
130

Demystifying Arm TrustZone: A Comprehensive Survey

SANDRO PINTO, Centro Algoritmi, Universidade do Minho

NUNO SANTOS, INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

The world is undergoing an unprecedented technological transformation, evolving into a state where ubiq-

uitous Internet-enabled “things” will be able to generate and share large amounts of security- and privacy-

sensitive data. To cope with the security threats that are thus foreseeable, system designers can find in Arm

TrustZone hardware technology a most valuable resource. TrustZone is a System-on-Chip and CPU system-

wide security solution, available on today’s Arm application processors and present in the new generation

Arm microcontrollers, which are expected to dominate the market of smart “things.” Although this technol-

ogy has remained relatively underground since its inception in 2004, over the past years, numerous initiatives

have significantly advanced the state of the art involving Arm TrustZone. Motivated by this revival of inter-

est, this paper presents an in-depth study of TrustZone technology. We provide a comprehensive survey of

relevant work from academia and industry, presenting existing systems into two main areas, namely, Trusted

Execution Environments and hardware-assisted virtualization. Furthermore, we analyze the most relevant

weaknesses of existing systems and propose new research directions within the realm of tiniest devices and

the Internet of Things, which we believe to have potential to yield high-impact contributions in the future.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; • Secu-

rity and privacy → Systems security; Security in hardware; Software and application security;

Additional Key Words and Phrases: TrustZone, security, virtualization, TEE, survey, Arm

ACM Reference format:

Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A Comprehensive Survey. ACM Comput.

Surv. 51, 6, Article 130 (January 2019), 36 pages.

https://doi.org/10.1145/3291047

1 INTRODUCTION

Arm TrustZone consists of hardware security extensions introduced into Arm application
processors (Cortex-A) in 2004 [1, 63]. More recently, TrustZone has been adapted to cover the new
generation of Arm microcontrollers (Cortex-M) [65, 113]. TrustZone follows a System-on-Chip
(SoC) and CPU system-wide approach to security. This technology is centered around the concept
of protection domains named secure world and normal world. The software executed by the

This work has been partially supported by COMPETE: POCI-01-0145-FEDER-007043, by COMPETE 2020/Portugal

2020/União Europeia within the project Mobile Security Ticketing (No. 11388), which is presented by Link Consult-

ing Tecnologias de Informação SA, and by FCT—Fundação para a Ciência e Tecnologia—within the Project Scope:

UID/CEC/00319/2013, UID/CEC/50021/2013, SFRH/BSAB/135236/2017, PTDC/EEI-SCR/1741/2014 (Abyss).

Authors’ addresses: S. Pinto, Centro Algoritmi, Universidade do Minho, Campus de Azurém, Guimaraes, 4800-058, Portugal;

email: sandro.pinto@dei.uminho.pt; N. Santos, Rua Alves Redol, Lisboa, 1000-029 Lisboa, Portugal; email: nuno.santos@

inesc-id.pt.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0360-0300/2019/01-ART130 $15.00

https://doi.org/10.1145/3291047

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

https://doi.org/10.1145/3291047
mailto:permissions@acm.org
https://doi.org/10.1145/3291047

130:2 S. Pinto and N. Santos

processor runs either in the secure or non-secure states. On Cortex-A processors, the privileged
software referred by the name of secure monitor implements mechanisms for secure context
switching between worlds; on Cortex-M processors, there is no secure monitor software and the
bridge by both worlds its handled by a set of mechanisms implemented into the core logic. Both
worlds are completely hardware isolated and granted uneven privileges, with non-secure soft-
ware prevented from directly accessing secure world resources. This strong hardware-enforced
separation between worlds opens up new opportunities for securing applications and data. In
particular, by constraining the operating system (OS) to operate within the boundaries of the
normal world, critical applications can reside inside the secure world without the need to rely on
the OS for protection.

For several years now, TrustZone has been widely available on commodity mobile devices. Un-
fortunately, in spite of all its potential for enhancing security, this technology has remained in
a state of relative obscurity for quite some time [118, 119]. Manufacturers of TrustZone-enabled
SoCs were somewhat reluctant to disclose technical details, oftentimes requiring developers to sign
non-disclosure agreements (NDA) [119] before any architectural-related details could be disclosed
to them. Research involving TrustZone has been further slowed down by the limited availability of
development platforms in which all of TrustZone’s capabilities were unlocked. For instance, certain
boards were natively programmed to boot the processor directly into the normal world, thereby
preventing system developers from deploying code inside the secure world [119]. As a result, for
nearly ten years, TrustZone was mostly used by device manufacturers for monetizing proprietary
secure services, the security of which was difficult to examine due to their closed nature.

Yet, over the past few years, we have witnessed a growing interest in TrustZone from both
academia and industry. TrustZone has been leveraged in many academic research projects and
commercial products alike, providing the security foundations for systems such as Samsung
Knox [92], Android’s Keystore [2], and OP-TEE [58]. Existing projects span across various
application domains, notably mobile [52, 109], industry [31, 78], automotive [49], and aerospace
[62, 84], and are released under different licensing policies (open-source and proprietary). A
dynamic open source community has matured, contributing to the development of various
projects based on TrustZone [31, 58, 102], and standardization bodies like the GlobalPlatform [35]
have worked toward the definition of common API specifications to promote interoperability
across TrustZone-based solutions. The research community, in particular, has been extremely
active in exploring new ways to leverage TrustZone as a key-enabler technology for enforcing
Trusted Execution Environments (TEEs) [70, 96, 109] and hardware-assisted virtualization [66,
82, 94]. Researchers have also been very keen on studying the security properties of existing
TrustZone-based systems and have managed to uncover important vulnerabilities that demand
further research to devise effective solutions [67, 99, 112].

An important factor to such a rising interest in TrustZone has been a shift of attitude by major
hardware manufacturers, namely Xilinx, which has fostered R&D through the public disclosure
of TrustZone technical details and the release of full-featured development boards [120]. Most
importantly, this renewed interest can be explained by the potential impact of TrustZone
given the widespread adoption of mobile devices and a near-future dissemination of ubiquitous
Internet-enabled low-end devices—the so-called Internet of Things (IoT) [6]. Arm processors share
the majority of mobile and embedded markets, powering over 60% of all embedded devices and
4.5 billion mobile phones. Arm has further extended TrustZone-support for the tiniest low-end
devices, which Arm estimates to reach nearly 1 trillion by 2035 [104]. It is expected that such a
plethora of interconnected devices will generate and exchange substantial amounts of data with
security-critical and privacy-sensitive content, which tend to attract cybercrime [59, 91]. Similar
to competing trusted hardware technologies such as Intel SGX [22], TrustZone can provide

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:3

fundamental primitives for securing sensitive data while benefiting from its wide deployment
across a large number of mobile and low-end devices.

In this article, we provide a comprehensive study of TrustZone technology. We are driven, on
the one hand, by a generalized interest in this technology that, for the reasons expressed above, is
foreseeable to prevail for the upcoming years. On the other hand, we are motivated by the absence
of systematization of knowledge surrounding this technology. Although there are some works in
the literature that partially describe the TrustZone architecture and some of its applications [71,
90], to the best of our knowledge a complete state-of-the-art of TrustZone technology is absent
at the time of this writing. We aim at closing this gap, not only by presenting a detailed picture of
the most relevant work based on TrustZone but also by providing an insightful discussion on the
current limitations and open issues in the use of TrustZone. Furthermore, based on our study and
past research experience on TrustZone, we present our vision regarding what we believe to be
promising future research directions. In summary, the key contributions of our work are as follows.
First, we provide a systematic description of the TrustZone technology itself, covering the main
processors and reviewing a few relevant development boards that are fully compatible with and
amenable for TrustZone-based systems development. Second, we provide a detailed study of the
existing literature, which we structure into two main bodies of work: TEE and hardware-assisted
virtualization. Third, we analyze the most relevant reported weaknesses of existing systems and
show that additional research is required before TrustZone-based systems can reach full maturity.
Fourth, we propose new research directions that seem to us very exciting and potentially resulting
in high impact contributions, particularly within the realm of the tiniest IoT devices.

The remainder of this article is organized as follows. Section 2 presents an architectural
description of TrustZone technology for both application processors and the new generation of
microcontrollers; additionally, some TrustZone-enabled (development) boards are also presented.
Sections 3 and 4 provide an in-depth analysis of the state of the art in TrustZone-enabled systems
for TEE and virtualization, respectively. Then, Section 5 provides a critical analysis of the most
relevant security issues of existing TrustZone systems, and Section 6 discusses promising research
directions targeting primarily IoT and cloud environments. Finally, Section 7 concludes this article.

2 TRUSTZONE: HARDWARE AND PLATFORMS

In this section, we provide an overview of TrustZone technology. We start by describing its key ar-
chitectural features for Arm Cortex-A processors, which can be currently found in a large number
of mobile devices (Section 2.1). Then, we highlight the main architectural differences in the new
generation Cortex-M processors regarding TrustZone, which was redesigned to accommodate the
specific constraints of low-end devices (Section 2.2). Last, we introduce some testbed platforms
that can be used for development and research on TrustZone (Section 2.3).

2.1 TrustZone for Application Processors

TrustZone for application processors refers to the hardware-based security built into SoCs to pro-
vide a foundation for improved system security for Cortex-A processors [63]. These extensions
were added to the Armv6K architecture [1] and introduced significant architectural changes.

The most important architectural change at the processor level consists in the introduction of
two protection domains designated by the name of worlds: the secure world and the normal world.
Figure 1(a) illustrates these concepts. At a given point in time, the processor operates exclusively
in one of these worlds. The world where the processor currently executes is determined by the
value of a new 33rd processor bit, also known as the Non-Secure (NS) bit. The value of this bit can
be read from the Secure Configuration Register (SCR) register, and it is propagated throughout the
system down to the memory and peripheral buses. TrustZone introduces an extra processor mode

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

130:4 S. Pinto and N. Santos

Fig. 1. TrustZone technology.

that is responsible for preserving the processor state whenever world transitions occur. This
processor mode takes the name of monitor mode, and acts as a bridge for placing the processor
in the secure state, independently of the value of the NS bit. A new privileged instruction—Secure

Monitor Call (SMC)—allows for the software stacks residing in both worlds to be bridged by
the monitor software. Other than through this instruction, it is possible to enter monitor mode
via proper configuration of exceptions, interrupts (IRQ), and fast interrupts (FIQ) handled in
the secure world. To reinforce hardware isolation between worlds, the processor has banked
versions of the special registers, as well as some system registers (accessed through coprocessor
15 on Armv7-A and using MSR and MRS instructions on Armv8-A). In the normal world, the
security-critical system registers and processor core bits are either totally hidden or conditioned
by a set of access permissions supervised by the secure world software.

The memory infrastructure has also been extended with TrustZone security features, in partic-
ular with the introduction of the TrustZone Address Space Controller (TZASC) and the TrustZone
Memory Adapter (TZMA). The TZASC can be used to configure specific memory regions as se-
cure or non-secure, such that applications running in the secure world can access memory regions
associated with the normal world, but not the otherwise. Partitioning the DRAM into different
memory regions and its respective association with a specific world is performed by the TZASC
under the control of a programming interface restricted to the software running with secure world
privileges. A similar memory partitioning functionality is implemented by the TZMA, but target-
ing off-chip ROM or SRAM. Note that the TZASC and the TZMA are optional components defined
by the TrustZone specification, which may or may not exist on a specific SoC implementation.
Also dependent on the SoC is the granularity at which the memory regions can be specified. Some
SoCs with TrustZone extensions include memory controllers that provide limited access to specific
memory regions; older SoC implementations do not incorporate such memory controllers at all.
Such an example is the Versatile Express platform, which disallows any form of DRAM partition-
ing into secure and non-secure regions. Modern TrustZone-enabled SoCs, however, come equipped
with fully functional TrustZone-enabled memory controllers. Xilinx Zynq and NXP i.MX6 are just
a few examples of SoCs that provide full support for TrustZone technology. The TrustZone-aware
Memory Management Unit (MMU) allows for each world to have its own virtual-to-physical mem-
ory address translation tables. To provide memory isolation at the cache-level, the cache line tags
of the processor contain an extra bit that indicates under which world that cache line access has
been performed.

TrustZone technology allows for system devices to be restricted to secure or normal worlds. This
is achieved with the introduction of a TrustZone Protection Controller (TZPC), which is also an

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:5

optional component of the TrustZone specification. The fact that the TZPC is an implementation-
specific component leads to diversity in the number and type of TrustZone-aware devices that can
be found across hardware platforms. In Xilinx Zynq-based devices, for instance, the Triple Timer
Counter 0 (TTC0) cannot be accessed from the normal world, since the TTC0 is permanently re-
stricted to the secure world. The TrustZone architecture extends the Generic Interrupt Controller
(GIC) with support for prioritized secure and non-secure sources. Interrupt prioritization is im-
portant to prevent denial-of-service (DoS) attacks by non-secure software, since it enables secure
interrupts to be handled with higher priority than the non-secure interrupts. Depending on the
way the GIC is configured, several interrupt models can be implemented with regard to IRQs and
FIQs. Arm proposes to adopt IRQs as interrupt sources pertaining to the normal world and to
associate FIQs with interrupt sources from the secure world.

2.2 TrustZone for Microcontrollers

TrustZone technology for Armv8-M [65, 113] has been designed for the new generation of Arm
microcontrollers (Cortex-M). At a high level, this variant of TrustZone technology is similar to
the variant in Arm Cortex-A processors. In both designs, the processor can execute either in se-
cure or in non-secure state, with non-secure software blocked from accessing secure resources
directly. There are, however, important differences between both processor families, namely that
Cortex-M has been optimized for faster context switch and low-power applications. In fact, in mi-
crocontroller applications, low power consumption, real-time processing, deterministic behavior,
and low interrupt latency are mainstream requirements, which lead TrustZone for Armv8-M to
be designed from the ground up instead of being reused from Cortex-A processors. As a result,
the underlying mechanisms of TrustZone technology for Cortex-M and Cortex-A processors are
different.

More specifically, unlike TrustZone technology in Cortex-A processors, the division between
worlds in Armv8-M is memory map-based and the transitions take place automatically in excep-
tion handling code (see Figure 1). This means that, when running code from the secure memory,
the processor state is secure, and, when running code from non-secure memory, the processor
state is non-secure. These security states are orthogonal to the existing processor modes, i.e., there
are both a Thread and Handler mode in secure and non-secure states. TrustZone technology for
Armv8-M excludes the monitor mode and the need for any secure monitor software. This consider-
ably reduces the world switch latency, which translates to more efficient transitions. For bridging
software between both worlds, TrustZone now supports multiple secure function entry points,
whereas, in TrustZone for Cortex-A processors, the secure monitor handler was the sole entry
point. For this purpose, three new instructions were included: secure gateway (SG), branch with
exchange to non-secure state (BXNS), and branch with link and exchange to non-secure state
(BLXNS). The SG instruction is used for switching from the non-secure to the secure state at the
first instruction of a secure entry point; the BXNS instruction is used by secure software to branch
or return to the non-secure program; finally, the BLXNS instruction is used by secure software to
call non-secure functions. State transitions can also happen due to exceptions and interrupts.

Excepting for stack pointers, in the Armv8-M architecture most of the register file is shared be-
tween secure and non-secure states. To separate secure and non-secure stacks, TrustZone-enabled
Armv8-M microcontrollers support four physical stack pointers; in this configuration, both secu-
rity states implements the main stack and the process stack. The starting address of the vector
table is determined by a memory-mapped register called the Vector Table Offset Register (VTOR)
in the System Control Block (SCB). The VTOR register is banked, which means that one instance
exists in each world. Some of the special registers are also banked: the Priority Mask, Control, as
well as the Fault Mask Register and the Base Priority registers, just to name a few.

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

130:6 S. Pinto and N. Santos

Regarding the memory infrastructure in the Armv8-M architecture, the memory space is also
partitioned into secure and non-secure sections. Non-secure addresses are used for memory and
peripherals accessible by all software that is running on the device. The secure memory space is
further divided into two types: secure and non-secure callable (NSC). Secure addresses are used
for memory and peripherals accessible only by secure software. NSC is a special type of secure
memory location. This memory area is used to hold SG instructions that allow software to transi-
tion between non-secure and secure states. The reason for introducing NSC memory is to prevent
other binary data, for example, a lookup table, which has a value the same as the opcode as the SG
instruction, from being used as an entry function into the secure state. The security state attrib-
uted to each address is determined by the internal Secure Attribution Unit (SAU) or by an external
Implementation Defined Attribution Unit (IDAU). The SAU is always present but the number of
regions is implementation-specific, while the IDAU is optional and processor-specific. System de-
signers can use an optional IDAU to define a fixed memory map and use an SAU to override the
security attributes for some parts of the memory. The SAU can only be programmed in the secure
state. The memory partitioning is also used to define peripherals as secure or non-secure. Each
world can have a local set of memory access permissions for privileged and unprivileged software.
This feature is enabled by the TrustZone-aware Memory Protection Unit (MPU), which provides
two distinct MPU interfaces. As in earlier M-series processors, the MPU is an optional component;
based on application requirements, designers can exclude the MPU to reduce area and power, or
include either a secure or non-secure MPU, or both if necessary. The secure and non-secure MPU
can be implemented with a different number of MPU regions.

The Nested Vectored Interrupt Controller (NVIC) was also extended for security. Each inter-
rupt can be configured as secure or non-secure through the Interrupt Target Non-secure register
(NVIC_ITNS). This register is only programmable in the secure world. There are no restrictions
regarding whether a non-secure or secure interrupt can take place when the processing is running
non-secure or secure code. If the arriving exception or interrupt has the same state as the current
processor state, then the exception sequence is similar to the previous M-series processors. The
main difference occurs when a non-secure interrupt takes place and is handled by the processor
during the execution of secure code. In this case, the processor automatically pushes all secure in-
formation onto the secure stack and erases the contents from the register banks—this mechanism
avoids any leakage of information. Notwithstanding, it is possible to deprioritize non-secure inter-
rupts by setting the PRIS bit field of the Application Interrupt and Reset Control Register (AIRCR)
or even avoid handling them while the secure software is running (through the PRIMASK_NS
register).

2.3 TrustZone-enabled Hardware Platforms

As TrustZone becomes widespread across all Arm processor families and a key technology for
securing small IoT devices, the number of available and cost-efficient TrustZone-enabled (devel-
opment) platforms seems to follow this trend. Table 1 presents a set of available platforms by
comparing them according to five dimensions: name of the platform, designation of the SoC, type
of processor, number of cores, and the existence of publicly available TrustZone documentation.

As we can see, a considerable number of the mentioned platforms are endowed with a Xil-
inx Zynq-7000 SoC. Platforms based on this SoC family have been largely used in both academia
and industry, mainly due to its heterogeneity, since it integrates the software programmability
of Arm-based processors with the hardware programmability of a Field-Programmable Gate Ar-
ray (FPGA) [77]. The number of existent Zynq-based development boards is growing: their prices
range from less than a hundred (MiniZed) to thousands of US dollars (ZC702). The new genera-
tion of Zynq SoCs, the Zynq-based UltraScale+, brings the benefits of the Armv8 architecture and

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:7

Table 1. TrustZone-enabled Platforms

Platform SoC Processor Multicore Publicly?

CubieBoard4 Allwinner A80 Cortex-A15/A7 quad-core/quad-core No

Musca-A1 Board Arm Musca-A1 Cortex-M33 dual-core Yes

V2M-Juno r2 Arm Juno (r2) Cortex-A72/A53 dual-core/quad-core Yes

SAML11 Xplained Pro Microchip SAML11 Cortex-M23 single-core Yes

SAMA5D2-XULT Microchip SAMA5D2 Cortex-A5 single-core Yes

MiniZed Xilinx Zynq-7000 Cortex-A9 single-core Yes

PYNQ-Z1 Xilinx Zynq-7000 Cortex-A9 dual-core Yes

ZedBoard Xilinx Zynq-7000 Cortex-A9 dual-core Yes

ZYBO Xilinx Zynq-7000 Cortex-A9 dual-core Yes

NuMicro M2351 Nuvoton M2351 Cortex-M23 single-core Yes

Jetson TK1 DevKit Nvidia Tegra TK1 Cortex-A15 quad-core No

Jetson TX2 DevKit Nvidia Jetson TX2 Cortex-A57/Denver quad-core/dual-core No

IMX53QSB NXP i.MX53 Cortex-A8 single-core Yes

iMX6UL-EVK NXP i.MX6 UL Cortex-A7 single-core Yes

RD-IMX6Q-SABRE NXP i.MX6 Cortex-A9 quad-core Yes

MCIMX7-SABRE NXP i.MX7 Cortex-A7/M4 dual-core/single-core Yes

Raspberry Pi 3 Broadcom BCM2837 Cortex-A53 quad-core Yes

R-Car Starter Kit Renesas R-Car H3 Cortex-A57/A53 quad-core/quad-core No

ZC702 Eval. Kit Xilinx Zynq-7000 Cortex-A9 dual-core Yes

ZCU102 Eval. Kit Xilinx Zynq UltraScale+ Cortex-A53/R5 quad-core/dual-core Yes

the power of the 64-bit instruction set; however, at the time of writing of this article, the num-
ber of cost-efficient development boards is scarce. So, according to our experience, for those who
are interested in building software for mid- to high-end TrustZone-based platforms (Cortex-A),
Minized, ZYBO, PYNQ-Z1 or ZedBoard are seen as a good starting point due to the significant
number of research papers, open-source projects and technical documentation available, as well
as the reasonable selling price. Raspberry Pi 3 is also a very affordable alternative, but the num-
ber of available TrustZone-related resources, when compared to the Xilinx Zynq-7000 family, is
scarce. NXP also offers interesting platforms, which are widely used by academics and researchers
for a reasonable price. Nvidia and Renesas have also presented relevant hardware solutions (e.g.,
Jetson TX2 DevKit, R-Car Starter Kit Premier), which have been used in industrial settings by
some companies [66, 76]. From an academic perspective, these boards are particularly unsuited
for TrustZone exploration due to the reluctance of their manufacturers in openly disclosing the
technical details regarding their implementation.

Regarding the low-end sector, the market of small IoT devices is still in its infancy. Although
Cortex-M23 and Cortex-M33 were announced in Q4 2016, as of this writing, just a few platforms
are available on the market. While STMicroelectronics, Renesas, and NXP have not disclosed the
technical specifications of TrustZone(-M)-enabled platforms, other manufactureres have taken a
different route: Nuvoton has already presented some prototypes of the NuMicro M2351 board, Arm
has released the Arm Musca-A1 board, and Microchip has started selling the SAML11 Xplained Pro
Evaluation Kit. The NuMicro M2351 features a single-core Cortex-M23 and the SAML11 Xplained
Pro Evaluation Kit features a single-core Cortex-M23, while the Musca-A1 test chip features a dual-
core Cortex-M33. At the time of the writing of this article, the SAML11 Xplained Pro Evaluation
Kit can be purchased for 60 USD; however, the average price for SAML11 Arm Cortex-M23-based

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

130:8 S. Pinto and N. Santos

microcontrollers stands around 2 USD, which enables secure small IoT devices (e.g, a smart light
bulb or a smart plug) to be implemented at large scale.

3 TRUSTZONE-ASSISTED TEE

In this section, we cover one of the main application areas for TrustZone aimed at the creation of
TEE on computer platforms. Next, we start by introducing the TEE concept and explaining how
TrustZone is key to realize it. In Sections 3.2 and 3.3, we present, respectively, two design families
of TrustZone-based TEE systems: one primarily focused in supporting multiple applications within
the TEE, and other on leveraging the TEE to host a single specialized service. Section 3.4 focuses
on present efforts do deploy such techniques for cloud clusters and Section 3.5 places TrustZone
in perspective against a broader landscape of TEE-enabler hardware technologies. Last, we close
this chapter by providing a brief discussion on the main outstanding challenges in the field of
TrustZone-assisted TEE.

3.1 TrustZone: A key TEE-enabler Technology

Modern computer systems tend to depend on large trusted computing bases (TCBs). Typically, a
TCB comprises complex software such as the OS kernel, privileged services, and libraries. Systems
featuring a bloated TCB tend to be more vulnerable to attacks than small-sized TCB systems,
because, on the one hand, the likelihood of undetected code vulnerabilities increases as a result of
a larger number of lines of source code and more complex inter-component interactions. On the
other hand, large TCBs tend to be more exposed to attackers thus opening more doors for effective
exploitation of such vulnerabilities. Applications that rely on such complex software platforms
inevitably inherit potential security deficiencies of the underlying TCB [111].

To address the TCB bloating problem, TrustZone has appeared as a fundamental hardware
mechanism that enables to provide a TEE in which critical applications can execute securely featur-
ing a TCB several orders of magnitude smaller than the rich OS. More specifically, a TEE consists of
an isolated environment in which trusted applications can execute without the interference of the
local (untrusted) OS. The security properties of a TEE guarantee the confidentiality and integrity
of computations that take place inside it. In addition, to enforce isolated execution, a TEE abstrac-
tion defines mechanisms for secure provisioning of code and data (including cryptographic keys)
into the TEE and trusted channels [116] for retrieving the results of computations and errors. It is
also common for a TEE to access some private secure storage space [37] and to allow remote par-
ties to check the integrity and authenticity of the TEE environment through a remote attestation
protocol [51]; remote attestation constitutes the basic step for establishing trust between a TEE
and a remote party, on top of which secure channels can be established for secure communication
to proceed [45, 46].

TrustZone constitutes a natural enabler for building TEE support systems. Essentially, the secure
world provides a restricted execution environment where the TEE can reside. Whenever the system
boots, the processor enters the secure world to give to any privileged firmware the chance to set
up its internal data structures, configure the interrupt controller of the entire system, and set up
protections for secure memory regions and peripherals. Upon the completion of these operations,
the processor switches worlds and yields control to the bootloader of the rich OS. Since the OS runs
in the normal world, it enjoys no privileges to access memory or set up the interrupt table in a way
that could gain access to the secure world. A common gateway used to access the secure world
is to execute the SMC instruction, which forces the processor to enter into monitor mode. Return
to the normal world is performed also through the SMC instruction. From these mechanisms, we
can basically run a trusted program inside the secure world without the need to trust the integrity

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:9

of the rich OS; if the OS is compromised, attempts to access the secure world address space will
result in violations, e.g., resulting in exceptions trapping to the secure monitor.

In addition to world isolation and context-switch capabilities, TrustZone provides building
blocks to implement end-to-end security solutions, namely, trusted I/O paths, secure storage, and
remote attestation [36, 54, 55]. For trusted I/O paths, TrustZone allows the reflection of the world
state of the processor into the peripherals themselves, thereby allowing them to operate in dif-
ferent modes depending on whether the system operates in secure or non-secure states. This is
achieved by routing the NS bit state of the processor (which identifies the current world) down
to the respective peripheral [120]. In other words, one can configure a device so that data can be
routed to/from a specific world. Secure storage can be implemented by installing a data storage
component on the device and restrict it to secure world accesses [36]. Likewise, remote attesta-
tion is supported by the incorporation of a hardware component (e.g., a Trusted Platform Module)
containing trusted code for measuring the integrity of the TEE kernel and unique cryptographic
keys [125].

Depending on the trusted program that runs in the secure world, we distinguish two types of
TEE architectures: TEE kernel or TEE service. In the first case, the trusted program implements
a basic set of OS functions to manage multiple TEE instances each of them hosting a particular
application [96]. The trusted kernel is responsible for: managing memory of the secure word, en-
forcing memory protection for each TEE, handling communication between TEE and the OS, and
providing an API to TEE applications [31, 58, 109]. However, TEE services implement a specific
function and do not require any low-level OS logic to manage their own memory and cross-world
communication [54, 106]. To prevent mutual interference, only one TEE service can be deployed
on the device. This is a disadvantage when compared to TEE kernels, which allow multiple ap-
plications to run in independent TEE instances. However, a downside of TEE kernels is that they
normally depend on larger TCBs when compared to systems where a single TEE service is de-
ployed. Next, we provide an overview of the state of the art about TEE systems, starting with the
solutions based on a TEE kernel architecture, and then focusing on specific- and single-purpose
TEE services. Throughout this discussion, we concentrate primarily on solutions targeting mobile
platforms. The reason is that the majority of mobile devices are equipped with Arm (application)
processors, hence featuring TrustZone technology. In Section 3.4, we cover existing systems and
specific challenges when targeting cloud platforms.

3.2 Trusted Kernels for Trustzone-assisted TEE

The basic functionality offered by a TEE system consists of an execution environment where
security-sensitive applications can execute in isolation from the rich OS. On TrustZone-enabled
platforms, the runtime support for sustaining the lifecycle of such applications is typically pro-
vided by a privileged trusted kernel, which runs in the secure world. The communication between
the rich OS and the trusted kernel requires context switch between worlds. To perform this op-
eration, the rich OS needs to be enhanced with a user-space client API and a TEE device driver
responsible for trapping into the trusted kernel.

TEE standardization efforts. Given that rich OS and trusted kernels are not necessarily developed
by the same manufacturer and nevertheless need to interoperate with each other, a lot of TEE
standardization efforts have been advanced. In 2009, the Open Mobile Terminal Platform (OMTP)
took some first steps toward this end by specifying a TEE standard that defines a set of security
requirements on the functionality a TEE should support [75]. The GlobalPlatform [35] organization
went a step further by defining standard APIs: the internal APIs (e.g., TEE Internal API) that a
trusted application can rely on and the communication interfaces that rich OS software can use to

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

130:10 S. Pinto and N. Santos

interact with the TEE applications maintained by the trusted kernel. The GlobalPlatform has also
defined device specifications (e.g., TEE Client API) that TEEs are requested to abide by. Included
in these device specifications there is a trusted UI clause (Trusted User Interface API), which states
that every GlobalPlatform-compliant device must provide support for a trusted UI. SierraTEE [102],
T6 [110], and Open-TEE [70] comply with the GlobalPlatform standard and for this reason allow
the development of trusted applications with secure user interfaces. Open-TEE’s trusted UI feature
is being developed by the community as it was not originally supported.

Rich TEE runtime systems. To gain competitive advantage, some companies build proprietary
and closed-source trusted kernels. Samsung KNOX [92] features among the most representative
of such systems. KNOX is a defense-grade mobile security platform that aims to provide enterprise
data protection with strong guarantees. Security is achieved through several layers of data protec-
tion, which include secure boot, TrustZone-based integrity measurement architecture (TIMA) and
Security Enhancements for Android (SEAndroid [103]). Samsung KNOX offers a product called
KNOX Workspace, which is a container that provides specific mechanisms for isolating and en-
crypting work data from attackers. This secure container is available on commodity mobile devices
and delivers a complete user-friendly environment, which comprises a specific home screen, ap-
plications, and widgets. By providing adequate management tools and utilities, this product has
been specifically designed to serve the security needs of enterprises.

Small TEE runtime systems. An important drawback of closed systems like KNOX is that it is
hard to evaluate whether or not the security properties claimed by its manufacturers are enforced
in practice. Furthermore, since KNOX allows for regular rich applications to execute in the se-
cure world, a large number of runtime functions need to be included into KNOX’s trusted kernel.
As a result, the system’s TCB tends to be very large and thus more prone to be exploited than
small TEE trusted kernels [5, 25]. To address this problem, the research community has investi-
gated, for some time now, how to build trusted kernels featuring small code footprints. On-board
Credentials (ObC) [50, 52] is one of such solutions, originally developed for Nokia mobile devices
using the TI M-Shield technology and later ported to TrustZone. ObC supports the development
of secure credential and authentication mechanisms. TLR [96] also shares similar goals while in
addition providing simple programming abstractions that allow for certain pieces of application
code (trustlets) to be instantiated inside the TEE and seamlessly invoked by the application com-
ponents residing in the normal world. OP-TEE [58], TLK [114], Open-TEE [70], Genode [53], and
AndixOS [31] are yet other TEE systems that reduce the TCB of privileged trusted kernel code.
With the exception of TLK, these systems have the merit to be publicly available as open source
projects that can be used by the research community.

Unconventional trusted kernels. Unlike the aforementioned solutions, such as Samsung KNOX,
in which the isolated computing environments reside in the secure world, TrustICE [109] enables
the creation of Isolated Computing Environments (ICEs) in the normal world. For this reason,
TrustICE’s architecture is slightly different from those described above. Figure 2 compares
TrustICE’s architecture with that of a traditional TrustZone TEE, where trusted applications run
inside the secure world. TrustICE works by implementing a trusted domain controller (TDC),
which runs in the secure world and is responsible for suspending the execution of the rich OS
as well as other ICE’s when another ICE is running. Thus, TrustICE supports CPU isolation
for running ICEs. For memory isolation, a watermarking mechanism (the TZASC is accessed
through Watermark technique on NXP’s i.MX53 QSB) prevents the rich OS from accessing code
running in the normal world memory belonging to ICE domains. To isolate I/O devices, the secure
world blocks all unnecessary external interrupts from reaching the TDC. With the exception of
a minimal set of interrupts that allow for trusted UI, this mechanism helps to protect the TDC

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:11

Fig. 2. Architecture comparison between traditional TrustZone’s software stack and TrustICE.

from interruptions issued by malicious devices. In summary, the research community has made
an effort in allowing generic code to be deployed on the secure domain of TrustZone-enabled
processors. Some of these systems aim at reducing the TCB considerably, whilst others support
additional features such as secure I/O. Last, some trusted kernels [78, 80] have been designed to
complement the security properties of TEE with real-time capabilities, primarily to address the
specific requirements of industrial IoT applications.

3.3 Trusted Services for TrustZone-assisted TEE

An alternative approach for exploring the potential of TEE consists not so much in the design
of general-purpose TEE kernels, but in building special-purpose trusted services. Because such
services preclude the need for an underlying OS, they can be engineered in such a way as to offer
end-users some specific functionality while depending on a relatively small TCB. Next, we provide
an overview of the most relevant trusted services proposed in the literature.

Trusted storage. An important class of trusted service solutions aims to provide secure storage
and access to sensitive files in the presence of a potentially compromised local OS. DroidVault [56],
for example, introduces the notion of data vault, which is an isolated data protection manager
running in the trusted domain for secure file management in Android. To achieve this, DroidVault
adopts the memory manager and interrupt handler from SierraTEE [102] and is implemented with
a data protection manager, an encryption library and a port of a lightweight SSL/TLS library called
mbed TLS (formerly known as PolarSSL) [64]. DroidVault supports world switching through soft-
ware interrupts, secure boot and even inter-world communication. With this trusted service a user
can download a sensitive file from an authority and securely store it on the device. The sensitive
file is encrypted and signed by the data protection manager before it is stored in the untrusted An-
droid OS. Along the same vein, researchers have studied alternative trusted storage solutions [36,
37, 40], which are not strictly dependent on the Android OS, but whose principled approach allows
for a broader adoption across OS platforms.

Authentication and crypto functions. Another relevant category of trusted services aims to pro-
vide secure authentication and cryptographic functions. Android Key Store [2], for example, is
a security service shipping on Android phones that allows for cryptographic keys to be stored
in a container (keystore). The encryption and decryption of the container are performed by the
keystore service, which in turn links with a hardware abstraction layer module called “keymas-
ter.” The Android Open Source Project (AOSP) provides a software implementation of this module
called “softkeymaster,” but device vendors can offer support for hardware-based protected storage

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

130:12 S. Pinto and N. Santos

by using TrustZone. Stemming from the academia, TrustOTP [107] is a One-Time-Password (OTP)
system secured by TrustZone-enabled hardware. Under this system, the OTP is generated based
on time and a counter secured by TrustZone’s peripheral management. TrustOTP leverages hard-
ware interrupts to trigger the world-switch. Other solutions have leveraged TrustZone to provide
trusted services for device-based authentication [9], two-factor authentication [86], and access
control [124].

Rich OS introspection and control. Researchers have also explored new ways for leveraging Trust-
Zone to override some functions of the rich OS. Restricted Spaces, a system proposed by Brasser
et al. [12], allows for third-parties (hosts) to regulate how users (guests) use their devices (e.g.,
manage device resources), while in a specific physical space (e.g., at work). To achieve this, Re-
stricted Spaces is capable of securely refining the permissions enforced by the rich OS using a
context-aware approach. This system comprises authentication and communication mechanisms
between the secure world components of the guest and host. It also supports remote memory oper-
ations, which allow for configuration changes such as uninstalling peripheral drivers. This can be
done by pointing their interfaces either to NULL or to dummy drivers that just return error codes.
TrustDump [108] is a secure memory acquisition tool that allows retrieving the memory content
through micro-USB for forensic purposes. Similar to TrustOTP, this system relies on hardware
interrupts to trigger world-switches. Both of these systems support trusted user interface (UI) by
implementing secure display and input drivers, as well as display controllers to manage the se-
cure framebuffers. A similar approach has been suggested for integrity protection of the rich OS
kernel [7, 20] and also for rootkit detection [117].

Trusted UI. Among the most challenging requirements of building trusted services, we find the
need to provide secure I/O channels to the user interface. The difficulty lies in that the UI is sup-
ported by device drivers of the rich OS, which are both untrusted and difficult to implement with
a small code footprint. To address this problem, instead of implementing the required drivers from
scratch, some systems allow the secure world domain to reuse untrusted drivers implemented in-
side the rich OS. In particular, TrustUI [55] excludes from the secure world the device drivers for
input, display and network, and reuses the drivers from the normal world, thus achieving a much
smaller TCB than previously described systems. Device drivers are split into two parts: a backend
and a frontend. The backend runs in the normal world domain and the frontend in the secure world.
Both parts rely on proxy modules that run in both worlds and communicate via shared memory.
Whenever secure display is necessary, the frontend asks for a framebuffer from the backend dri-
ver and sets up that memory region to be secure only, thus isolating the framebuffer from rich
OS manipulation. Some systems mentioned above, namely, TrustOTP [107] and TrustDump [108],
address this problem by exposing a functionally limited user interface implemented by tiny drivers
running in the secure world.

3.4 TrustZone-assisted TEE Systems for the Cloud

Given the proliferation of Arm processors in the mobile device market, existing TrustZone-assisted
TEE have been developed primarily to increase the security of data and applications on mobile
platforms. While some of these solutions are designed to operate on a standalone basis (e.g., for
secure local key storage), other systems have been conceived to be tightly coupled with a cloud
backend. A representative example of such a system is DFCLoud [100]. DFCloud aims to leverage
a TrustZone-assisted TEE on users’ mobile devices to provide secure access control capability
to cloud storage services such as Dropbox or Amazon S3. Essentially, the TEE is responsible for
managing the cryptographic keys for decrypting the user files stored in encrypted form on the

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:13

cloud. By relying on the TEE, an attacker that manages to compromise the local OS will not be
able to recover the keys and the content of the files. Before provisioning the keys into the TEE,
DFCloud allows the cloud endpoint to remotely attest the client’s software thereby ensuring that
keys are properly allocated into the TEE rather than to the untrusted domain controlled by the
client’s OS.

Beyond relying on client-side TEE, researchers have proposed new applications of TrustZone-
assisted TEE on the cloud backend itself. Brenner et al. [14] took the first steps at using Trust-
Zone on the cloud by building a TEE-protected privacy proxy for Zookeeper [42]. Zookeeper is
a fault-tolerant coordination service for distributed systems that allows the implementation of
coordination tasks such as leader election and locks via a filesystem-like client API. This interface
allows clients to manage the so-called znodes that are payload files and folders simultaneously. The
goal of Brenner et al. [14] was to protect the privacy of all data stored inside Zookeeper. This is
done by leveraging Zookeeper Privacy Proxies (ZPP) as a lightweight and transparent encryption
layer running inside a TEE enabled by TrustZone available on the cloud servers. They place ZPPs
in between the Zookeeper clients and the Zookeeper replicas in such a way that client and server
implementations remain unmodified. Zookeeper clients connect to ZPPs like they would connect
to Zookeeper server replicas and ZPPs connect to real Zookeeper server replicas as traditional
clients would. For each client session, a ZPP receives a packet from the client protected using SSL
encryption, it then extracts and gathers all the sensitive information, which is then encrypted for
secure storage and sent to the real Zookeeper replica.

A second relevant application domain of TrustZone-assisted TEE for cloud has been recently
proposed by Brito et al. [15], which aims at enabling secure image processing. Considering cloud
services such as Facebook or Instagram, users tend to upload sensitive personal images, which
can result in serious privacy violations if leaked from the cloud. While encrypting sensitive con-
tent at the client could prevent breaches, oftentimes images need to be decrypted on the cloud
servers to be processed, for example, for compression or thumbnail generation. At this point, they
can become vulnerable to an adversary with administration privileges. Brito et al. [15] introduced
a system named Darkroom, which allows transformation functions to be applied to encrypted
user-owned images in a privacy-preserving manner. This goal is achieved by performing such op-
erations inside a TrustZone-assisted TEE at the server-side. Images are decrypted, transformed,
and re-encrypted, thereby ensuring that the server’s OS never has access to user-image raw data.
Brenner et al. [13] have further built on this idea by proposing TrApps, a platform for partitioned
applications, targeting an untrusted cloud environment. Similar to Darkroom, the goal of this sys-
tem is also to reduce the server-side TCB by precluding the need to trust the local OS. TrApps goes
beyond Darkroom in the sense that it can support guest general-purpose distributed applications
rather than simpler image transformation functions.

A possible barrier for the deployment of TrustZone-assisted TEE in the cloud is the modest
popularity of Arm servers among cloud providers. Currently, the data center market is dominated
by x86 Xeon and Opteron components manufactured by Intel and AMD, respectively. Nevertheless,
some have argued that Arm can become a viable alternative to x86 for servers due to the reduced
size, energy efficiency, flexibility, and low cost of Arm processors. Furthermore, the current trends
in the evolution of data center workloads seem to suggest that servers will be expected to handle
an increasing number of small tasks. When it comes to efficiently accommodating such workload
demands, Arm servers emerge as a serious and competitive alternative to existing Intel and AMD
servers [41]. By launching the 48-core Centriq 2400 server chip, Qualcomm manifests clear intent
to bring out an Arm server chip that can compete with Xeon processors, which suggests that such
an evolution in the data center infrastructure is highly plausible.

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

130:14 S. Pinto and N. Santos

Table 2. Representative TEE Hardware Technologies

Technology Ring I A S SCP MP Ac U ISA

Intel SGX [22] 3 yes yes yes no yes no ++ x86_64

Sanctum [23] 3 yes yes yes yes no yes − RISC-V

AEGIS [105] 0 yes yes yes no yes yes − n/a

Bastion [19] −1 yes no yes no yes yes − UltraSPARC

AMD SEV [47] −1 yes no no no yes no + x86_64

x86 SMM [43] −2 yes no no no no no + x86

TrustZone [1] −2 yes no no no no no ++ Arm

TPM [115] −3 no yes yes n/a n/a no ++ n/a

Intel ME [89] −3 yes no no n/a n/a no + x86_64

3.5 Alternative TEE Hardware Technologies

In addition to TrustZone, other hardware technologies have been devised to provide basic under-
lying primitives for the creation of TEE stacks. Although it is not the main scope of this article,
we provide a brief comparison of TrustZone against some prominent TEE-enabling technologies
and refer the interested reader to specific surveys on this topic [68, 72]. Given the considerable
number and variety of existing TEE hardware, we have selected a few representatives based on
the protection ring at which the TEE software can be instantiated and built upon. Table 2 lists our
selected technologies and presents some of their most interesting features. In particular, it indi-
cates whether or not the hardware provides native mechanisms for isolated execution (I), remote
attestation (A), data sealing (S), mitigation of software side-channels focusing on memory access
(SCP), and memory protection from physical attacks, e.g., memory or bus probing (MP). We point
out if the technology is limited to academic research (Ac), provide our insight about its current us-
age in real-world computer platforms (U), indicating whether it is widely used (++), seldom used
(+) or unused (−), and finally report on the technology’s target architecture (ISA).

As far as the protection rings classification is concerned, hardware manufacturers may adopt dif-
ferent nomenclatures, e.g., whereas Intel uses a decreasing numbering system from the least privi-
leged to the most privileged rings, Arm adopts an increasing numbering scheme. Thus, to provide
uniform classification across TEE-enabling technologies, we borrow our ring protection terminol-
ogy from Ning et al. [72], which defines the following levels: ring 3 is for user-level applications,
ring 0 for kernel code, ring −1 for hypervisor code, ring −2 for special system maintenance and
security functions, and ring −3 for coprocessors and off-processor hardware components. Next,
we briefly introduce the TEE-enabling technologies listed in Table 2 according to their respective
protection rings.

Ring 3 TEE. One class of TEE hardware allows for securing user space (ring 3) programs with-
out the need to trust in privileged OS code running at ring 0 or below. Intel SGX [22] figures
among the most popular of such technologies. This hardware is widely available in processors
targeting desktop and server platforms. SGX allows for the creation of memory regions named
enclaves, which are protected from hardware and software access. Most notably, SGX implements
hardware-enabled memory encryption. Sanctum [23] stems from a research initiative targeting
RISC-V processors. Similar to SGX, Sanctum enables the creation of enclaves at the user level.
However, unlike SGX, enclave memory is not encrypted, which makes the system vulnerable to
physical attacks on DRAM. However, Sanctum’s design improves on SGX’s limited ability to defend
against side-channel attacks. As of this writing, Sanctum has not yet been adopted for commercial
use.

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:15

Ring 0 TEE. Another class of TEE hardware aims to implement secure execution environments at
the OS level (ring 0). AEGIS [105] was one of the first TEE hardware architectures to be proposed. In
AEGIS, part of the OS is split and runs inside a protected environment established by the processor.
This OS partition—named Security Kernel—is responsible for the maintenance of Tamper-Evident
Environments (TEs) where security-sensitive programs can be executed. TEs can detect memory
tampering attempts by malicious applications or by the untrusted OS. Alternatively, AEGIS can be
fully implemented in hardware. In this case, there is no need to provide a Security Kernel, since
TE protection can be fully enforced by the hardware.

Ring −1 TEE. Whenever a TEE hardware provides mechanisms to instantiate a TEE stack based
on a trusted hypervisor, we say that it operates at ring −1. An example is Bastion [19], a security
architecture that relies on both a modified processor and a trusted hypervisor to provide confi-
dentiality and integrity protection for security-sensitive software. Bastion includes mechanisms
for off-chip memory protection thereby withstanding physical memory attacks. Upon boot, Bas-
tion secures the state of the hypervisor, which henceforth is responsible for protecting arbitrary
software modules. More recently, AMD introduced new x86 features for memory encryption. The
Secure Encrypted Virtualization (SEV) [47] technology, in particular, is able to encrypt a virtual
machine (VM). By relying on a trusted hypervisor, the guest VMs can be used for hosting TEE
software stacks.

Ring −2 TEE. Certain TEE hardware technologies implemented by the processor can operate
below the hypervisor level in ring −2. Arm TrustZone technology, which we have discussed ex-
tensively in this article, can be highlighted as one of its most representative examples. In fact, the
virtualization extensions to the Armv8 architecture allow for the deployment of an untrusted hy-
pervisor in the normal world. Enabled by TrustZone, an independent trusted TEE stack can then
reside inside the secure world. The x86 System Management Mode (SMM) [43] can be cited as an-
other example of a ring −2 TEE hardware technology. Introduced by Intel in its x86 platforms back
in the ’90s, SMM provides a hardware-assisted isolated environment for the execution of system
control functions, such as power management. In spite of its numerous limitations, SMM has been
adopted for the design of TEEs featuring very small TCB sizes [8].

Ring −3 TEE. Last, we mention a class of TEE hardware that relies on independent coprocessors;
hence, we say they allow for the implementation of ring −3 TEE software stacks. The most preva-
lent of such technologies is the Trusted Platform Module (TPM) [115]. Specified by the Trusted
Computing Group (TCG), the TPM consists of a coprocessor, which is typically located on the
motherboard. Its primary purpose is to serve for bootstrapping trust on the local platform: it is
responsible for storing the software measurements computed during the trusted boot process of
the system, and for securely storing cryptographic keys for remote attestation and data sealing
operations. In itself, the TPM does not provide the means for executing security-sensitive code
in isolation. Instead, it is typically used in tandem with trusted hypervisors or OSes, which will
then be responsible for providing confidentiality and integrity protection of such applications.
Differently from the TPM, the Intel Management Engine (ME) [89] consists of a micro-computer
introduced by Intel in its recent processors. ME can be leveraged as a TEE for hosting security-
sensitive code.

3.6 Discussion

As described in the previous sections, TrustZone has been used as a cornerstone hardware tech-
nology for enabling TEE on Arm-based platforms. Given the widespread adoption of Arm by the
mobile device industry, it is therefore not surprising that most research on TrustZone-enabled

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

130:16 S. Pinto and N. Santos

Table 3. TrustZone-assisted TEE Systems Categorization

Type Descr L SUI SS TCB size Supported NSW I-W Comm

SierraTEE [102] TK OP-comp C U yes unk Linux, Android, BSD GP TEE API

OP-TEE [58] TK OP-comp O U yes unk Linux, VxWorks GP TEE API

Open-TEE [70] TK OP-comp O U unk unk Linux, Android GP TEE API

Genode [53] TK small O D yes unk Linux proprietary

Andix OS [31] TK small O U yes unk Linux proprietary

Nokia ObC [50] TK small C D yes 10kB Symbian OS proprietary

TLR [96] TK small C U yes* 152.7kLOC Windows .Net .Net Rem

T6 [110] TK small O U unk 6kLOC Linux, Android GP TEE API

TLK [114] TK small C U yes 128kB Android proprietary

Samsung KNOX [92] TK rich C D yes unk Android GP TEE API

TrustICE [109] TK unc C U yes unk Linux, Android proprietary

TrustOTP [107] TS auth C D yes* unk Android proprietary

Android Key Store [2] TS crypto O U yes unk Android proprietary

TrustDump [108] TS forens C D no 450LOC Android NMI

Brasser et al. [12] TS intros C U yes unk Android proprietary

AdAttester [54] TS intros C D no 7.4kLOC Android proprietary

TrustUI [55] TS UI C D no 10kLOC Android proprietary

DroidVault [56] TS storage C U yes* unk Android proprietary

TEE has targeted the mobile world. For this reason, we dedicate a few more words in discussing
the current state of affairs of TEE research in the mobile environment and elaborating on existing
open challenges that demand future research.

Table 3 presents a summary of representative mobile TEE systems based on TrustZone char-
acterized according to several dimensions. The field type categorizes existing systems into two
main classes: trusted kernels (TK) and trusted services (TS). Trusted kernels provide runtime sup-
port for the execution of general-purpose security-sensitive code inside a TEE, and can further be
discriminated according to their main design goal: complying with an open standard, featuring
a small code footprint, offering rich functionality, or proposing an unconventional TEE architec-
ture. Trusted services (TS), however, implement special-purpose applications inside the secure
world and run directly on bare metal. The selected TSs shown in the table implement a range of
different applications, such as secure key storage, authentication, forensics, trusted user interfac-
ing, non-secure world introspection, and secure storage. For each presented system, TK or TS, we
indicate the current release licence (L), i.e., open-source (O) or closed-source (C), the currently
supported normal world OS, the TCB size (whenever available), and some additional noteworthy
characteristics of its internal architecture, in particular: the type of inter-world communication
interface (I-W Comm), and whether it provides secure user interface (SUI)—undefined (U) or de-
fined (D)—or secure storage (SS). Whenever this information is available, we indicate if the secure
storage mechanisms implemented by a given system provides countermeasures to rollback attacks
(signalled by an accompanying star symbol).

A common denominator across all these systems is that they all depend on a software component
that runs within the secure world. Therefore, it must be designed and implemented with extreme
care. In fact, since the secure world code runs with most elevated system privileges, subverting
the integrity of such code (e.g., by exploiting a bug) can potentially allow an adversary to ele-
vate its privileges and take over the entire system, including the normal world OS [88, 99]. Hence,

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:17

designers of TrustZone-based TEE systems seek to narrow down the system API as much as possi-
ble to ensure its correctness; however, this is no easy task. As a general rule, since trusted services
are application-specific, they can achieve a higher reduction of the API surface than trusted ker-
nels. For example, TrustDump is triggered simply by a Non-Maskable Interrupt (NMI) interrupt,
whereas the TLR exposes a .Net Remote call interface to the normal world via an SMC call. This
is why existing standardization bodies such as the GlobalPlatform tend to put so much effort into
the design of TEE Client APIs.

A complementary strategy, perhaps more important than API surface reduction, consists of
TCB size reduction. Normally in these systems, the TCB comprises the software components that
run with the highest privilege level (e.g., EL3 in Armv8-A) and possibly additional components.
Shrinking the TCB size aims to reduce the amount of code that needs to be correctly designed and
implemented to ensure the security properties of the system. While this goal is desirable, a negative
side-effect emerges, namely, a regression in the functionality offered to users. From this tension
between security-utility different solutions have emerged. The advantage of trusted services is a
smaller TCB inherent to the sole implementation of strictly necessary components and features.
However, trusted kernels require additional runtime support to generic code execution, which in
turn means it needs additional code, thus a larger TCB. Keeping a small TCB becomes even more
difficult if TKs allow for the execution of non-native code (e.g., Java bytecode or .Net managed
code), since the runtime must implement non-native code interpreters while preserving the TCB
as small as possible.

In spite of the current advances in the design of secure TEE systems, obtaining strong assurances
about the attained security properties remains an open challenge. Such lack of guarantees has fos-
tered some degree of skepticism among device manufacturers who, until the present date, have
only deployed TrustZone-based TEE systems in a very conservative manner, oftentimes for deliv-
ering specific security functions (e.g., key storage) and/or concealing proprietary software (a.k.a.
security through obscurity). Their hesitation is somewhat justified. Just recently, an exploit to a
vulnerability in Qualcomm’s TrustZone kernel, enabled attackers to bypass Android’s full disk en-
cryption mechanism thereby allowing them to retrieve sensitive user data from smartphones [27].
In fact, although the reduction of TCB can help eliminate the presence of potential code vulnera-
bilities, that, by itself, cannot ensure its correctness. The latest efforts to overcome this challenge
have leveraged software verification techniques to formally prove the correctness of privileged
code residing within the secure world [29].

4 TRUSTZONE-ASSISTED VIRTUALIZATION

Virtualization technology enables the co-existence of multiple (heterogeneous) environments on
the same computing platform. For a long time, virtualization has been used in desktops and servers
to optimize resource usage and maximize availability, and, nowadays, this technology starts be-
coming widespread in mobiles and embedded devices [83, 101]. A virtualized environment con-
sists of three main components: a hardware platform, which provides the hardware resources to
deploy the system; a hypervisor, also known as virtual machine monitor (VMM), which virtualizes
the hardware; and one or multiple guest OSes or virtual machines (VMs).

TrustZone technology, although implemented for security purposes, enables a specialized,
hardware-assisted, form of system virtualization. With a virtual hardware support for dual world
execution, as well as other TrustZone features like memory segmentation, it is possible to pro-
vide time and spatial isolation between execution environments. Basically, the non-secure soft-
ware runs inside a VM whose resources are completely managed and controlled by a hyper-
visor running in the secure world. TrustZone-assisted virtualization is not particularly consid-
ered full-virtualization neither paravirtualization, because, although guest OSes can run without

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

130:18 S. Pinto and N. Santos

Fig. 3. TrustZone-assisted virtualization for Arm application processors (Cortex-A).

modifications on the non-secure world side, they need to co-operate regarding the memory map
and address space they are using. According to the existing state of the art, TrustZone-assisted vir-
tualization solutions [32, 66, 82] support three types of system configurations (see Figure 3): single-
guest, dual-guest, and multi-guest. At the time of writing of this article, existing TrustZone-assisted
virtualization solutions targets, exclusively, Arm application processors (Cortex-A series). So, the
remaining of this section describes TrustZone-assisted virtualization for Armv7-A or Armv8-A
architectures.

Next, we describe existing solutions related to the single-guest configuration (Figure 3(a)) [26,
32]. In such a configuration the hypervisor runs in the monitor mode, while the guest OS and
its applications run in non-secure supervisor and user mode, respectively. In Section 4.2, we start
by describing how the dual-guest configuration is implemented, and then we present and discuss
related work [66, 79]. In such a configuration, the hypervisor runs in the monitor mode, and the
secure guest OS and its applications run in secure supervisor and user mode, respectively. The VM
running in the secure world is considered privileged, because in this world there is no isolation
between both supervisor and monitor modes. The normal world hosts the (non-privileged) VM,
exactly as in the single-guest configuration. Finally, in Section 4.3, we introduce the multi-guest
configuration [69, 82]. In this case, unmodified guest OSes are encapsulated between secure and
normal worlds: the active VM runs in the non-secure state, while the context of inactive VMs
is preserved in a secured memory area. This setup requires the hypervisor to effectively handle
shared hardware resources, mainly processor registers, memory, caches, and MMU.

4.1 Single-guest

The single-guest configuration is the simpler system architecture of a TrustZone-assisted virtual-
ization solution. As illustrated in Figure 3(a), the guest OS executes under the non-secure perimeter,
and the hypervisor runs in the monitor mode. The hypervisor has a privileged view of the entire
system, while the guest OS has limited access to system resources. The TCB of the system is con-
fined to the code running on the secure world side, which means it just depends on the hypervisor
size. Memory, devices, and interrupts assigned to the guest OS are configured as non-secure re-
sources and they are directly managed by the guest OS, while the remaining secure resources are
under strict supervision of the hypervisor. The guest OS manages its own MMU and cache lines.

There is just a small number of solutions in the literature that implement such configuration.
Frenzel et al. [32] propose the use of TrustZone for implementing the Nizza secure architecture
[39]. The secure code comprises a small hypervisor and a set of unprivileged components such as
secure device drivers and secure services. The normal world includes the non-secure guest OS and

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:19

its applications. The non-secure guest OS uses paravirtualized drivers to send requests to access
secure resources but has also drivers to access non-secure devices directly, if devices are config-
ured as non-secure accessible. The system was deployed and evaluated on an NVIDIA Tegra 2.
Despite the use of a multicore platform, we believe the implemented solution just supported a
single-core configuration. Frenzel et al. concluded that the use of TrustZone’s virtualization capa-
bilities resulted in a much lower number of required changes to the Linux as a non-secure guest
OS when compared to paravirtualization, while the resulting performance overhead ranges from
barely measurable to up to 20% depending on the characteristics of the workloads [32].

Douglas [26] describes a thin hypervisor, which is able to secure a single FreeRTOS instance.
The low-footprint hypervisor was conceived and designed for generic Arm processors, but it is
discussed how it can be implemented and adapted for a TrustZone-enabled platform: the hypervi-
sor can be isolated in the secure world and the FreeRTOS can run in the non-secure perimeter. The
guest OS can manage its own memory and virtual address space, as well as independently handle
its own exceptions. The hypervisor is responsible for booting the system as well as for the correct
assignment of hardware resources to both worlds.

4.2 Dual-guest

The dual-guest OS system is the most used configuration of existing TrustZone-assisted virtual-
ization solutions, due to the precise match existing among the number of consolidated VMs and
the number of virtual states supported by the processor. As depicted in Figure 3(b), each guest OS
runs inside its independent world, while the hypervisor runs in monitor mode. This configuration
has been typically used for mixed-criticality systems, where the real-time functionalities need to
be completely isolated from non-real-time interferences. Typically, a real-time OS (RTOS) runs in
the secure world, while a general-purpose OS (GPOS) runs in the normal world. Once the privi-
leged software runs in the secure world, the secure guest OS has a full view of the entire system,
which means it is part of the TCB of the system. RTOSes typically have a reduced memory foot-
print, which makes them attractive candidates for such configurations. The majority of existing
solutions typically implements an asymmetric or idle scheduler, which dictates the GPOS is specif-
ically scheduled during the idle slots of the RTOS. Memory, devices, and interrupts are typically
partitioned once at boot time. The GIC is usually configured for handling secure interrupts as FIQs,
and non-secure interrupts as IRQs. As a result of this design decision, the secure guest OS needs
to be slightly changed at kernel-level, while the non-secure guest OS runs without modifications.
No cache and MMU management operations need to be performed during a world switch.

Cereia et al. proposed an asymmetric virtualization approach for real-time systems exploiting
TrustZone [17, 18]. Their proposed solution supports the execution of an RTOS side by side with
a GPOS. The system was evaluated on an emulated platform endowed with an ARM1176JZF-S.
According to the conducted evaluation, the authors estimated that for a 1 millisecond hypervisor
tick, the expected performance overhead of the GPOS is limited to 0.13%; however, the authors
omit if the presented results take into account the penalty of memory accesses. We believe it may
not be the case, while comparing the overhead of similar solutions described in this section.

SafeG [94], from the TOPPERS Project,1 consists of an open-source solution that exploits Trust-
Zone hardware extensions to concurrently execute two different environments: a GPOS and an
RTOS. The SafeG monitor, which is the most privileged software component, executes in the mon-
itor mode and is responsible for handling the transitions between the RTOS and the GPOS. At the
initialization stage, SafeG configures the resources (memory and devices) assigned to the RTOS as
secure resources, and the GPOS-related resources as non-secure. Devices can be shared through

1http://www.toppers.jp/en/safeg.html.

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

http://www.toppers.jp/en/safeg.html

130:20 S. Pinto and N. Santos

a mechanism called re-partition [93, 95]. SafeG configures secure devices to generate FIQ inter-
rupts and non-secure devices to generate IRQ interrupts. The first version of SafeG implemented
the idle scheduling principle, but later it was also extended with an integrated scheduler [93]. The
system has support for several boards including the NXP i.MX6Q and the Altera Cyclone V SoC.
Experiments on a PB1176JZF-S board (equipped with a TrustZone-enabled ARM1176JZF proces-
sor) demonstrate a worst-case execution time (WCET) of 1.5μs and 1.7μs for RTOS to the GPOS
switching and vice-versa, respectively.

Secure Automotive Software Platform (SASP) [49] implements a lightweight virtualization ap-
proach that uses TrustZone technology to provide isolation between a control system and an in-
vehicle infotainment (IVI) system. The project is a joint venture between the Korea University
and the Hyundai Motor Company. SASP uses the features of TrustZone to simultaneously run
an RTOS (e.g., AUTOSAR) for running the control software and a GPOS with the IVI software.
Each guest OS runs in each world, according to its criticality. The monitor layer, called V-Monitor,
is responsible for managing guests, distributing interrupts, managing shared memory, and me-
diating device access and communication. SASP has support for both single-core and multicore
configurations. The GIC distributes interrupts to each world using FIQ and IRQ according to the
classic model. Devices are available only for the secure world, which means the GPOS needs to
be slightly paravirtualized. The system was deployed and evaluated on an NVIDIA Tegra 3 in a
quad-core configuration: one core is dedicated to the RTOS (AUTOSAR 2.0), while the remaining
cores run a symmetric multiprocessing (SMP) version of Linux. Experimental results demonstrate
the GPOS has a performance degradation within 1% when performing arithmetic operations and
within 5% for system call operations.

LTZVisor [81, 83], from the TZVisor Project,2 is an open-source lightweight TrustZone-assisted
hypervisor mainly targeting the consolidation of mixed-criticality systems. Pinto et al. started
by proposing a work in progress in Reference [81] and later presented and described a mature
version of the hypervisor [83]. LTZVisor implements the classical dual-guest OS configuration:
the secure world hosts the RTOS and the hypervisor, while the normal world is assigned to the
GPOS. The two guest OSes share the same CPU, but the asymmetric design principle dictates
the GPOS is just scheduled when the RTOS is idle while ensuring the RTOS can preempt the
execution of the GPOS. Memory, devices, and interrupts are configured and assigned to respective
partitions during system initialization and are not shared between the VMs. LTZVisor has support
for Armv7-A architecture, but there are on-going activities for extending support for both Armv8-
A and Armv8-M architectures. The hypervisor is very minimalist, presenting a memory footprint
of just around 3KB. Experimental results (on a Xilinx ZC702) demonstrate that the RTOS does not
have any performance penalty and the virtualized GPOS presents a performance degradation of 2%
for a 1 millisecond guest-switching rate. LTZVisor-AMP [79] implements support for a supervised
asymmetric multi-processing configuration: one core runs in the secure world and hosts the secure
software (LTZVisor and RTOS), while the other core runs in the non-secure world and hosts the
non-secure software (GPOS). Experiments demonstrate that the multicore extension solves the
problem of starvation, which occurs in single-core platforms (when the RTOS does not yield its
control of the CPU [71]) while presenting significant performance advantages when the RTOS has
a demanding workload.

Schwarz et al. [97] introduced a disruptive virtualization approach for separation, which is able
to switch between a virtualized and non-virtualized execution mode through soft reboots. The
work is considerably different from the majority of existing TrustZone-assisted virtualization
solutions, because it was designed without taking into consideration a particular CPU architecture

2http://www.tzvisor.org/.

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

http://www.tzvisor.org/

Demystifying Arm TrustZone: A Comprehensive Survey 130:21

or specific hardware extensions. Notwithstanding, the authors discuss how this concept can be
implemented with TrustZone technology. The bootloader, the hypervisor, the virtualized (trusted)
guest, and secure services can be stored in the secure memory area, and just executes when soft
reboot transitions are needed. The execution of the remaining software happens in the normal
world. Soft resets would be realized through specific hypercalls (implemented with SMCs).

VOSYSmonitor [66] is a closed-source product developed and maintained by Virtual Open
Systems. VOSYSmonitor supports the concurrent execution of two OSes, such as a safety-critical
environment and a non safety-critical one. VOSYSmonitor is particularly different from the
related work, because it is implemented targeting the Armv8-A architecture and provides the
ability to run a hypervisor, such as XEN or KVM [24], on the normal world. The hypervisor
running on the normal world is intended to be assisted by Arm VE. VOSYSmonitor natively
just has support for dual-guest execution. The scheduler implements the classic idle policy. For
a multicore configuration, VOSYSmonitor shares a core between both worlds. VOSYSmonitor
configures the secure world (RTOS) and the normal world (GPOS) to handle FIQs and IRQs,
respectively. VOSYSmonitor was evaluated on an Arm Juno board and on a Renesas R-Car H3.
For a system running FreeRTOS (1ms system tick) and Linux deployed in the Arm Juno board the
benchmark reported a performance degradation around 0.5% for a single-core configuration. For
the multicore approach, the virtualized system outperforms standalone Linux. No justification
was discussed or even pointed out by the authors.

4.3 Multi-guest

For several years the lack of scalability in terms of the number of supported guests was the main
reason why several researchers perceived TrustZone as a limited and ill-guided virtualization
mechanism [83]. The journey for multi-guest support is a new endeavor. SierraVisor [102], from
the OpenVirtualization Project,3 has introduced support for running multiple OSes concurrently
on any TrustZone-enabled Arm11 or Cortex-A9 device; however, SierraVisor lack in providing
complete spatial isolation between guests. All non-secure guest OSes share the same non-secure
address space, which means that a non-secure guest OS can easily compromise and interfere with
the correct execution of the remaining guest OSes. Pinto et al. have been pioneering the real multi-
guest support. By changing the security state of memory, devices, and interrupts at runtime, as well
as carefully managing shared resources, Pinto et al. [82] demonstrated how several OS instances
are able to coexist, completely isolated from each other, on TrustZone-enabled platforms.

As illustrated in Figure 3(c), the hypervisor executes in the monitor mode, while multiple guest
OSes are encapsulated between the normal and secure worlds: the active guest OS runs in the
normal world, while the context of inactive guests is preserved in the secure world. Since guest
OSes are able to run only on the normal world, the system’s TCB is limited to the hypervisor size.
Memory (including MMU and caches), devices, and interrupts need to be carefully handled by
the hypervisor. Memory isolation is ensured by re-configuring the security state of the memory
segments during runtime. The active guest OS has its memory space configured as non-secure,
while the remaining memory is configured as secure. At every guest switch, the TZASC is re-
configured, while MMU and caches need to be flushed. To achieve isolation at the device level,
devices assigned to guest partitions are dynamically configured as non-secure or secure, depending
on its state (active or inactive), using the TZPC. Interrupts are managed according to a similar
strategy: interrupts of secure devices are configured as FIQs, while interrupts of non-secure devices
as IRQs. Secure interrupts are redirected to the hypervisor, while non-secure interrupts are directly

3http://www.openvirtualization.org/.

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

http://www.openvirtualization.org/

130:22 S. Pinto and N. Santos

sent to the active guest. Interrupts of inactive guest partitions are momentaneously configured as
secure, and the processing of such interrupts can follow different approaches [82].

RTZVisor [82] is a monolithic TrustZone-assisted hypervisor that implements strong hardware-
enforced isolation between multiple OS instances. The guest OSes are multiplexed on the normal
world. Only one active guest OS can run at a time, with inactive OS instances context preserved on
the secure area. The strong spatial isolation for memory and devices is ensured through the use of
the TZASC and the TZPC, respectively. Temporal isolation is achieved through a cyclic scheduling
policy. Non-secure MMU and cache interfaces are shared between the multiple partitions, which
requires the hypervisor to perform several maintenance operations each time a new partition is
rescheduled. Conducted experiments demonstrate that virtualization overhead is less than 2% for
a 10ms guest-switching rate. When the guest switching rate decreases, the overhead increases
exponentially, achieving around 8% overhead for a 1ms guest switching rate. This is due to the
cache- and MMU-related operations, which need to be performed during the guest switch.

More recently, Martins et al. proposed μRTZVisor [69]. μRTZVisor stands for microkernel real-
time TrustZone-assisted hypervisor and is an extended version of RTZVisor [84] for a microkernel-
like architecture and an object-oriented implementation. μRTZVisor targets security from the out-
set, by applying a secure development process. μRTZVisor distinguishes itself from related work,
because, as a microkernel-based solution, it is able to run nearly unmodified guest OSes, and, as
a TrustZone-assisted solution, it provides a high degree of functionality, configurability, and real-
time capabilities. The hypervisor was enhanced with a scheduling policy based on time domains.
These time domains can have different priorities and are scheduled according to a preemptive,
round-robin schema. The conducted experiments demonstrate, on average, a performance over-
head around 2% for a 10ms guest switching rate.

4.4 Discussion

When surveying the literature, TrustZone-assisted virtualization solutions can be divided into
three separate groups, depending on the number of VMs they can support. So far, we have
described and presented a set of open-source hypervisors that were born inside the academic
context, or even closed-source products that some companies have reported in research papers.
Notwithstanding, there are still some proprietary solutions available on the market that exploit
the hardware extensions of TrustZone technology for virtualization. Such examples include the
INTEGRITY Multivisor from Green Hills, the Mentor Embedded Hypervisor from Mentor, and
OKL4 Microvisor from Cogs Systems; however, the amount of available information regarding
these solutions is scarce, which does not allow us to properly compare and categorize such
solutions.

Table 4 summarizes the most important TrustZone-assisted hypervisors by comparing them
according to seven dimensions: number of guests (N-G), spatial isolation between guests (SI), mul-
ticore support (M-C), real-time guarantees (RT), security measures/guarantees (Se), target proces-
sor architecture (PA), and target platform evaluation (PE). The majority of the listed hypervisors
has support only for dual-guest OS execution. SierraVisor, RTZVisor, and μRTZVisor introduced
support for multi-guest, but SierraVisor uses shadow page tables to provide spatial isolation, re-
quiring modifications at the OS level. The lack of multicore support is also a drawback of the
majority of existing solutions. The most active and recent works, such as SafeG, SASP, LTZVi-
sor, and VOSYSmonitor include support for multicore. Notwithstanding, the implemented multi-
core support follows an asymmetric schema, due to the lower complexity in implementing this
approach when comparing to a symmetric multiprocessing schema. The concern in providing a
real-time environment is shared among the majority of the solutions. This is strictly related to the
fact TrustZone has been seen as an optimal infrastructure for building mixed-criticality systems.

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:23

Table 4. TrustZone-assisted Hypervisors Categorization

Hypervisor N-G SI M-C RT Se PA PE

Cereia et al. [17] dual-guest Yes No Yes No Armv6-A Emulator

Douglas [26] single-guest Yes No Yes No Discussed Discussed

Frenzel et al. [32] single-guest Yes No No Yes Armv7-A RealView

LTZVisor [83] dual-guest Yes Yes [79] Yes No Armv7-A, Armv8-(A/M)* ZC702, ZedBoard

RTZVisor [82] multi-guest Yes No Yes No Armv7-A ZC702

SafeG [94] dual-guest Yes Yes Yes No Armv6-A, Armv7-A RealView

SASP [49] dual-guest Yes Yes Yes Yes Armv7-A Tegra 3

SierraVisor [102] multi-guest No Yes No No Armv7-A N.A.

VOSYSmonitor [66] dual-guest Yes Yes Yes No Armv8-A Juno, R-Car H3

μRTZVisor [69] multi-guest Yes No Yes Yes Armv7-A ZYBO

While for TrustZone-assisted TEEs and trusted services’ security has been definitely a major con-
cern, for TrustZone-assisted hypervisors this does not necessarily happen. Apart from the use of
a security-oriented technology and hardware security primitives, the majority of existing solu-
tions does not focus on this requirement. Only Frenzel et al. [32], SASP, and recently μRTZVisor,
have partially addressed outstanding security issues. Regarding the target processor architecture,
Armv7-A is the preferable choice of surveyed hypervisors. This is a consequence of TrustZone-
assisted virtualization being seen as the unique hardware-assisted option on those Arm processors
were VE are not available.

Despite the evolution of TrustZone-assisted virtualization, existing hypervisors still comprise
several limitations, due to the fact that the TrustZone architecture was not designed for virtualiza-
tion use cases. Most identified drawbacks are related to the memory and device subsystem, as well
as to the lack of scalability in terms of the number of guests and cores; the existing open-issues
and challenges are strictly linked with the identified limitations.

Spatial isolation. One of the main requirements for virtualization is spatial isolation. TrustZone-
assisted virtualization solutions rely on the TZASC and the TZPC for implementing such (mem-
ory and devices) isolation. The main drawback of this approach is that, according to TrustZone
specification, the existence of the TZASC and the TZPC is not mandatory: both controllers are
optional and implementation-specific components of the overall TrustZone architecture. In fact,
some TrustZone-enabled SoCs are not endowed with these controllers, and on many others, the
TZASC and the TZPC have some constraints, e.g., it is only possible to configure the security state
of a subset of memory and devices. Another well-known limitation of the memory subsystem is
the absence of a second level memory translation. This limitation places rigid constraints on the
memory map, because there is no way to virtualize the physical memory: all guests need to respect
the address space other guests are using. Nevertheless, this limitation is seen as an advantage for
real-time environments, since the use of virtual memory can hamper with the time predictabil-
ity of the system. For this reason, Arm decided to introduce support for virtualization in the new
Armv8-R architecture adopting Stage-2 MPUs instead of a Stage-2 MMUs [113].

Cache management. For a dual-guest OS configuration, the cache management operations are
natively supported by the TrustZone hardware itself, by providing a dual MMU and cache in-
terface. When implementing multi-guest support, non-secure guest OSes need to share the same
non-secure cache interface, which means cache-related operations need to be performed at every
guest switch. The amount of time needed for cleaning and invalidating L1 and L2 caches can lead

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

130:24 S. Pinto and N. Santos

to a significant lack of performance (depending on the size of caches). This means it would be
worth using small portions of memory caches and take less time flushing them during the guest
switch. An effective and efficient mechanism for managing caches, as well as a deep study for
finding a pattern for the optimal cache configuration under a specific set of conditions constitutes
an open-research topic for TrustZone-assisted virtualization. Several techniques such as cache-
locking [121] and cache-coloring [48] can be investigated further.

Scalability. For several years, TrustZone-assisted virtualization was limited to the coexistence of
two VMs, because designers and researchers were not able to realize how to explore the complete
TrustZone infrastructure to provide strong spatial isolation between multiple guests. The key for
solving this issue was basically to exploit the dynamic features provided by modern TrustZone-
enabled controllers. Nevertheless, despite the fact that recently Pinto et al. demonstrated how
to tackle and address multiple guest-OSes support, the number of supported VMs continues to
be limited from a hardware standpoint. This limitation is not imposed by the amount of available
RAM memory but by the granularity of access restrictions on the TZASC. The number of VMs that
can be in fact supported in a multi-guest configuration is limited by the number of configurable
memory segments supported by the platform.

Another open challenge of TrustZone-assisted virtualization is how to find an effective way
to scale multiple guests across multiple cores. The number of existing cores in modern platforms
is considerably growing, but on existing TrustZone-assisted hypervisors (i) the multi-guest sup-
port is limited to a single-core configuration, while (ii) existing multicore approaches are limited
to dual-OS systems. This is because TrustZone provides no means for supporting more than two
different states, and, apart from paravirtualizing different guest OSes, there are no means to si-
multaneously isolate different guests in different cores. This is definitely the main challenge of
TrustZone-assisted virtualization, but that should be carefully addressed. Based on our experience,
we believe an effective way to simultaneously run multiple isolated guests in multiple cores rely-
ing exclusively on TrustZone might be very difficult to implement. We believe efforts for achieving
true scalability should go through a synergy between both TrustZone and VE technologies [21].

5 SECURITY ISSUES AND VULNERABILITIES

TrustZone provides several security primitives that developers can leverage to implement trust-
worthy systems. A simplified but realistic multi-core prototype of the Arm TrustZone technology
has been verified and proved to be secure from a hardware standpoint [30]; however, the poor us-
age of TEEs coupled with some microarchitectural misconceptions have opened several security
issues and vulnerabilities. While the former is a consequence of the lack of robust TEE runtime im-
plementations, which results in failing to provide secure containers to applications, the latter is a
direct consequence of architectural decisions or the existence of implementation-defined parts on
TrustZone specification. Examples of specific microarchitectural attack vectors encompass hard-
ware exceptions (SMC, IRQ, FIQ), caches, and power management modules. The remaining of this
section goes through a deeper analysis and description of such issues and vulnerabilities: Sec-
tion 5.1 focus on TEE-related vulnerabilities and Section 5.2 describes identified hardware-related
issues.

5.1 TEE-related Vulnerabilities

As of this writing, according to the National Vulnerability Database (NVD) and several security
bulletins (e.g., Qualcomm, Huawei, and Samsung), we found more than 130 vulnerabilities regard-
ing TrustZone and TrustZone-based TEE. Most of these vulnerabilities are related to existing bugs
in the TEE kernel and TEE drivers implementation of some providers; a significant number of

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:25

registered vulnerabilities are related to the Qualcomm’s implementation of the Secure Execution
Environment (QSEE). Such vulnerabilities include the lack of input validation, buffer overflows and
over-reads, uninitialized variables, and race conditions. At Black Hat 2014, Rosenberg described
a vulnerability affecting the QSEE [88]. This vulnerability affected a wide range of TrustZone-
enabled mobile devices, including the Samsung Galaxy Note 3, Samsung Galaxy S4, LG Nexus 4
and 5, Moto X, LG G2, and HTC One series. Due to a flaw in bounds-checking SMC requests, an
attacker with kernel-level privileges would issue specially crafted SMC requests to cause QSEE
to write controlled data to an arbitrary secure memory location. This was exploited to run arbi-
trary code in the QSEE. The ability to execute arbitrary code in the context of QSEE resulted in
the complete compromise of any applications leveraging TrustZone for security guarantees. This
vulnerability was exploited to compromise DRM schemes, leak sensitive key materials, defeat OS
protection mechanisms, and in some cases (e.g., on some Motorola and HTC devices) manipulate
software-programmable fuses to defeat secure boot. At Black Hat 2015, Di Shen [99] described
how to exploit the TEE implementation of Huawei devices (HiSilicon SoC), to gain kernel-level
privileges in the normal world (privilege escalation) and also execute arbitrary code in the secure
world. This vulnerability enabled a non-secure application to get fingerprint images or other en-
crypted data, to disable signature verification, to load non-trusted modules to the TEE, and even to
modify the eFuse data. Also, at Black Hat 2015, Zhang et al. [123] demonstrated how some severe
issues existent on several Android fingerprint frameworks could be used to compromise mobile
fingerprint systems and get access to protected fingerprints even in a trusted area. Recently, some
researchers also unveiled several weaknesses of the Samsung KNOX framework by performing an
extensive security analysis [25] and demonstrating several existing vulnerabilities [5].

From a similar perspective, BOOMERANG [67] presented a class of vulnerabilities that arises
due to the existence of a semantic gap when passing data between the TEE and the untrusted OS.
BOOMERANG is a specific type of attack where a user-level non-secure application can leverage
a trusted application to access a portion of memory it does not own. Basically, the malicious ap-
plication can send specific inputs to a trusted application, which are not properly checked, and
then lead the trusted application to manipulate memory locations, which shall not be accessible
to the malicious software. Machiry et al. [67] developed a static-analysis tool capable of identi-
fying BOOMERANG vulnerabilities, which helped them to analyze the most popular TEE imple-
mentations (QSEE, Kinibi, OP-TEE, SierraTEE, and Huawei) and their trusted applications. They
identified BOOMERANG vulnerabilities in four widespread commercial TEE platforms, affecting
millions of mobiles. By the time of writing of BOOMERANG’s paper, Machiry et al. were already in
touch with the TEE vendors to develop specific fixes on their environments. Recently, the Project
Zero team at Google have also disclosed a major design issue that affects the security of most
devices using QSEE and Kinibi [33].

As aforementioned, the well-known weakness of TrustZone specification in the communication
channel is the major venue for exploitation of vulnerabilities of trusted kernels. This happens due
to the lack of authentication mechanisms in TrustZone’s architecture when the rich execution en-
vironment (REE) needs to access secure resources. SeCReT [46] is a framework that implements
a secure communication channel used to reinforce the access to trusted resources, by enabling
non-secure processes to use session keys. SeCReT provides a session key to a process only when
the respective process’ code and control flow integrity are verified. To prevent the key from be-
ing exposed to attackers, the keys are only readable once, and SeCReT flushes the key as soon
as the processor switches into kernel mode. However, authors have recently identified that Se-
CReT might entail to certain security problems, and proposed TFence framework [45]. TFence
removes the kernel dependency when a process communicates with the TEE and provides a direct

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

130:26 S. Pinto and N. Santos

communication channel between the client application (non-secure process) and the trusted
service [45].

In summary, although the security design of TEEs might be correct, i.e. secure architecture and
perfect and robust isolation, the code running inside the TEE may contain vulnerabilities that
can be exploited by attackers to corrupt the TEE and compromise the trust state of the entire
system. Like Ning et al. [72], we agree that the current state of the art TEE research still lacks
frameworks to verify and/or analyze the secure code, properly defense mechanisms within the
trusted environments, methods for monitoring and detecting compromised TEEs, and resilient
plans to recover and rejuvenate from attacks.

5.2 Hardware-related Vulnerabilities

A number of hardware-related vulnerabilities has also been uncovered over the last few years. The
reported vulnerabilities affect different hardware parts of the platform, in particular, the compo-
nents that constitute the platform’s root of trust, caches, power management mechanisms, and
FPGAs.

Root of trust. While Intel and AMD specify the TPM as the root of trust for their systems, Trust-
Zone, per se, does not specify where keys for authentication and decryption shall be stored. Several
TrustZone-based systems and services proposed in the literature consider the existence of a unique
device key, which is used to serve as the root of trust. However, such hardware modules do not
always exist on commodity mobile devices, which can result in a lack of guarantees in provid-
ing a way to establish trust (authenticity and integrity) in the runtime environment. To address
this problem, Zhao et al. [125] proposed the implementation of a root of trust based on Physi-
cal Unclonable Functions (PUFs). PUFs are like “digital fingerprints”; they are based on physical
variations that occur during semiconductor manufacturing, which can be used to create a unique
key (unique identity) using specific fuzzy techniques. Zhao et al. demonstrate the feasibility of
their approach by prototyping with a Xilinx Zynq-7000 Evaluation Kit and leveraging the on-chip
SRAM, frequently available on mobile devices, to achieve a low-cost and secure root of trust.

Caches. On TrustZone-enabled processors, the cache architecture is modified to include an ad-
ditional bit that tags the security state of the memory transaction (see Section 2). Even though
the secure cache lines are not accessible by the non-secure world, both worlds are equal when
competing for the use of cache lines. So, during a world switch, cache lines do not need to be
flushed, because a secure cache line fill can evict a non-secure cache line, and vice versa [121]. This
cache coherence design improves system performance by eliminating the need to perform cache
flushes during world switches; however, it also enables cache contention between the two worlds.
Furthermore, to minimize cache pollution (which can be a serious problem for real-time systems
[34]), many Arm processors implement a cache-locking feature, which basically prevents cache
lines from being evicted. Caches have associated a serious challenge to formal verify programs,
because the cache access pattern of security-critical services can lead to secret information leak-
age. The aforementioned design specificities of TrustZone-enabled caches, although not publicly
documented, have been recently observed by several researchers, leveraging recently TrustZone-
enabled processors vulnerable to a set of new vector attacks [38, 61, 121, 122].

CacheKit [121] is a rootkit that can bypass memory introspection mechanisms by exploiting ex-
isting TrustZone cache incoherences. CacheKit uses the cache-as-RAM technique to guarantee that
a malicious portion of code is loaded into the CPU cache, and then it uses cache-locking capability
and physical address space to manipulate unused I/O addresses to successfully evade introspec-
tion. Despite the fact that Zhang et al. did not validate their approach on various TrustZone-
enabled platforms, they discussed the scalability of their solution and demonstrate sincere

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:27

confidence regarding the applicability of CacheKit to other platforms. To evaluate their predic-
tions, we performed some experiments regarding the load and lock of specific code in the L2 cache
of Zynq-based platforms. We did not replicate the complete attack scenario, but we were able to
successfully reproduce both cache-as-RAM and cache-locking techniques.

While CacheKit exploits the existing cache incoherence of TrustZone-enabled devices to evade
memory introspection mechanisms, ARMageddon [61], Alias-driven [38], and TruSpy [122] mainly
implement a set of cache attacks that allow us to monitor, from the normal world, the cache activity
in the secure world and then extract the secret keys stored in the trusted environment. ARMaged-
don [61] describes a set of cache attacks (e.g., prime and probe, flush and reload) for generic Arm
mobile devices. Although not particularly focusing on TrustZone devices, M. Lipp et al. [61] were
able to observe that the existing incoherence on TrustZone-enabled caches allows monitoring
cache activity in the secure world from the non-secure one. They discussed that, through prime
and probe, it is possible to observe cache activity of cryptographic computations within the secure
world, which can be used to distinguish whether a provided key is valid or not. Alias-driven [38]
describes how cache storage channels can be exploited by means of timing analysis techniques.
The proposed cache-based attack vectors exploit self-modifying code and mismatched cacheabil-
ity attributes (“unexpected cache hit”) to subvert confidentiality and integrity properties, allowing
an attacker to intentionally place incoherent copies of the same physical address into the caches
and consequently measures which addresses are stored or evicted in different levels of cache. Us-
ing such attack vector R. Guanciale et al. [38] were able to subvert the integrity properties of a
formally verified hypervisor, as well as to extract a private key (128-bit) from an AES encryp-
tion service. TruSpy [122] goes a bit further than ARMageddon [61] and Alias-driven [38] and
exploits cache contention on TrustZone-enabled processors to implement a timing-based cache
side-channel attack. Based on the prime and probe technique, N. Zhang et al. [122] were able to
perform two types of attacks: a normal world OS attack (where the attacker has full control of the
rich OS) and the normal world Android app attack (where the attacker has zero permissions). Us-
ing the T-table-based AES implementation in OpenSSL 1.0.1f as an example, they demonstrate the
feasibility of their approach by recovering a full 128 bit AES encryption key. TruSpy is even more
powerful than ARMageddon and Alias-driven, because TruSpy does not require kernel privilege
and can be performed through a non-privileged Android app.

Power management. Another emerging venue of exploitation goes through a new class of fault
attacks that explore the security-obliviousness of energy management mechanisms. Despite the
ubiquity of energy management mechanisms on several processors, security is rarely a considera-
tion in the design of such mechanisms due to the complexity of hardware-software needs and the
pressure of cost and time-to-market. Tang et al. [112] recently demonstrated that the CLKSCREW
attack can be used to break TrustZone-enabled devices by extracting secret cryptographic keys and
loading signed applications on commodity mobiles. CLKSCREW attack exploits Dynamic Voltage
& Frequency Scaling (DVFS) to push the operating limits of processors until inducing faults. Using
only the publicly available information of Nexus 6, they were able to identify the operating limits
(frequency and voltage), and then, through software, enable the processor to operate beyond the
recommended ones. The CLKSCREW attack requires no further access beyond a malicious kernel
driver, thus it can be conducted using just the software control of energy management mechanisms
in the target devices. Furthermore, CLKSCREW is more powerful than physical attacks, because it
enables fault attacks to be conducted purely from software, opening doors to new remote attacks
that do not require physical access to target devices. According to Reference [112], identified vul-
nerabilities were disclosed to relevant SoC and device vendors, which were very receptive to the
disclosure, and promptly started working towards mitigations.

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

130:28 S. Pinto and N. Santos

FPGA. As the complexity of current embedded applications grows, the number of heterogeneous
SoCs capable of addressing such challenges seems to follow the same trend. Heterogeneous, recon-
figurable or sometimes referred to as hybrid platforms combine powerful processing systems (e.g.,
general-purpose processors and/or microcontrollers, real-time processors, and GPUs) with recon-
figurable hardware (e.g., FPGA). This combination enables the efficient configuration of hardware
and software components according to the different application needs [77]. Zynq-based SoCs, in-
cluding the Zynq-7000 and the Zynq UltraScale+, are examples of heterogeneous SoCs that are
endowed with TrustZone technology to increase the software security of such SoCs. The problem
is that the heterogeneity of such platforms enlarges the attack surface, opening more avenues of
exploitation, because a piece of malicious hardware can compromise the secure boot process [44]
or even subvert a complete system. Recently, Benhani et al. [11] presented a study about the secu-
rity evaluation of the TrustZone propagation to FPGA using the Xilinx Zynq-7010 SoC. Benhani
et al. found some flaws and weaknesses regarding the security propagation between the process-
ing system (PS) and the programmable logic (PL), which resulted in the successful implementation
of six different attacks using small malicious modifications on the programmable logic. Exploiting
such flaws they were able to access secure data or even create a DoS attack. These attacks were
possible due to the PL was not able to share information regarding the security status of hardware
IPs with the PS, and all accesses are approved/denied based on the evaluation of the security status
of the AWPROT/ARPROT AXI signals [120].

6 FUTURE DIRECTIONS

Besides addressing the security issues and vulnerabilities discussed in the preceding section, there
are several research directions that deserve further exploration. In this section, we elaborate on
some possible avenues for investigation on TrustZone focusing primarily on securing and virtu-
alizing the tiniest devices, as well as enabling nested virtualization.

6.1 Securing the Tiniest of Things

The IoT paradigm is making devices smaller, smarter, and increasingly connected [6]. IoT devices
are being deployed in massive numbers, and the success of this new wave of the Internet is heavily
dependent upon the trust and security built into these billions of different connected devices [59].
Recent attacks on IoT devices have shown that poorly designed connected devices have the ability
to bring down key parts of our infrastructures, or even affect our own safety [60]. The problem
is that securing IoT devices can be a quandary, with hardware requirements and cost limitations
pushing different design directions [74]. To address this problem, Arm decided to span TrustZone
to the new generation of microcontrollers, by making security practical at scale and across the
entire value chain. With TrustZone built-in on the tiniest of things, Arm is easing the economics
of security, reducing risk, cost, and the complexity of implementing robust security measures [3].

As of this writing, the amount of available information regarding the development of secure
runtime environments, frameworks, services, or products for Armv8-M is scarce. Currently just a
few Armv8-M-based platforms are available on the market (see Section 2.3). Just a few companies
such as Prove & Run, Trustonic, and Sequitur Labs are consolidating their position by stepping up
in the front of the queue. ProvenCore-M [85], from Prove & Run, is a microkernel implemented us-
ing formally proven code. ProvenCore-M for Armv8-M is the next-generation of formally proven
ultra-secure TEE, which provides a secure layer running inside the Armv8-M TrustZone-based
root of trust. CoreLockr-TZ [98], from Sequitur Labs, is a lightweight service dispatch layer that
simplifies accessing security capabilities offered by TrustZone-M. CoreLockr-TZ abstracts complex
aspects of the TrustZone-M architecture by presenting a suite of services for easing the access to
secure resources and functions by developers writing non-secure applications. Trustonic, a major

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:29

player in the TEE industry, has been securing mobile devices with its TEE, Kinibi, since the days
of the Samsung S3. Recently, Trustonic has also announced Kinibi-M [87], which is extending
its security expertise to small IoT devices. Express Logic has released the X-Ware Secure Platform
[28], which implements a set of Express Logic’s X-ware components for use with TrustZone-M de-
vices. From a different perspective, CFI CaRE [73] implements a novel control-flow integrity (CFI)
mechanism for TrustZone-enabled low-end IoT devices. Finally, ASSURED [4] proposes a secure
firmware update framework for the large-scale IoT setting with resource-constrained devices.

Arm is investing strongly on low-end secure devices in terms of specification and standardiza-
tion, and has recently announced the Platform Security Architecture (PSA) and an accompanying
open source software project, named Trusted Firmware-M [3]. The PSA provides a recipe to build
a secure system without having to develop all of the elements. While the PSA is architecture ag-
nostic, which means it can be implemented on Cortex-M, Cortex-R, and Cortex-A-based devices,
it was mainly designed to secure low-cost IoT devices, where a full TEE would not be appro-
priate. TrustZone-M provides a reliable and easy method to better implement PSA-defined rules.
With PSA, Arm provides an architectural specification, and different partners can provide alter-
native implementations. We believe this initiative will drive a plethora of projects, products, and
research that will bring several new partners to the Arm ecosystem, where not only companies
but also academia and hobbyists will play a significant role.

6.2 Virtualizing the Tiniest Devices

While virtualization in embedded systems started by primarily being deployed on high-end de-
vices, the increasing adoption of virtualization technology also starts finding some applicability
on low-end hardware, but with several performance limitations due to the lack of hardware sup-
port on such devices [16]. To fill this gap, Arm has recently included virtualization extensions in
the new generation Cortex-R processors. The Cortex-R52 is the first processor from the Cortex-R
family introducing hardware support for virtualization. Hardware virtualization support on real-
time processor series is slightly different from the one existing on application processors, due to
the need of copying with hard real-time capabilities. OpenSynergy is currently developing a hyper-
visor assisted by the hardware virtualization support of the Cortex-R52 processor. The hypervisor
enables several RTOS and AUTOSAR systems, with different criticality, to run side-by-side on the
same platform; however, this domain remains very immature, because hardware platforms en-
dowed with Cortex-R52 processors are still not available on market. To the best of our knowledge,
just OpenSynergy is currently developing a hardware-assisted hypervisor for the Cortex-R52.

While the new generation Cortex-R processors only includes hardware virtualization support,
the new generation Cortex-M processors introduce TrustZone security extensions. Both processor
architectures bring different technologies and target different application domains. Notwithstand-
ing, as TrustZone has enabled an alternative form of system virtualization in Arm application
processors, we believe TrustZone can be a game-changer for low-end virtualization. If we agree
that TrustZone-assisted virtualization on middle or high-end devices faces difficult challenges of
scalability in supporting multiple guests on multicore platforms (see Section 4.4), then we also
agree that the pros and cons of each hardware technology, TrustZone or VE, deserve extensive
evaluation for use cases requiring a small and fixed number of VMs with real-time requirements.
If even for middle- and high-end devices TrustZone might outperform VE for specific use cases
(although this is not proved), then on low-end devices it can also happen, especially if we take
power consumption as a key-constraint for such devices. Pinto and his research group are cur-
rently exploiting TrustZone-M for implementing virtualization in the new generation Cortex-M
processors. LTZVisor is being currently ported for the Arm Musca-A1 platform, and the archi-
tectural differences of TrustZone for Cortex-M are being studied and evaluated. Their intention

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

130:30 S. Pinto and N. Santos

is to support the consolidation of a real-time environment (e.g., FreeRTOS) with an IoT-enabled
OSes (e.g., Contiki). This approach will open several opportunities in industrial IoT (IIoT) low-end
devices.

6.3 Virtualizing Hypervisors

Traditional single-level virtualization provides the ability to run multiple OSes without modifi-
cations inside a VM. The hypervisor, which usually runs on top of the hardware, is responsible
for creating a VM environment that is similar to the underlying physical and real hardware [101].
Nested virtualization, in turn, is a technique that provides the means of running a VM inside an-
other VM. Using subsequent levels of virtualization, the hypervisor shall support the execution of
multiple other hypervisors with their associated VMs [10]. Nested virtualization is gaining partic-
ular attention as new use cases and applications for virtualization are on the rise [57].

Intel has been leading the server and cloud markets with x86 processors for a long time and
has introduced hardware support for nested virtualization for several years now. For instance, the
IBM Turtles Project [10], introduced in 2010, demonstrated how to run diverse unmodified hyper-
visors (e.g., VMware, KVM) and OSes (e.g., Linux, Windows) on x86 architectures at a reasonable
performance. Arm just recently leveraged its dominance in the embedded and mobile sectors to
explore deployments in the cloud infrastructure, and the current need for nested virtualization
in such markets lead to the recent introduction of nested virtualization hardware support in the
latest Armv8.3-A architecture. Running nested hypervisors on Arm involves running the host hy-
pervisor (i.e., the bare-metal hypervisor that executes directly on top of the hardware) normally
at the highest privileged processor mode (i.e., EL2), although modifying the guest hypervisor (i.e.,
the next level hypervisor) to run in (a deprivileged) EL1, instead of running in EL2. Lim et al.
have recently presented a detailed review of Arm nested virtualization while demonstrating that
the implementation of nested virtualization on Armv8.3 architectures has associated a significant
performance overhead that is considerably worse than in x86 architectures [57].

Despite the current efforts for supporting efficient nested virtualization on Arm architecture
are mainly being driven by the addition of NEVE on its next version (Armv8.4-A) [57], we believe
TrustZone can also provide an effective foundation for implementing nested virtualization. As
TrustZone has been fueling the implementation of several virtualization solutions for Armv7-
A processors where VE is not available (see Section 4), a complete synergy between TrustZone
and VE can drive the implementation of an alternative form of nested virtualization. The EL3
available in the secure world can be used to run the host hypervisor, while the EL2 available
through VE can be used for running the guest hypervisor. Naturally, we are aware of the following:
first, that the host hypervisor would need to be modified or designed taking into consideration the
non-existence of a Stage-2 or even Stage-3 page tables on the secure world side; and second, that
since current Arm processors implement a uniform memory access (UMA) architecture, running
more than one host hypervisor at the same time will not be possible, due to absence of memory
isolation primitives across multiple EL3 instances. For use-cases requiring just one host hypervisor
this strategy seems to be suitable, but for use-cases requiring the coexistence of multiple host
hypervisors, it might not be feasible. Nevertheless, this limitation can be overcome if Arm decides
to shift for non-uniform memory access (NUMA) architectures, where memory, which is physically
isolated, can guarantee the spatial isolation of multiple host hypervisors by itself.

7 CONCLUSION

This article presented a comprehensive survey about TrustZone technology. TrustZone provides
strong hardware-enforced isolation for trusted software. The current availability of this technol-
ogy in today’s mobile devices and its expected widespread deployment on tomorrow’s tiny smart

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

Demystifying Arm TrustZone: A Comprehensive Survey 130:31

devices has raised increasing awareness on TrustZone as a powerful building block for securing
end-users’ data and applications. This article aims to help researchers and developers getting fa-
miliarized with the latest developments around this technology by providing a comprehensive
study of the state of the art on TrustZone-based systems for enabling TEE and hardware-assisted
virtualization. From our study, we find that there is considerable room for further exploration of
this technology, both in terms of devising effective solutions for outstanding security issues and
vulnerabilities, and of developing new TrustZone applications primarily for IoT but also the cloud.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their comments. We are mostly grateful to Javier
González (CNEX Labs), Jorge Pereira (Prove & Run), Adriano Tavares (Universidade do Minho),
and José Martins (Universidade do Minho) for their valuable input and suggestions to improve this
article.

REFERENCES

[1] T. Alves and D. Felton. 2004. TrustZone: Integrated hardware and software security. Tech. In-Depth 3, 4 (2004), 18–24.

[2] Android. 2018. Android Key Store. Retrieved from https://developer.android.com/training/articles/keystore.html.

[3] Arm Ltd. 2017. Arm Platform Security Architecture Overview. White Paper (Revision 1.1).

[4] N. Asokan, T. Nyman, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik. 2018. ASSURED: Architecture for secure

software update of realistic embedded devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 37, 11 (2018), 2290–2300. DOI:10.1109/TCAD.2018.2858422.

[5] A. Atamli-Reineh, R. Borgaonkar, R. Balisane, G. Petracca, and A. Martin. 2016. Analysis of trusted execution envi-

ronment usage in samsung KNOX. In Proceedings of the Workshop on System Software for Trusted Execution. ACM,

7:1–7:6. DOI:https://doi.org/10.1145/3007788.3007795

[6] L. Atzori, A. Iera, and G. Morabito. 2010. The internet of things: A survey. Comput. Netw. 54, 15 (2010), 2787–2805.

DOI:https://doi.org/10.1016/j.comnet.2010.05.010

[7] A. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen. 2014. Hypervision across worlds:

Real-time kernel protection from the ARM TrustZone secure world. In Proceedings of the ACM SIGSAC Conference

on Computer and Communications Security. ACM, 90–102. DOI:https://doi.org/10.1145/2660267.2660350

[8] A. Azab, P. Ning, and X. Zhang. 2011. SICE: A hardware-level strongly isolated computing environment for x86

multi-core platforms. In Proceedings of the ACM Conference on Computer and Communications Security. 375–388.

[9] R. Balisane and A. Martin. 2016. Trusted execution environment-based authentication gauge (TEEBAG). In Proceed-

ings of the New Security Paradigms Workshop. ACM, 61–67. DOI:https://doi.org/10.1145/3011883.3011892

[10] N. Ben-Yehuda, M. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yas-

sour. 2010. The turtles project: Design and implementation of nested virtualization. In Proceedings of the USENIX

Conference on Operating Systems Design and Implementation. USENIX Association.

[11] E. M. Benhani, C. Marchand, A. Aubert, and L. Bossuet. 2017. On the security evaluation of the ARM TrustZone

extension in a heterogeneous SoC. In Proceedings of the IEEE International System-on-Chip Conference. 108–113.

DOI:https://doi.org/10.1109/SOCC.2017.8226018

[12] F. Brasser, D. Kim, C. Liebchen, V. Ganapathy, L. Iftode, and A.-R. Sadeghi. 2016. Regulating ARM TrustZone devices

in restricted spaces. In Proceedings of the International Conference on Mobile Systems, Applications, and Services. ACM,

413–425. DOI:https://doi.org/10.1145/2906388.2906390

[13] S. Brenner, D. Goltzsche, and R. Kapitza. 2017. TrApps: Secure compartments in the evil cloud. In Proceedings of

the International Workshop on Security and Dependability of Multi-Domain Infrastructures. ACM, Article 5, 6 pages.

DOI:https://doi.org/10.1145/3071064.3071069

[14] S. Brenner, C. Wulf, and R. Kapitza. 2014. Running ZooKeeper coordination services in untrusted clouds. In Proceed-

ings of the USENIX Conference on Hot Topics in System Dependability. USENIX Association, 2–2.

[15] T. Brito, N. Duarte, and N. Santos. 2016. ARM TrustZone for secure image processing on the cloud. In Proceedings of

the IEEE Symposium on Reliable Distributed Systems Workshops. 37–42. DOI:https://doi.org/10.1109/SRDSW.2016.17

[16] A. Carvalho, V. Silva, F. Afonso, P. Cardoso, J. Cabral, M. Ekpanyapong, S. Montenegro, and A. Tavares. 2016. Full

virtualization on low-end hardware: A case study. In Proceedings of the Annual Conference of the IEEE Industrial

Electronics Society. 4784–4789. DOI:https://doi.org/10.1109/IECON.2016.7794064

[17] M. Cereia and I. C. Bertolotti. 2008. Asymmetric virtualisation for real-time systems. In Proceedings of the IEEE

International Symposium on Industrial Electronics. 1680–1685. DOI:https://doi.org/10.1109/ISIE.2008.4677005

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

https://developer.android.com/training/articles/keystore.html
10.1109/TCAD.2018.2858422
https://doi.org/10.1145/3007788.3007795
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1145/2660267.2660350
https://doi.org/10.1145/3011883.3011892
https://doi.org/10.1109/SOCC.2017.8226018
https://doi.org/10.1145/2906388.2906390
https://doi.org/10.1145/3071064.3071069
https://doi.org/10.1109/SRDSW.2016.17
https://doi.org/10.1109/IECON.2016.7794064
https://doi.org/10.1109/ISIE.2008.4677005

130:32 S. Pinto and N. Santos

[18] M. Cereia and I. C. Bertolotti. 2009. Virtual machines for distributed real-time systems. Comput. Stand. Interfaces 31,

1 (Jan. 2009), 30–39. DOI:https://doi.org/10.1016/j.csi.2007.10.010

[19] D. Champagne and R. B. Lee. 2010. Scalable architectural support for trusted software. In Proceedings of the In-

ternational Symposium on High-Performance Computer Architecture. 1–12. DOI:https://doi.org/10.1109/HPCA.2010.

5416657

[20] R. Chang, L. Jiang, W. Chen, Y. Xiang, Y. Cheng, and A. Alelaiwi. 2017. MIPE: A practical memory integrity pro-

tection method in a trusted execution environment. Cluster Comput. (2017), 1–13. DOI:https://doi.org/10.1007/

s10586-017-0833-4

[21] G. Cicero, A. Biondi, G. Buttazzo, and A. Patel. 2018. Reconciling security with virtualization: A dual-hypervisor

design for ARM TrustZone. In Proceedings of the IEEE International Conference on Industrial Technology. 1628–1633.

DOI:https://doi.org/10.1109/ICIT.2018.8352425

[22] V. Costan and S. Devadas. 2016. Intel SGX explained. IACR Cryptology ePrint Archive 2016 (2016), 86.

[23] V. Costan, I. Lebedev, and S. Devadas. 2016. Sanctum: Minimal hardware extensions for strong software isolation.

In Proceedings of the USENIX Security Symposium. USENIX Association, 857–874.

[24] C. Dall and J. Nieh. 2014. KVM/ARM: The design and implementation of the linux ARM hypervisor. SIGPLAN Notes

49, 4 (2014), 333–348. DOI:https://doi.org/10.1145/2644865.2541946

[25] M. Dorjmyagmar, M. Kim, and H. Kim. 2017. Security analysis of samsung knox. In Proceedings of the International

Conference on Advanced Communication Technology. 550–553. DOI:https://doi.org/10.23919/ICACT.2017.7890150

[26] H. Douglas. 2010. Thin Hypervisor-Based Security Architectures for Embedded Platforms. Master’s thesis, Royal

Institute of Technology.

[27] ENISA. 2016. Breaking Android’s Full Disk Encryption. Retrieved from https://www.enisa.europa.eu/publications/

info-notes/breaking-android2019s-full-disk-encryption.

[28] Express Logic. 2016. X-WARE Secure Platform for ARM Cortex-M processors. Retrieved from https://rtos.com/

news/express-logics-x-ware-secure-platform-provides-secure-solution-for-information-and-safety-sensitive-iot-

devices/.

[29] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. 2017. Komodo: Using verification to disentangle secure-

enclave hardware from software. In Proceedings of the Symposium on Operating Systems Principles. ACM, 287–305.

DOI:https://doi.org/10.1145/3132747.3132782

[30] A. Ferraiuolo, R. Xu, D. Zhang, A. Myers, and G. Suh. 2017. Verification of a practical hardware security architecture

through static information flow analysis. SIGOPS Operat. Syst. Rev. 51, 2 (2017), 555–568. DOI:https://doi.org/10.

1145/3093315.3037739

[31] A. Fitzek, F. Achleitner, J. Winter, and D. Hein. 2015. The ANDIX research OS - ARM TrustZone meets indus-

trial control systems security. In Proceedings of the IEEE International Conference on Industrial Informatics. 88–93.

DOI:https://doi.org/10.1109/INDIN.2015.7281715

[32] T. Frenzel, A. Lackorzynski, A. Warg, and H. Härtig. 2010. ARM trustzone as a virtualization technique in embedded

systems. In Proceedings of the 12th Real-Time Linux Workshop.

[33] Gal Beniamini, Project Zero. 2017. Trust Issues: Exploiting TrustZone TEEs. Retrieved from https://

googleprojectzero.blogspot.pt/2017/07/trust-issues-exploiting-trustzone-tees.html.

[34] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey of microarchitectural timing attacks

and countermeasures on contemporary hardware. J. Cryptogr. Eng. 8, 1 (2018), 1–27. DOI:https://doi.org/10.1007/

s13389-016-0141-6

[35] Global Platform. 2011. Retrieved from https://www.globalplatform.org/.

[36] J. González and P. Bonnet. 2014. TEE-based Trusted Storage. Technical Report. IT University Technical Report Series.

[37] J. González and P. Bonnet. 2014. Versatile Endpoint Storage Security with Trusted Integrity Modules. Technical Report.

IT University Technical Report Series.

[38] R. Guanciale, H. Nemati, C. Baumann, and M. Dam. 2016. Cache storage channels: Alias-driven attacks and verified

countermeasures. In Proceedings of the IEEE Symposium on Security and Privacy. 38–55. DOI:https://doi.org/10.1109/

SP.2016.11

[39] H. Hartig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski, F. Mehnert, and M. Peter. 2005. The nizza secure-

system architecture. In Proceedings of the International Conference on Collaborative Computing: Networking, Appli-

cations and Worksharing. 10. DOI:https://doi.org/10.1109/COLCOM.2005.1651218

[40] D. Hein, J. Winter, and A. Fitzek. 2015. Secure block device - secure, flexible, and efficient data storage for ARM Trust-

Zone systems. In Proceedings of the IEEE Trustcom/BigDataSE/ISPA. 222–229. DOI:https://doi.org/10.1109/Trustcom.

2015.378

[41] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan. 2017. vTZ: Virtualizing ARM TrustZone. In Proceedings of the

USENIX Security Symposium. USENIX Association, Vancouver, BC, 541–556.

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

https://doi.org/10.1016/j.csi.2007.10.010
https://doi.org/10.1109/HPCA.2010.5416657
https://doi.org/10.1109/HPCA.2010.5416657
https://doi.org/10.1007/s10586-017-0833-4
https://doi.org/10.1007/s10586-017-0833-4
https://doi.org/10.1109/ICIT.2018.8352425
https://doi.org/10.1145/2644865.2541946
https://doi.org/10.23919/ICACT.2017.7890150
https://www.enisa.europa.eu/publications/info-notes/breaking-android2019s-full-disk-encryption
https://www.enisa.europa.eu/publications/info-notes/breaking-android2019s-full-disk-encryption
https://rtos.com/penalty -@M news/express-logics-x-ware-secure-platform-provides-secure-solution-for-information-and-safety-sensitive-iot-penalty -@M devices/
https://rtos.com/penalty -@M news/express-logics-x-ware-secure-platform-provides-secure-solution-for-information-and-safety-sensitive-iot-penalty -@M devices/
https://rtos.com/penalty -@M news/express-logics-x-ware-secure-platform-provides-secure-solution-for-information-and-safety-sensitive-iot-penalty -@M devices/
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1145/3093315.3037739
https://doi.org/10.1145/3093315.3037739
https://doi.org/10.1109/INDIN.2015.7281715
https://googleprojectzero.blogspot.pt/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.pt/2017/07/trust-issues-exploiting-trustzone-tees.html
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6
https://www.globalplatform.org/
https://doi.org/10.1109/SP.2016.11
https://doi.org/10.1109/SP.2016.11
https://doi.org/10.1109/COLCOM.2005.1651218
https://doi.org/10.1109/Trustcom.2015.378
https://doi.org/10.1109/Trustcom.2015.378

Demystifying Arm TrustZone: A Comprehensive Survey 130:33

[42] P. Hunt, M. Konar, F. Junqueira, and B. Reed. 2010. ZooKeeper: Wait-free coordination for internet-scale systems.

In Proceedings of the USENIX Annual Technical Conference, Vol. 8. 9.

[43] Intel. 2009. 64 and IA-32 Architectures Software Developer’s Manual.

[44] Nisha Jacob, Johann Heyszl, Andreas Zankl, Carsten Rolfes, and Georg Sigl. 2017. How to Break Secure Boot on FPGA

SoCs Through Malicious Hardware. Springer International Publishing, Cham, 425–442. DOI:https://doi.org/10.1007/

978-3-319-66787-4_21

[45] J. Jang and B. B. Kang. 2018. Retrofitting the partially privileged mode for TEE communication channel protection.

IEEE Trans. Depend. Secure Comput. (2018), 1–1. DOI:https://doi.org/10.1109/TDSC.2018.2840709

[46] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang. 2015. SeCReT: Secure channel between rich execution environment

and trusted execution environment. In Proceedings of the Network and Distributed System Security Symposium.

[47] D. Kaplan, T. Woller, and J. Powell. 2016. AMD Memory Encryption Tutorial. White Paper. Retrived from

https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

[48] H. Kim and R. Rajkumar. 2017. Predictable shared cache management for multi-core real-time virtualization. ACM

Trans. Embed. Comput. Syst. 17, 1, Article 22 (2017), 27 pages. DOI:https://doi.org/10.1145/3092946

[49] S. W. Kim, C. Lee, M. Jeon, H. Y. Kwon, H. W. Lee, and C. Yoo. 2013. Secure device access for automotive software.

In Proceedings of the International Conference on Connected Vehicles and Expo. 177–181. DOI:https://doi.org/10.1109/

ICCVE.2013.6799789

[50] K. Kostiainen. 2012. On-board Credentials: An Open Credential Platform for Mobile Devices. Doctoral Dissertation,

Aalto University.

[51] K. Kostiainen, N. Asokan, and J.-E. Ekberg. 2011. Practical property-based attestation on mobile devices. In Proceed-

ings of the International Conference on Trust and Trustworthy Computing. Springer-Verlag, 78–92.

[52] K. Kostiainen, J. Ekberg, N. Asokan, and A. Rantala. 2009. On-board credentials with open provisioning. In Pro-

ceedings of the Symposium on Information, Computer, and Communications Security. ACM, 104–115. DOI:https://

doi.org/10.1145/1533057.1533074

[53] Genode Labs. 2014. Genode—An Exploration of ARM TrustZone Technology. Retrieved from http://genode.org/

documentation/articles/trustzone.

[54] W. Li, H. Li, H. Chen, and Y. Xia. 2015. AdAttester: Secure online mobile advertisement attestation using TrustZone.

In Proceedings of the Annual International Conference on Mobile Systems, Applications, and Services. ACM, 75–88.

DOI:https://doi.org/10.1145/2742647.2742676

[55] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C. Chu, and T. Li. 2014. Building trusted path on untrusted device drivers for

mobile devices. In Proceedings of the Asia-Pacific Workshop on Systems. ACM, 8:1–8:7. DOI:https://doi.org/10.1145/

2637166.2637225

[56] X. Li, H. Hu, G. Bai, Y. Jia, Z. Liang, and P. Saxena. 2014. DroidVault: A trusted data vault for android devices. In

Proceedings of the International Conference on Engineering of Complex Computer Systems. 29–38. DOI:https://doi.org/

10.1109/ICECCS.2014.13

[57] J. Lim, C. Dall, S.-W. Li, J. Nieh, and M. Zyngier. 2017. NEVE: Nested virtualization extensions for ARM. In Proceedings

of the Symposium on Operating Systems Principles. ACM, 201–217. DOI:https://doi.org/10.1145/3132747.3132754

[58] Linaro. 2014. OP-TEE. https://wiki.linaro.org/WorkingGroups/Security/OP-TEE. Accessed: 2018-02-02.

[59] Z. Ling, K. Liu, Y. Xu, Y. Jin, and X. Fu. 2017. An end-to-end view of iot security and Privacy. In Proceedings of the

IEEE Global Communications Conference. 1–7. DOI:https://doi.org/10.1109/GLOCOM.2017.8254011

[60] Z. Ling, J. Luo, Y. Xu, C. Gao, K. Wu, and X. Fu. 2017. Security vulnerabilities of internet of things: A case study of the

smart plug system. IEEE Internet Things J. 4, 6 (Dec 2017), 1899–1909. DOI:https://doi.org/10.1109/JIOT.2017.2707465

[61] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. 2016. ARMageddon: Cache attacks on mobile devices.

In Proceedings of the USENIX Security Symposium. 549–564.

[62] R. Liu and M. Srivastava. 2017. PROTC: PROTeCting drone’s peripherals through ARM TrustZone. In Proceedings of

the Workshop on Micro Aerial Vehicle Networks, Systems, and Applications. ACM, 1–6. DOI:https://doi.org/10.1145/

3086439.3086443

[63] Arm Ltd. 2009. ARM Security Technology: Building a Secure System using TrustZone Technology.

[64] Arm Ltd. 2015. mbed TLS. Retrieved from https://tls.mbed.org/.

[65] Arm Ltd. 2017. TrustZone technology for ARMv8-M Architecture. Version 2.0.

[66] P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho. 2017. VOSYSmonitor, a low latency monitor layer for

mixed-criticality systems on ARMv8-A. In Proceedings of the Euromicro Conference on Real-Time Systems (Leibniz

International Proceedings in Informatics), Vol. 76. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-

many, 6:1–6:18. DOI:https://doi.org/10.4230/LIPIcs.ECRTS.2017.6

[67] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang, A. Bianchi, Y. R. Choe, C. Kruegel, and G.

Vigna. 2017. BOOMERANG: Exploiting the semantic gap in trusted execution environments. In Proceedings of the

Network and Distributed System Security Symposium.

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

https://doi.org/10.1007/978-3-319-66787-4_21
https://doi.org/10.1007/978-3-319-66787-4_21
https://doi.org/10.1109/TDSC.2018.2840709
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.1145/3092946
https://doi.org/10.1109/ICCVE.2013.6799789
https://doi.org/10.1109/ICCVE.2013.6799789
https://doi.org/10.1145/1533057.1533074
https://doi.org/10.1145/1533057.1533074
http://genode.org/documentation/articles/trustzone
http://genode.org/documentation/articles/trustzone
https://doi.org/10.1145/2742647.2742676
https://doi.org/10.1145/2637166.2637225
https://doi.org/10.1145/2637166.2637225
https://doi.org/10.1109/ICECCS.2014.13
https://doi.org/10.1109/ICECCS.2014.13
https://doi.org/10.1145/3132747.3132754
https://wiki.linaro.org/WorkingGroups/Security/OP-TEE
https://doi.org/10.1109/GLOCOM.2017.8254011
https://doi.org/10.1109/JIOT.2017.2707465
https://doi.org/10.1145/3086439.3086443
https://doi.org/10.1145/3086439.3086443
https://tls.mbed.org/
https://doi.org/10.4230/LIPIcs.ECRTS.2017.6

130:34 S. Pinto and N. Santos

[68] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling, and I. Verbauwhede. 2018. Hardware-based trusted com-

puting architectures for isolation and attestation. IEEE Trans. Comput. 67, 3 (Mar. 2018), 361–374. DOI:10.1109/TC.

2017.2647955

[69] J. Martins, J. Alves, J. Cabral, A. Tavares, and S. Pinto. 2017. μRTZVisor: A secure and safe real-time hypervisor.

Electronics 6, 4 (2017). DOI:https://doi.org/10.3390/electronics6040093

[70] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan. 2015. Open-TEE - an open virtual trusted execution environ-

ment. In Proceedings of the IEEE Trustcom/BigDataSE/ISPA, Vol. 1. 400–407. DOI:https://doi.org/10.1109/Trustcom.

2015.400

[71] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin. 2016. TrustZone explained: Architectural features and

use cases. In Proceedings of the IEE Conference on Collaboration and Internet Computing. 445–451. DOI:https://doi.

org/10.1109/CIC.2016.065

[72] Z. Ning, F. Zhang, W. Shi, and W. Shi. 2017. Position paper: Challenges towards securing hardware-assisted execution

environments. In Hardware and Architectural Support for Security and Privacy. ACM, Article 6. DOI:https://doi.org/

10.1145/3092627.3092633

[73] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan. 2017. CFI CaRE: Hardware-Supported Call and Return Enforcement

for Commercial Microcontrollers. Springer International Publishing, Cham, 259–284. DOI:https://doi.org/10.1007/

978-3-319-66332-6_12

[74] D. Oliveira, T. Gomes, and S. Pinto. 2018. Towards a green and secure architecture for reconfigurable IoT end-

devices. In Proceedings of the ACM/IEEE International Conference on Cyber-Physical Systems. 335–336. DOI:https:

//doi.org/10.1109/ICCPS.2018.00041

[75] Open Mobile Terminal Platform (OMTP). 2009. Advanced Trusted Environment: OMTP TR1. Technical Report (v1.1).

[76] M. Paolino, A. Rigo, A. Spyridakis, J. Fanguede, P. Lalov, and D. Raho. 2015. T-KVM: A trusted architecture for KVM

ARM v7 and v8 virtual machines. In Proceedings of the International Conference on Cloud Computing, GRIDs, and

Virtualization. 39–45.

[77] M. Pena, J. Rodriguez-Andina, and M. Manic. 2017. The internet of things: The role of reconfigurable platforms. IEEE

Industr. Electron. Mag. 11, 3 (Sept. 2017), 6–19. DOI:https://doi.org/10.1109/MIE.2017.2724579

[78] S. Pinto, T. Gomes, J. Pereira, J. Cabral, and A. Tavares. 2017. IIoTEED: An enhanced, trusted execution environment

for industrial IoT edge devices. IEEE Internet Comput. 21, 1 (Jan. 2017), 40–47. DOI:https://doi.org/10.1109/MIC.2017.

17

[79] S. Pinto, A. Oliveira, J. Pereira, J. Cabral, J. Monteiro, and A. Tavares. 2017. Lightweight multicore virtualization

architecture exploiting ARM TrustZone. In Proceedings of the Annual Conference of the IEEE Industrial Electronics

Society. 3562–3567. DOI:https://doi.org/10.1109/IECON.2017.8216603

[80] S. Pinto, D. Oliveira, J. Pereira, J. Cabral, and A. Tavares. 2015. FreeTEE: When real-time and security meet. In

Proceedings of the IEEE Conference on Emerging Technologies Factory Automation. 1–4. DOI:https://doi.org/10.1109/

ETFA.2015.7301571

[81] S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M. Ekpanyapong, J. Cabral, and A. Tavares. 2014. Towards a lightweight

embedded virtualization architecture exploiting ARM TrustZone. In Proceedings of the IEEE Conference on Emerging

Technology and Factory Automation. 1–4. DOI:https://doi.org/10.1109/ETFA.2014.7005255

[82] S. Pinto, J. Pereira, T. Gomes, M. Ekpanyapong, and A. Tavares. 2017. Towards a TrustZone-assisted hypervisor for

real-time embedded systems. IEEE Comput. Architect. Lett. 16, 2 (July 2017), 158–161. DOI:https://doi.org/10.1109/

LCA.2016.2617308

[83] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral. 2017. LTZVisor: TrustZone is the key. In Proceedings of the Eu-

romicro Conference on Real-Time Systems (Leibniz International Proceedings in Informatics), Vol. 76. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 4:1–4:22. DOI:https://doi.org/10.4230/LIPIcs.ECRTS.2017.4

[84] S. Pinto, A. Tavares, and S. Montenegro. 2016. Space and time partitioning with hardware support for space appli-

cations. Data Systems in Aerospace, European Space Agency, ESA SP 736 (2016).

[85] Prove & Run. 2017. ProvenCore-M. Retrieved from http://www.provenrun.com/products/provencore-m/.

[86] R. Rijswijk-Deij and E. Poll. 2013. Using trusted execution environments in two-factor authentication: Comparing

approaches. In Proceedings of the Open Identity Summit (Lecture notes in informatics), Vol. P-223. Gesellschaft for

Informatik, 20–31.

[87] Rob Dyke, Trustonic. 2017. Not just droning on! The rise of Kinibi-M. Retrieved from https://www.trustonic.com/

news/blog/not-just-droning-rise-kinibi-m/.

[88] D. Rosenberg. 2014. QSEE trustzone kernel integer overflow vulnerability. In Proceedings of the Black Hat Conference.

[89] X. Ruan. 2014. Platform Embedded Security Technology Revealed: Safeguarding the Future of Computing with Intel

Embedded Security and Management Engine (1st ed.). Apress.

[90] M. Sabt, M. Achemlal, and A. Bouabdallah. 2015. Trusted execution environment: What it is, and what it is not. In

Proceedings of the IEEE Trustcom/BigDataSE/ISPA, Vol. 1. 57–64. DOI:https://doi.org/10.1109/Trustcom.2015.357

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

10.1109/TC.2017.2647955
10.1109/TC.2017.2647955
https://doi.org/10.3390/electronics6040093
https://doi.org/10.1109/Trustcom.2015.400
https://doi.org/10.1109/Trustcom.2015.400
https://doi.org/10.1109/CIC.2016.065
https://doi.org/10.1109/CIC.2016.065
https://doi.org/10.1145/3092627.3092633
https://doi.org/10.1145/3092627.3092633
https://doi.org/10.1007/978-3-319-66332-6_12
https://doi.org/10.1007/978-3-319-66332-6_12
https://doi.org/10.1109/ICCPS.2018.00041
https://doi.org/10.1109/ICCPS.2018.00041
https://doi.org/10.1109/MIE.2017.2724579
https://doi.org/10.1109/MIC.2017.17
https://doi.org/10.1109/MIC.2017.17
https://doi.org/10.1109/IECON.2017.8216603
https://doi.org/10.1109/ETFA.2015.7301571
https://doi.org/10.1109/ETFA.2015.7301571
https://doi.org/10.1109/ETFA.2014.7005255
https://doi.org/10.1109/LCA.2016.2617308
https://doi.org/10.1109/LCA.2016.2617308
https://doi.org/10.4230/LIPIcs.ECRTS.2017.4
http://www.provenrun.com/products/provencore-m/
https://www.trustonic.com/news/blog/not-just-droning-rise-kinibi-m/
https://www.trustonic.com/news/blog/not-just-droning-rise-kinibi-m/
https://doi.org/10.1109/Trustcom.2015.357

Demystifying Arm TrustZone: A Comprehensive Survey 130:35

[91] A.-R. Sadeghi, C. Wachsmann, and M. Waidner. 2015. Security and privacy challenges in industrial internet of things.

In Proceedings of the ACM/EDAC/IEEE Design Automation Conference. 1–6.

[92] Samsung. 2013. White Paper: An Overview of Samsung KNOX. Retrieved from http://www.samsung.com/es/

business-images/resource/white-paper/2014/02/Samsung_KNOX_whitepaper-0.pdf.

[93] D. Sangorrín. 2012. Advanced Integration Techniques for Highly Reliable Dual-OS Embedded Systems. Ph.D.

Dissertation.

[94] D. Sangorrín, S. Honda, and H. Takada. 2010. Dual operating system architecture for real-time embedded systems.

In Proceedings of the International Workshop on Operating Systems Platforms for Embedded Real-Time Applications.

6–15.

[95] D. Sangorrín, S. Honda, and H. Takada. 2012. Reliable Device Sharing Mechanisms for Dual-OS Embedded Trusted

Computing. 74–91. DOI:https://doi.org/10.1007/978-3-642-30921-2_5

[96] N. Santos, H. Raj, S. Saroiu, and A. Wolman. 2014. Using ARM TrustZone to build a trusted language runtime for

mobile applications. SIGARCH Comput. Archit. News 42, 1 (Feb. 2014), 67–80. DOI:https://doi.org/10.1145/2654822.

2541949

[97] O. Schwarz, C. Gehrmann, and V. Do. 2014. Affordable Separation on Embedded Platforms. Springer International

Publishing, Cham, 37–54. DOI:https://doi.org/10.1007/978-3-319-08593-7_3

[98] Sequitur Labs. 2017. CoreLockr-TZ. Retrieved from https://www.sequiturlabs.com/corelockrtz/.

[99] D. Shen. 2015. Exploiting TrustZone on android. In Proceedings of the Black Hat Conference.

[100] J. Shin, Y. Kim, W. Park, and C. Park. 2012. DFCloud: A TPM-based secure data access control method of cloud

storage in mobile devices. In Proceedings of the IEEE International Conference on Cloud Computing Technology and

Science Proceedings. 551–556. DOI:https://doi.org/10.1109/CloudCom.2012.6427606

[101] J. Shuja, A. Gani, K. Bilal, A. Khan, S. Madani, S. Khan, and A. Zomaya. 2016. A survey of mobile device virtualization:

Taxonomy and state of the art. Comput. Surveys 49, 1 (Apr. 2016), 1:1–1:36. DOI:https://doi.org/10.1145/2897164

[102] SierraTEE. 2012. Retrieved from http://www.openvirtualization.org/.

[103] S. Smalley and R. Craig. 2013. Security enhanced (SE) android: Bringing flexible MAC to android. In Proceedings of

the Network and Distributed System Security Symposium, Vol. 310. 20–38.

[104] Philip Sparks. 2017. The route to a trillion devices. White Paper, ARM.

[105] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. 2003. AEGIS: Architecture for tamper-evident and

tamper-resistant processing. In Proceedings of the Annual International Conference on Supercomputing. ACM, 160–

171. DOI:https://doi.org/10.1145/782814.782838

[106] H. Sun, K. Sun, Y. Wang, and J. Jing. 2015. Reliable and trustworthy memory acquisition on smartphones. IEEE Trans.

Info. Forensics Secur. 10, 12 (Dec. 2015), 2547–2561. DOI:https://doi.org/10.1109/TIFS.2015.2467356

[107] H. Sun, K. Sun, Y. Wang, and J. Jing. 2015. TrustOTP: Transforming smartphones into secure one-time password

tokens. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. ACM, 976–988.

DOI:https://doi.org/10.1145/2810103.2813692

[108] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia. 2014. TrustDump: Reliable Memory Acquisition on Smartphones.

Springer International Publishing, Cham, 202–218. DOI:https://doi.org/10.1007/978-3-319-11203-9_12

[109] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang. 2015. TrustICE: Hardware-assisted isolated computing environments

on mobile devices. In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE

Computer Society, 367–378. DOI:https://doi.org/10.1109/DSN.2015.11

[110] T6 TEE. 2014. Retrieved from https://www.trustkernel.com/en/products/tee/t6.html.

[111] A. Tanenbaum, J. Herder, and H. Bos. 2006. Can we make operating systems reliable and secure? Computer 39, 5

(May 2006), 44–51. DOI:https://doi.org/10.1109/MC.2006.156

[112] A. Tang, S. Sethumadhavan, and S. Stolfo. 2017. CLKSCREW: Exposing the perils of security-oblivious energy man-

agement. In Proceedings of the USENIX Security Symposium. USENIX Association, 1057–1074.

[113] J. Taylor. 2016. Security for the next generation of safe real-time systems. In Proceedings of Embedded World

Conference.

[114] TLK. 2014. Retrieved from http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/papers/webcrypto2014_

submission_25.pdf.

[115] Trusted Computing Group. 2011. TPM Main: Part 1 Design Principles, Version 1.2, Revision 116 ed.

[116] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. McCune. 2012. Trustworthy Execution on Mobile Devices:

What Security Properties Can My Mobile Platform Give Me? Springer, Berlin, 159–178. DOI:https://doi.org/10.1007/

978-3-642-30921-2_10

[117] J. Williams. 2015. Inspecting data from the safety of your trusted execution environment. In Proceedings of the Black

Hat Conference.

[118] J. Winter. 2008. Trusted computing building blocks for embedded linux-based ARM trustzone platforms. In Proceed-

ings of the ACM Workshop on Scalable Trusted Computing. ACM, 21–30. DOI:https://doi.org/10.1145/1456455.1456460

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

http://www.samsung.com/es/business-images/resource/white-paper/2014/02/Samsung_KNOX_whitepaper-0.pdf
http://www.samsung.com/es/business-images/resource/white-paper/2014/02/Samsung_KNOX_whitepaper-0.pdf
https://doi.org/10.1007/978-3-642-30921-2_5
https://doi.org/10.1145/2654822.2541949
https://doi.org/10.1145/2654822.2541949
https://doi.org/10.1007/978-3-319-08593-7_3
https://www.sequiturlabs.com/corelockrtz/
https://doi.org/10.1109/CloudCom.2012.6427606
https://doi.org/10.1145/2897164
http://www.openvirtualization.org/
https://doi.org/10.1145/782814.782838
https://doi.org/10.1109/TIFS.2015.2467356
https://doi.org/10.1145/2810103.2813692
https://doi.org/10.1007/978-3-319-11203-9_12
https://doi.org/10.1109/DSN.2015.11
https://www.trustkernel.com/en/products/tee/t6.html
https://doi.org/10.1109/MC.2006.156
http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/papers/webcrypto2014_submission_25.pdf
http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/papers/webcrypto2014_submission_25.pdf
https://doi.org/10.1007/978-3-642-30921-2_10
https://doi.org/10.1007/978-3-642-30921-2_10
https://doi.org/10.1145/1456455.1456460

130:36 S. Pinto and N. Santos

[119] J. Winter. 2012. Experimenting with ARM TrustZone—Or: How I met a friendly piece of trusted hardware. In Proceed-

ings of the IEEE International Conference on Trust, Security and Privacy in Computing and Communications. 1161–1166.

DOI:https://doi.org/10.1109/TrustCom.2012.157

[120] Xilinx. 2014. Programming ARM TrustZone Architecture on the Xilinx Zynq-7000 All Programmable SoC. User

Guide, UG1019 (v1.0).

[121] N. Zhang, H. Sun, K. Sun, W. Lou, and Y. T. Hou. 2016. CacheKit: Evading memory introspection using cache inco-

herence. In Proceedings of the IEEE European Symposium on Security and Privacy. 337–352. DOI:https://doi.org/10.

1109/EuroSP.2016.34

[122] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. Hou. 2016. TruSpy: Cache side-channel information leakage from the

secure world on ARM devices. IACR Cryptology ePrint Archive (2016), 980.

[123] Y. Zhang, Z. Chen, H. Xue, and T. Wei. 2015. Fingerprints on mobile devices: Abusing and leaking. In Proceedings of

the Black Hat Conference.

[124] B. Zhao, Y. Xiao, Y. Huang, and X. Cui. 2017. A private user data protection mechanism in TrustZone architecture

based on identity authentication. Tsinghua Sci. Technol. 22, 2 (Apr. 2017), 218–225. DOI:https://doi.org/10.23919/TST.

2017.7889643

[125] S. Zhao, Q. Zhang, G. Hu, Y. Qin, and D. Feng. 2014. Providing root of trust for ARM TrustZone using on-chip SRAM.

In Proceedings of the International Workshop on Trustworthy Embedded Devices. ACM, 25–36. DOI:https://doi.org/10.

1145/2666141.2666145

Received April 2018; revised August 2018; accepted October 2018

ACM Computing Surveys, Vol. 51, No. 6, Article 130. Publication date: January 2019.

https://doi.org/10.1109/TrustCom.2012.157
https://doi.org/10.1109/EuroSP.2016.34
https://doi.org/10.1109/EuroSP.2016.34
https://doi.org/10.23919/TST.2017.7889643
https://doi.org/10.23919/TST.2017.7889643
https://doi.org/10.1145/2666141.2666145
https://doi.org/10.1145/2666141.2666145

