIff
adopts a sticky policy architecture. At the sender side, the
message is enclosed inside a cryptographic envelope along
with a sticky policy, which specifies the visibility timeout to
be enforced at the recipient endpoint. To prevent interception
or modification of the message in transit, the envelope can be
decrypted only with a key that is maintained by a protected
ShareIff service residing in the recipient’s device. While
displaying the message, ShareIff keeps the raw bytes of the
message inaccessible to the application and to potentially
dangerous OS functions that could cause data leakage (e.g.,
screenshot capture). To guarantee that the message cannot
be recovered after deletion, ShareIff ensures correct timer
countdown, sanitizes internal buffers, and wipes envelope
keys. ShareIff offers its services to application programmers
through a simple primitive named TrustView, which is
inspired by a programming abstraction familiar to Android
user interface designers.

Since ShareIff relies on the security of cryptographic
algorithms and on the integrity of the recipient’s operating
system, the operating system must be trusted. Bootstrapping
trust in the OS can be achieved by implementing trusted boot
using trusted computing hardware [7]. Note that ShareIff is
not intended to prevent analog side-channel attacks, i.e., take
a photo of the screen using an external camera while the
message is on display.

We implemented ShareIff and tested it on Nexus de-
vices. Our evaluation shows that ShareIff adds negligible
performance overheads to the system and most of its cost
comes from encrypting and decrypting snaps. To validate
the programming effort of ShareIff, we implemented a
simple photo sharing application based on trustviews. Our
experience is that ShareIff is simple to use, requiring just a
few lines of code in order to incorporate into the application.

II. MOTIVATION AND GOALS

A. Background on Snapchat

Snapchat follows a typical client-server architecture.
Servers are responsible for managing the user base and
for forwarding snaps between clients. Clients consist of
instances of the Snapchat mobile application running on
users’ devices. From this application, users can send or
receive snaps to / from their friends. Clients communicate
with the servers over HTTP through a REST API.

Consider two users: Alice and Bob. To send a snap to
her friend, Alice—the sender—selects a picture, picks Bob’s
contact from her friend list, and defines the visibility time
of the snap (e.g., 10 seconds). Alice clicks the send button,
and the local client uploads the snap to its servers, triggering
a notification to Bob’s client. When Bob—the recipient—
opens the snap, the local client downloads the snap from

the servers and displays it on the screen. Once the visibility
timeout expires, the image vanishes from the screen and
is deleted from the local client. The snap is immediately
removed from the servers after being downloaded. Until a
snap is not opened by a recipient, it remains in Snapchat’s
servers for 30 days, whereupon it is permanently deleted.

For security enforcement, the Snapchat client relies on
Android’s application sandboxing and permissions. Android
has a Linux based kernel that enforces UID-based applica-
tion sandboxing by forcing apps to run inside individual
processes. Applications may write persistent data to their
private directories and leverage application sandboxing to
prevent unauthorized access by other applications. Android
permissions regulate app access to system resources.

B. Security limitations of Snapchat

Unfortunately, Snapchat has had security limitations that
may result in unauthorized access to users’ snaps, i.e., (1) a
snap can be retrieved by someone that is not in the recipient
list, or (2) a snap can be recovered by the recipient violating
the visualization time specified by the sender.

L1. The “analog hole”: Consists of side-channel attacks
aimed at obtaining an analog copy of a snap while it is
displayed on the receiver’s device. To mount such attacks
and capture the screen output, the receiver requires auxiliary
external hardware, e.g., an external camera. Snapchat can
neither prevent nor detect such attacks.

L2. Built-in screenshot function: An easy way for a user to
make a persistent copy of a snap is by using Android’s built-
in screenshot service, e.g., by holding down the “volume
down” and the “power” buttons for 1-2 seconds. Since An-
droid applications cannot block screenshot capture, Snapchat
cannot prevent the user from obtaining a digital copy of the
snap and save it on the phone’s persistent memory.

L3. Persistent buffers: After downloading a snap from
the servers, Snapchat keeps a local copy of the snap on
the phone’s persistent memory. In Snapchat’s first version,
such a copy was saved in unencrypted format outside its
application sandbox, i.e., in a public space. This flaw allowed
for a rogue application to easily access it and create a
persistent copy of the snap. Moreover, Snapchat did not
delete the snap’s local copy after the time limit expired.
On later versions, Snapchat fixed this problem by keeping
snap copies on its private area and in encrypted format.

L4. Flawed use of encryption: The first version of Snapchat
did not use encryption at all. As a result, a snap could be
freely accessed by a network eavesdropper or by someone
with privileged access to the server. In an effort to secure
the snaps while in transit between sender and recipients,
Snapchat’s later versions started using AES for end-to-end
encryption of snaps between sender and receiver endpoints.
However, the implementation was seriously flawed: the

symmetric key for encrypting and decrypting the content was
unique—for every piece of content, for every user—and was
provisioned directly in the Snapchat’s application binary.
Recent versions of Snapchat retain the keys hardcoded in the
application binary and have been reversed engineered [8].

L5. Insecure APIs: By reverse engineering the application
binary, researchers managed to decode the API protocols [9],
allowing for an ecosystem of tools and third-party apps
to appear. By installing such apps, it was straightforward
for a recipient to save a snap and replay it any number
of times. Although the latest Snapchat API version has
been reinforced to mitigate third-party apps, the fundamental
problem remains: the security of the service depends upon
the obscurity of the API.

L6. Replay attacks: To open a snap on a recipient’s device
the Snapchat client must perform a sequence of steps:
download the content, decrypt it, render it on the screen, set a
timer, etc. However, Snapchat cannot guarantee the atomicity
of this sequence: by cleverly interrupting or stalling this
process, a recipient can visualize a snap multiple times or
for a longer amount of time than permitted.

L7. Rooting the device: By rooting the device, a user can
execute applications with superuser privileges, allowing such
applications to access the Snapchat’s sandbox and create
permanent copies of the downloaded snaps. Although the
rooting operation involves some degree of sophistication, it
is not uncommon for Android users to root their devices.
Against such attacks, Snapchat is helpless.

C. Goals, threat model, and assumptions

From the security limitations presented above, we see
that while some of them are fundamental (namely L1),
others are caused by deficiencies in the design or imple-
mentation of the Snapchat application (L3, L4, L5, L6)
or by existing limitations in the Android operating system
(L2, L7). Our goal is to enable the development of secure
self-destructing message sharing applications. In particular,
our focus in on mitigating the security limitations due to
deficient application programming or to OS-related issues.
We aim to provide a general solution for self-destructing
message delivery, which can be used not just by Snapchat,
but also by alternative applications, such as Cyber Dust [10]
or Confide [11]. Note that it is not our goal to mitigate side-
channel breaches through the “analog hole” (L1).

To attain our goals our approach is to build a middleware
based on a sticky policy architecture. Essentially, the mid-
dleware aims to provide a simple primitive to applications
that enables senders to encode self-destructing messages into
cryptographic envelopes. Each envelope includes a sticky
policy which defines the visualization timeout. The middle-
ware must ensure that the envelope can only be opened at the
receiver’s endpoint and that the enclosed message (1) cannot
be recovered while traveling from the sender to the receiver,

(2) cannot be digitally captured while it is being displayed
on the receivers device, and (3) is effectively deleted after
the visibility timeout elapses. The middleware must provide
simple programming abstractions to application developers.

We contemplate the following classes of attacks:

a. Network attacks: An attacker may intercept the commu-
nication, collect envelope packages, modify them, and inject
new ones. An attacker may attempt to impersonate legitimate
receivers in order to launch MITM attacks.

b. API exploits by third-party applications: Third party
applications may attempt to retrieve envelope data from the
application server API or from the public interface of the
application sandbox on the recipient’s device.

c. Remote application exploits: The application may have
bugs that can be exploited by an attacker on the recipient’s
endpoint and result in unwanted message recovery.

d. Malicious user operations: A message recipient may try
to use OS services, such as taking screenshots or attaching
a debugger, in order to create digital copies of messages.

e. Forensic analysis of persistent memory: A forensic
analyst with physical access to the device may be able to
recover relevant material from devices’ persistent memory
(e.g., key material, encrypted or unencrypted envelopes, etc).

We assume that the OS’s kernel and middleware services
are trusted and are therefore part of the trusted computing
base. To prevent attacks based on device rooting (L7), it
is possible to employ hardening techniques coupled with
trusted computing hardware in order to assure trusted boot
state [12]. Such techniques can be deployed by device manu-
facturers when manufacturing ShareIff-enabled devices. We
also assume that ShareIff devices can be shipped with a
cryptographic key pair that can be used to uniquely identify
the device. This key pair is unique per device. We also rely
on the fact that the content of the device’s volatile memory
is lost when a device is powered down.

III. DESIGN

We present ShareIff, a sticky policy middleware to support
self-destruct messages in Android applications.

A. Architecture

Figure 1 represents the architecture of the ShareIff mid-
dleware on an Android device. ShareIff consists of three
main components: API, manager, and renderer components.
The ShareIff API provides applications an interface to create
envelopes on the sender (close operation), render them on
the receiver (open operation), and manage ShareIff-specific
keys. The ShareIff manager and the ShareIff renderer are
components that reside in the OS domain and are isolated
from user applications. The ShareIff manager holds sensitive
cryptographic keys and performs encryption and decryption

Android

Application

ShareIff API

ShareIff
Manager

ShareIff
Renderer

Device Hardware

OS
Domain

App
Domain

Figure 1. Architecture of the ShareIff middleware.

securely from the app. The ShareIff renderer displays inter-
nally decrypted envelopes on the local screen.

At a high-level the typical workflow performed by appli-
cation programmers when using ShareIff is as follows:

1. Share public keys with other users. Every ShareIff
device contains a set of cryptographic keys upon which
envelope close and open operations are built. In order for a
user to encrypt envelopes and let them be visualized by her
friends, the application must obtain the public keys stored
by ShareIff on her device and share such keys with their
friends. The public keys are obtained through an API call.

2. Close envelope on the sender endpoint. Once in
possession of the ShareIff public keys of their friends, a user
can send a self-destructing message securely to a friend by
generating an envelope. The application invokes an API call
to “close” an envelope containing the message content and
a sticky policy that specifies the visualization timeout. The
resulting envelope can then be forwarded by the application
to the receiver, e.g., through an application-specific server.

3. Open envelope on the receiver endpoint. When the
application running on the recipient’s device retrieves the
envelope, the enclosed messaged can be shown on the
screen by invoking the “open envelope” API call. This call
forwards the envelope to ShareIff’s protected components
residing in the OS. ShareIff decrypts the envelope using the
keys maintained by the manager and renders the recovered
message (typically an image) on screen for the time duration
specified in the envelope’s sticky policy. While the message
is on display all potentially dangerous channels are blocked
(e.g., screenshots are disabled). ShareIff provides that the
message vanishes once the maximum time is enforced, that
it is securely erased, and that the message cannot be opened
twice, therefore avoiding message replays. Next, we dive
into design details of ShareIff.

B. The Trustview API abstraction

Among all ShareIff API calls, the open envelope operation
is the most disruptive for application programmers since it
affects the way they typically manipulate images or text
messages on their applications. In fact, typical applications
have full control of the images to display and their placement
on screen. However, on the recipient’s endpoint, ShareIff

My App

Like

Receiver’s Device

Back

Layout Trusted
View View

View View

Layout

View Hierarchy

1

2

3
4

Figure 2. Example of a trustview in a screen layout.

applications have no access to the image enclosed in the
envelop since the envelope is decrypted and rendered exclu-
sively by the OS-protected ShareIff components.

To lessen the impact of such restrictions to application
programmers, ShareIff provides a simple abstraction that
allows for the manipulation of enveloped images in the ap-
plication. This abstraction, named TrustView, is inspired
on Android’s View class, which application developers are
familiar with. In particular, images are typically rendered
inside ImageView objects, which represents a screen area
in which images are displayed.

Trustviews borrow the concept of view in order to repre-
sent GUI elements where self-destrucing messages can be
securely rendered and deleted once the associated timeout
expires. Such GUI elements are represented by TrustView
objects and can be declared like a regular view, i.e., in the
XML layout file or programmatically in the application code.
Furthermore, trustviews can be incorporated into a typical
view hierarchy, co-existing with regular views, just like in
the example shown in Figure 2.

In contrast with regular ImageView objects, trustviews
have hardened method interface. First, a programmer can
only load content into a trustview so long as it is encoded
inside an envelope. Second, the programmer cannot read
or change the raw bytes of the trustview content. Further-
more, the programmer cannot change the visibility timeout
associated with the content and specified in the envelope’s
sticky policy. The programmer is restricted to a few method
calls to: create or destroy a trusted view, configure its layout
properties, and open envelopes within it.

C. Security protocols

This section describes the security protocols that are
triggered by client applications through the ShareIff API.
We use the following notation to describe cryptographic op-
erations. For asymmetric cryptography, K− and K+ denote
private and public key, respectively. To refer to symmetric
keys and asymmetric keypairs, we drop the superscript.
Notation 〈x〉K indicates that a piece of data x is encrypted
with key K and {x}K that x is signed with K. The symbol
|| represents concatenation. Function hmac(m, k) yields the
HMAC of message m with key k.

1. API primitives: The ShareIff API provides a set of
security primitives to perform three main functions: close en-
velopes, open envelopes, and manage internal cryptographic
keys. Such keys are maintained by the ShareIff manager
in each device and consist of three keypairs: platform key
(KP), screening key (KS), and receiver key (KR). The
purpose of these keys is clarified in the following sections.
The private part of these keypairs is maintained secretly by
ShareIff. The core API primitives of ShareIff are:
• CLOSEENV(M , T , CKP , CKS , [CKR]) → E[4|5]: Gen-

erates an envelope at the sender side. It takes a message
M to be sent, a maximum visualization time T , a
certificate of the platform key CKP , a certificate of the
screening key CKS , and (optionally) a certificate of the
receiver key CKR. These certificates must be obtained
at the receiver side through local key management
primitives. The return is an envelope, which can be
of format E4 or E5 (discussed below) depending on
whether or not CKR is provided as input.

• OPENENV(E, v) → OK | Fail: Renders the content
of a received envelope E on the trustview v. If the call
is authorized, ShareIff decrypts the message, shows the
resulting image according to the enclosed timeframe
restriction, and returns OK. Otherwise, the message is
not shown and the call aborts.

• GETPKEY() → CKP : Returns the certificate of the
local platform key KP . The certificate must be trans-
mitted to potential senders.

• NEWSKEY(C) → CKS : Creates a new screening key
on the local ShareIff service. The created key has
a maximum envelope opening count C. Returns a
certificate of the screening key (covered below). The
certificate must be transmitted to potential senders.

• NEWRKEY() → CKR: Creates a new receiver key
on the local ShareIff service. Returns a certificate of
the newly created key KR (discussed below). This
certificate is only required by senders that require
strong authentication of the message recipient.

The end goal of these primitives is to generate an envelope
E (returned by CLOSEENV) that can be securely decrypted
and rendered in the receiver’s device (when invoking OPE-
NENV). Envelope generation is performed cryptographically
and constitutes the main challenge since several security
properties must be satisfied. Next, we present the security
protocols involved in envelope generation, starting from the
simplest version (E1) to the most complete (E5).

2. Provide end-to-end privacy: We start by ensuring end-
to-end privacy between the sender and the receiver of a self-
destructing message. To this end, the envelope is given by:

E1 → 〈M,T 〉KE

To generate E1, ShareIff encrypts both the message M
and a sticky policy T with an envelope key (KE). The

envelope key is a symmetric key which aims to protect the
confidentiality of the image data. For each envelope, there is
a unique randomly-generated KE, which is generated at the
sender side by CLOSEENV. The sticky policy includes the
visualization timeout. In order for the recipient to decrypt
the envelope, the key needs to be securely transmitted to the
recipient’s device. To prevent MITM attacks, the receiver’s
client must be properly authenticated.

3. Bind to remote trustview environments: The first step
towards a proper authentication of the receiver’s endpoint is
to bind the envelope to remote trustview environments. In
other words, we need to guarantee that an envelope can be
decrypted and rendered only inside a legitimate trustview
environment protected by the OS. Without such guarantee,
the envelope can potentially be decrypted on the user space,
allowing an application to save a permanent copy of the
message, thereby violating the sticky policy.

E2 → 〈M,T 〉KE , 〈KE〉KP+

CKP → {KP+,ShareIff-KP}KM−

To bind the envelope to remote trustview environments,
in E2, we encrypt the envelope key KE with the public key
of a certified platform key (KP). A platform key is a unique
keypair that device manufacturers can deploy when bundling
their ShareIff-enabled Android devices (one keypair per
device). Such a key can be stored in encrypted format and
released to the ShareIff manager upon correct validation
of integrity of the Android software during a verified boot
sequence [13]. The public part of KP can be certified by the
device manufacturer using its key KM so that the sender
can validate whether that key corresponds to a legitimate
Shareiff-enabled device. Since in such a device the private
part of KP never leaves the Shareiff manager, by encrypting
the envelope key with KP+, senders can be assured that
the envelope can be decrypted only inside a trusted ShareIff
manager service, which in turn restricts enveloped images
to be rendered inside trustviews only.

4. Authenticate the remote application: A second step
to properly authenticate the receiver’s endpoint consists of
authenticating the application. In other words, we must
ensure not only that the envelope is bound to be opened
on trustviews only, but also that such trustviews belong
to a trusted application. Otherwise, envelopes’ sensitive
messages could be recovered inside trustviews attached to
an illegitimate third-party application. To authenticate the
remote application, we extend E2 as follows:

E3 → 〈M,T 〉KE , idA, hmac(m, KE), 〈KE〉KP+

m → 〈M,T 〉KE || idA

In this version, the envelope contains identity information
(idA) about the targeted remote application. This identity
can be obtained by simply calculating the hash of the

application’s distribution package, which in turn is usually
signed by the respective application programmer. When
the ShareIff manager receives the envelope at the recipient
endpoint, it first checks the identity of the local application
that invoked the OPENENV primitive and verifies if that
application ID matches the ID specified in the envelope.
If not, authentication fails and envelope decryption will be
denied. Envelope format E3 also has a HMAC of the payload
keyed with KE to guarantee the integrity of the envelope.

5. Prevent replay attacks: Before presenting the last step
for complete remote peer authentication, we need to address
the potential threat of replay attacks, in which a given
envelope can be (partially or totally) visualized multiple
times: E3 is vulnerable to such attacks. On the one hand, an
application can successfully invoke the OPENENV to open
an envelope multiple times. Plus, as long as the platform
key (KP) lives in the system, envelopes can be decrypted.
This is because KP is used to decrypt the envelope keys. As
a result, a leak of the platform key (for example, obtained
through forensic extraction from persistent memory) may
allow for the decryption of all past envelopes that have been
sent to the device identified by that key.

In the next version of the protocol, we aim to prevent
replay attacks such that an envelope can be opened a single
time only and cannot be visible to the local user beyond
the time frame indicated in the sticky policy. Thus, even if
the application interrupts the visualization of the message
before the maximum time frame, the receiver must not be
able to replay the message. After finishing the visualization
time, the message must not be able to be recovered at all.
For this purpose, we modify the protocol as follows:

E4 → 〈M,T 〉KE , idA, hmac(m, KE), 〈KE〉KS+

CKS → {KS+,ShareIff-KS, C}KP−

In this version of the protocol, instead of encrypting the
envelope key with the public part of the KP, the sender
encrypts it with a screening key (KS). The screening key is
in fact a keypair which is created by the ShareIff manager
and aims to protect the envelope key against replay attacks.
To preserve the original link to the platform key, the public
part of the screening key must be signed by the KP and the
respective certificate sent to the sender. The sender can then
verify the screening key certificate and generate the envelope
as before but now using the KS to encrypt the envelope key.

There are two additional features about screening keys
that mitigate the problem of the replay attacks. First, screen-
ing keys are ephemeral. ShareIff preserves the private keys
KI− in volatile memory only and are never written to
persistent memory. As a result, if the device is shut down or
rebooted, KI− keys are forcefully destroyed. Therefore, even
if the KP is forensically extracted, it will not be possible
to recover KI− required to decrypt the envelope key.

Session A

Create SA,2 Reboot

Close EA
1 Open EA

2 Open EA
1

!! "!

t Session B

Create SB,2 SB Key Expired

Close EB
3 Open EB

5 Open EB
3

!! "!
Open EB

4

!!
Close EB

5

Close EB
4Close EB

2

Open EB
5

"!
Figure 3. Examples of screening sessions.

Second, screening keys “have memory” of all envelopes
that they have previously open. Whenever an envelope is
requested to be open by an application, ShareIff maintains a
volatile log associated with the screening key that records a
hash of the envelope that was opened. If the same envelope
is requested to be reopened, ShareIff checks the log and
refuses to decrypt and render the image if an entry is found
on the log. This method defeats repeated invocation attempts
to open the same envelope.

To prevent screening key logs from growing indefinitely,
ShareIff sets a limit to number of different envelopes that
can be open. In other words, screening keys expire after a
pre-defined number of envelope open operations has been
reached. This pre-defined number corresponds to the log
capacity, which is the parameter C of the NEWSKEY oper-
ation. The log capacity C is also included in the certificate
returned by ShareIff upon creation of the screening key.
Once the log is full, the key is destroyed by the system.
Application programmers are free to define a value for C
that satisfies the requirements of their applications.

Adopting these techniques introduces some changes to
the semantics of trustview’s basic primitives. From the
application point of view, this semantics can be captured
by the notion of screening sessions. A screening session
corresponds to the lifespan of a screening key KS. The
session is opened when the key is created and closed if one
of two events occurs: the device reboots, or the key expires.
Envelopes can only be recovered when a session is opened.

We illustrate this notion in Figure 3, which represents the
lifespan of two sessions—A and B—initialized with a log
size of 2 entries. This means that each session can open
at most two envelopes. Five envelopes have been closed in
total: E1

A and E2
A for session A, and E3

B , E4
B , and E5

B for
session B. As shown by envelopes E1

A and E2
A, an envelope

can be opened only while its respective session is active
(in this case session A). E3

B illustrates that an envelope can
be opened once. Rebooting the device leads session A to
termination. Opening a number of envelopes equal to the
maximum log size ends the session. This is what happens
to session B after opening two envelopes: E4

B , and E5
B .

An immediate consequence is that some envelopes may
never be able to be opened, either because the target device
has rebooted and screening key was lost or because the
number of opened envelopes has expired. ShareIff apps must
keep track of such situations and if necessary regenerate the
envelope on the sender and re-send it to the recipient.

6. Authenticate the receiver: The last step to authenticate
the remote endpoint is to authenticate the message recipient
itself. Normally, in a typical messaging application, every
user that signs up is assigned a unique name within the
application domain. If someone wants to send a user a
message, the recipient is identified based on this user name.
For stronger security, ShareIff allows for recipients to be
authenticated directly using cryptographic mechanisms bun-
dled into the envelope as follows:

E5 → 〈M,T 〉KE , idA, hmac(m, KE), 〈〈KE〉KS+〉KR+

CKR → {KR+,ShareIff-KR}KP−

Essentially, the idea is simply to encrypt the encrypted
KS key with another layer of encryption using a recipient
key (KR). The recipient key is a unique key associated to the
local user. It can be generated by the application using the
primitive GENRKEY. This call returns a certificate of KR+,
but the respective private key never leaves the ShareIff
manager. Thus, by encrypting the envelope key with the
recipient’s public, only the legitimate receiver can decrypt
the envelope. This ensures strong recipient authentication.
Since this last step is not crucial for the correctness of the
self-destructing service, we leave it as an optional feature.

D. Policy enforcement architecture
Figure 4 gives us an overall perspective of the ShareIff

policy enforcement architecture. When the recipient appli-
cation receives an envelope containing the image to be
displayed, it issues an OS system call (step 1) to the
ShareIff Manager Service, so that it can process the image
in question. This OS system call is transparently invoked
by the OPENENV. At that point, this service extracts the
envelope’s contents, validating its signature and other meta-
data contained in the envelope, and decrypts the image (step
2). In possession of the image raw information, the service
delivers this same information to ShareIffUI (step 3), a
component created specifically to handle the rendering and
posterior destruction of the image.

ShareIffUI corresponds to the ShareIff renderer and was
designed to prevent access to raw trustview images through
potentially compromising paths allowed in Android’s stock
architecture. In step 4, ShareIffUI addresses one of such
paths, namely the ability to physically access the device
using a debugger in order to retrieve the raw image data.
By disabling the communication between the OS and the
Android Debug Bridge (ADB) in the System Settings,
ShareIffUI prevents a physical attacker from plugging the
device to a computer and using ADB to take screenshots
(using the screencap command), or a debugger to access
variables that might contain the image raw data. ShareIffUI
handles the screenshot issue in step 5. We enhanced Global
Screenshot so that ShareIffUI can temporarily disable the
screenshot capability for as long as there is a privacy
sensitive image being displayed by ShareIff.

System UI

Linux Kernel

Applications

Android OS

Regular Android Apps ShareIff-aware App Standard Invocation

Intent Broadcast

Inter-Process Comm

Window

Manager

ShareIff

Manager

Service

…

OpenGL | ES

Display

Driver

Graphics

Libraries

App2

System

Settings

1

2

3
Global

Screenshot
ShareIffUI

4

5

6

App1 AppN

7

HAL

ShareIff

App

Figure 4. ShareIff overall architecture.

Then, Step 6 represents the actual rendering of the image,
that is first invoked from the Window Manager, and traverses
Android’s layers, until reaching the OS, where the rendering
on screen actually takes place, already in the device driver.

Finally, step 7, represents the image deletion mechanism.
Basically, after issuing the render of the image, ShareIffUI
launches a background thread that essentially works as
a timer. After the timeout, ShareIffUI triggers the image
removal through the Window Manager, signals the Global
Screenshot to enable screenshots, and reestablishes the com-
munication between the OS and ADB. To prevent replay
attacks based on system clock manipulation, the timer used
by ShareIffUI is independent of the system clock.

IV. IMPLEMENTATION

Our ShareIff prototype was developed on top of Android
KitKat (4.4.1). We chose this version because of its maturity,
but the process of porting ShareIff to a more recent Android
version would be trivial, as the structures involved are
transversal to the different versions. All the work involving
end-to-end privacy and endpoint authentication follow the
cryptographic protocols specified in Section III. For symmet-
ric cryptography we use AES-256, and for digital signatures
RSA-1024 and SHA-2. Regarding key management, and
because we opted to make the keys ephemeral, they are not
stored persistently, but rather in volatile data structures that
are destroyed once the device is turned off.

The evolution in camera technology made so that current
smartphones are equipped with powerful cameras, which
produce high resolution pictures, and therefore big files.
One technical challenge we faced was the transmission of
pictures and envelopes containing these big sized pictures
between apps and the system service responsible for encryp-
tion / decryption. Because apps and system services reside
in different processes, standard system service method calls
are done through Android’s standard IPC mechanisnm (i.e.,

Resolutions (MP) Resolutions (Pixels) File Size
0.3MP 640x480 200KB
2MP 1600x1200 1.4MB
3.1MP 2048x1536 2.6MB
5MP 2592x1944 4.3MB
8MP 3264x2448 6.8MP
12MP 4096x3072 10.9MB

Table I
EXPERIMENT IMAGE RESOLUTIONS AND FILE SIZE.

Binder). Given that this mechanism has a fixed data buffer
limit size of 1Mb, we opted to handle pictures and envelopes
by storing them persistently and using URIs to referrence
them. By doing so, we leveraged Android’s application
sandbox mechanism to protect this data from other apps’
unauthorized accesses.

V. EVALUATION

The evaluation of the ShareIff prototype features a quali-
tative evaluation of its API, performance overhead measure-
ments, and a security analysis of the system.

A. Performance evaluation

To study the performance of ShareIff, we measure the
execution time of its API calls, through microbenchmarking.
Our hardware testbed consisted of a Nexus 4 smartphone,
featuring a quad-core 1.5 GHz CPU, 2 GB of RAM, 16 GB
of storage, a 768 x 1280 display, and a camera with 8 MP,
3264 x 2448 pix. The device was flashed with Android 4.4.1
AOSP patched with ShareIff code. For each experiment, we
report mean and standard deviation of 50 runs.

This performance study features the execution time mea-
surements of two types of operations: (1) creation of an
envelope, and (2) opening of an envelope. The first type
of operation features the encryption of an image, and the
creation of an envelope structure containing that image and
a custom ShareIff policy. For testing purposes, our custom
policy sets a 10 second maximum visualization time. The
second type of operation encompasses the decryption of the
image, as well as its rendering on a trusted image view. To
evaluate the performance of this operation, we compare it
with Android’s original way of rendering an image.

Considering that the performance of these operations
depend on the size of the images involved, we carried
out measurements for images with different sizes. For a
matter of consistency, we used the same image, and resized
it to resolutions compatible with today’s mobile device
cameras. In our experiments, we selected camera resolu-
tions supported by our Nexus 4 devices. When picking the
resolutions we took under consideration Android’s original
setImageBitmap method’s maximum resolution limits
(i.e., 4096x4096 pixels). When discussing the results of
these operations, we address the different images by their
resolutions. The details on the resolution and file sizes of
the images in question can be found on Table I.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

0.3MP 2MP 3.1MP 5MP 8MP 12MP

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Image resolutions

Figure 5. Execution time of envelope creation.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

0.3MP 2MP 3.1MP 5MP 8MP 12MP

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Image resolutions

Android ImageView Rendering

SharerIff TrustView Rendering

Figure 6. Android native and ShareIff’s image rendering execution time
comparison.

Figure 5 shows us the execution times of our envelope cre-
ation primitive, when handling different resolution images.
In this figure we can observe a logarithmic pattern in the
overhead introduced by the image encryption operation, the
most time consuming component of this primitive. While
there is an increase in this primitive’s overhead, as the
resolution of the image’s increases, we can also observe that
the growth rate of the overhead progressively decreases.

Figure 6 shows us a comparison between the image ren-
dering execution times on native Android, and on ShareIff.
As we can see, for lower resolution images the overhead of
ShareIff’s rendering can take close to twice as much when
compared to Android’s native rendering. However, while the
overhead increases linearly, it does so at a slow growing rate,
as we can observe in the higher resolution images of this
rendering process.

It is important to stress that, in Android, we can measure
the time spent on rendering an image by measuring the
setImageBitmap method call’s execution time. However,
in order to reliably compare ShareIff’s implementation with
Android’s, it is also important to consider the execution time
of the BitmapFactory.decodeByteArray method

call as well. This is a computationally heavy method,
that loads the data to be rendered from memory. Without
accounting for this method, ShareIff’s overhead compared
to Android’s native rendering execution would lead to great
discrepancies. Therefore, our Android native rendering mea-
surements account the execution times of both the decoding
operation, and the actual rendering method call.

If we look at Figure 6 we can see that for 12MP images,
the rendering time is of more than 3 seconds, which may
compromise the user’s experience. Even so, Android’s native
rendering for 12MP images is only half a second faster,
which in comparison is not a great improvement. To preserve
the user’s experience, Android usually uses thumbnails to
alleviate this time difference. For instance, before displaying
a large image in the gallery, Android usually presents a lower
resolution version of the same image (i.e., thumbnail), and
then presents some sort of loading screen before showing
the real image.

B. Case study

In order to test the effectiveness and benefits of the
functionalities provided by ShareIff, we developed a use case
application called Photobrake. This application provides a
self-destruct messaging service similar to those of Snapchat
and relies on a centralized server to forward snaps between
clients. Building the Photobrake application allowed us to
gather hands on experience about the programming com-
plexity of ShareIff. Regarding both the creation of new en-
velopes and their respective decoding, ShareIff’s primitives
are very concise and intuitive. In less than 10 lines of code,
it is possible to write the necessary Java code to create an
envelope. Similarly, opening an envelope requires just a few
lines of code to invoke a single trustview method.

However, the API methods involved in the management of
the ShareIff-specific keys introduced an additional complex-
ity when compared to a regular application like Snapchat.
First, users must explicitly upload platform key certificates
to the server the first time they register on the application.
Second, Photobrake clients must necessarily create a new
screening key every time the device reboots (remember that
screening sessions are stored in volatile memory) and the
respective certificate must be uploaded to the server. Third,
the application must keep track of the log count associated
with each screening session and if necessary generate a
new screening key. Fourth, the application must keep track
of snaps that could not be viewed due to a reboot of the
recipient device. Nevertheless, we found that most of these
steps could be performed relatively easy by extending the
server API and adding a few records to the server database
to keep track of the state of each key.

C. Security analysis

Except for the “analog hole” limitation (L1), the ShareIff
middleware can effectively overcome the security limitations

of Snapchat discussed in Section II-B. ShareIff thwarts lim-
itation L2, by disabling the screenshot and ADB functions
while snaps are displayed on screen. Limitations L3, L4, and
L5 are overcome by ensuring secure end-to-end encryption
of snaps’ data between the sender and receiver and by
the fact that raw snap data can only be accessible within
the operating system. Replay attacks (L6) are defeated by
employing volatile keys (screening keys) for encrypting the
envelopes. Lastly, L7 is mitigated by employing verified boot
mechanisms in order to detect rooted Android software.

If the phone gets stolen and the attacker turns off the
phone, the volatile keys are automatically destroyed. By
offering a rendering mechanism decoupled from the app,
we can ensure that no untrusted application can overlay an
image of its own covering the envelope’s image. The image
removal mechanism resides in the OS, which means no app
can remove the image before the time is up (except through
the back button), or let the image on screen for more time
than the policy first stipulated.

In the current ShareIff design, because the creation of
an envelope involves specifying the receiver’s id through it
public key, there is a dependency from the system service
and an external service that translates a known user id into a
certificate. It is from that certificate that the service extracts
the receiver’s public key to proceed with the encryption of
the envelope contents.

VI. RELATED WORK

There is already a vast amount of work targeting the
protection of Android users’ data and privacy. These systems
leverage several solutions, ranging from data shadowing
techniques [14] to information flow control [15]. Another
group of solutions protect users’ data by refining Android’s
permission model with additional techniques [14]. Other
systems can also limit access to private data through security
profile specification [16], effectively assuring data access
isolation based on location and time of day (e.g., Work,
Private). Although these systems provide solutions to control
access to particular data on a user’s device, they do not allow
for a remote entity, more specifically that data’s original
owner, to specify usage constraints over that data.

Digital Rights Management (DRM) is another extensively
used mechanism, that allows for data owners to constrain
the way end-users and their applications handle private data.
Android provides a framework that allows for developers to
enable their apps to manage DRM-protected content [17],
but depends on device manufacturers’ specific modules,
which differ from device to device. Porscha [18] is a content
protection framework that allows data owners to express
security policies to ensure that their data is sent to targeted
phones, processed by endorsed applications, and handled
in intended ways. However, Porscha involves trusted third-
parties for content distribution, whereas ShareIff’s message
exchanging protocols work entirely between sender-receiver.

There is also a lot of work related with remote data
management. Some solutions aim at protecting / deleting
sensitive data on stolen smartphones [19], others to improve
users’ control over personal data published in social net-
works [20]. These systems employ a paradigm first intro-
duced by [21], where data is encrypted with a symmetric key,
and subsequent accesses to this data are further dependent
on the availability of the key, which is managed by the user,
usually through a cloud service. On the other hand, there are
several systems that support the expiration date mechanism,
but focusing on decentralized solutions. Vanish [1] leverages
P2P distributed hash tables to store key shares, which are
responsible for granting access to users’ encrypted data.

A number of other systems target secure deletion of
data once it is no longer needed by the application. La-
cuna [22] runs java applications in custom VMs and focuses
on OS buffer erasure to eliminate app execution traces.
PrivExec [23] provides private process execution to ensure
that writes to the filesystem or swap cannot be recovered
during or after application execution.

VII. CONCLUSIONS

In this paper we presented ShareIff, a middleware for
Android that provides an API for secure sharing and display
of self-destructing messages. Many attempts have been made
to create such messaging services, with Snapchat being per-
haps the one who gained more popularity. In this work, we
seek to tackle both the end-to-end security when exchanging
messages, but also the secure handling of messages on
the receiver’s device. ShareIff offers apps the possibility
to encrypt a message on the sender’s endpoint and send
it to the recipient such that the message can be decrypted
and securely displayed only on the recipients device for the
amount of time specified by the sender. ShareIff does so by
offering application developers a programming abstraction
called TrustView, that introduces marginal overheads to both
system and application.

Acknowledgments: This work was partially supported by the
EC through project H2020-645342 (reTHINK), and by national
funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2013 (INESC-ID).

REFERENCES

[1] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy,
“Vanish: Increasing data privacy with self-destructing data,”
in Proc. of USENIX Security, 2009.

[2] B. Insider, “Snapchat Is A Lot Bigger Than People
Realize And It Could Be Nearing 200 Million
Active Users,” 2015, http://www.businessinsider.com/
snapchats-monthly-active-users-may-be-nearing-200-million/
-2014-12.

[3] ——, “Hackers Access At Least 100,000 Snapchat Pho-
tos And Prepare To Leak Them, Including Under-
age Nude Pictures,” 2014, http://www.businessinsider.com/
snapchat-hacked-the-snappening-2014-10.

[4] U. S. of America Federal Trade Commission, “Complaint
132 3078,” 2014, https://www.ftc.gov/system/files/documents/
cases/140508snapchatcmpt.pdf.

[5] Snapchat, “Privacy Terms,” 2015, https://www.snapchat.com/
privacy.

[6] F. Roesner, B. T. Gill, and T. Kohno, “Sex, lies, or kittens?
investigating the use of snapchat’s self-destructing messages,”
in Proc. of Financial Cryptography and Data Security, 2014.

[7] T. C. Group, “TPM Main Specification Level 2 Version 1.2,
Revision 130,” 2006.

[8] GibsonSec, “Snapchat App Encryption Mode Reviewed,”
2013, http://gibsonsec.org/snapchat.

[9] A. Caudill, “Snapchat API protocols decoded,” 2012, http:
//adamcaudill.com/2012/06/16/snapchat-api-and-security.

[10] “Cyberdust,” https://www.cyberdust.com.

[11] “Confide,” https://getconfide.com.

[12] ARM, “ARM Security Technology – Building a Secure
System using TrustZone Technology,” ARM Technical White
Paper, 2009.

[13] “Android Verifying Boot,” https://source.android.com/
security/verifiedboot/verified-boot.html.

[14] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mock-
Droid: trading privacy for application functionality on smart-
phones,” in Proc. of HotMobile, 2011.

[15] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth, “TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smart-
phones,” in Proc. of OSDI, 2010.

[16] M. Conti, V. T. N. Nguyen, and B. Crispo, “CRePE: Context-
Related Policy Enforcement for Android,” Information Secu-
rity, vol. 6531, pp. 331–345, 2011.

[17] “Android DRM Framework,” http://developer.android.com/
reference/android/drm/package-summary.html.

[18] M. Ongtang, K. Butler, and P. Mcdaniel, “Porscha: Policy
oriented secure content handling in Android,” in Proceedings
of ACSAC, 2010.

[19] K. Kuppusamy, G. Aghila, and R. Senthilraja, “A model
for remote access and protection of smartphones using short
message service,” arXiv preprint arXiv:1203.3431, 2012.

[20] S. Guha, K. Tang, and P. Francis, “NOYB: privacy in online
social networks,” in WOSP, 2008.

[21] D. Boneh and R. J. Lipton, “A revocable backup system,” in
Proc. of USENIX Security, 1996.

[22] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein,
Y. Xu, V. Shmatikov, and E. Witchel, “Eternal sunshine
of the spotless machine: Protecting privacy with ephemeral
channels,” in Proc. of OSDI, 2012.

[23] K. Onarlioglu, C. Mulliner, W. Robertson, and E. Kirda,
“Privexec: Private execution as an operating system service,”
in Proc. of IEEE SP, 2013.

