United States Patent

US010496824B2

(12) ao) Patent No.: US 10,496,824 B2
Raj et al. 45) Date of Patent: Dec. 3, 2019
(54) TRUSTED LANGUAGE RUNTIME ON A 7,624,111 B2* 112009 Reddish GOG6F 21/53
MOBILE PLATFORM 8,117,642 B2 2/2012 Covey et al.
2002/0184520 Al* 12/2002 Bush ...ccccceevveene GOGF 21/53
— .) 726/6
(75) Inventors: Himanshu Raj, Issaquah, WA (US): 2004/0210760 Al 10/2004 Mograth et al.
Nuno Santos, Saarbruecken (DE); Paul 2005/0034099 Al 2/2005 Spooner
England, Bellevue, WA (US); Stefan 2005/0273605 Al* 12/2005 Sahacccoocoovvennn. GO6F 21/53
Saroiu, Redmond, WA (US); Alastair 713/166
Wolman, Seattle, WA (US) 2005/0289311 Al* 12/2005 Durham et al. 711/163
2006/0090084 Al* 4/2006 Buer_ .. 713/189
(73) Assignee: Microsoft Licensing Technology, LLC, 2007/0199046 AL* 82007 .O Brien oo 72612
Redmond, WA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 723 days. Nuno Santos, Himanshu Raj, Stefan Saroiu, Alec Wolman “Trusted
Language Runtime (TLR): Enabling Trusted Applications on
(21) Appl. No.: 13/167,699 Smartphones,” HotMobile 2011, Mar. 1-2, 2011.*
(Continued)
(22) Filed: Jun. 24, 2011
Primary Examiner — Kaveh Abrishamkar
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Fiala & Weaver PL.L.C.
US 2012/0331550 Al Dec. 27, 2012
57 ABSTRACT
(51) Int. ClL Disclosed is a trusted language runtime (TLR) architecture
guag
GOG6F 21/57 (2013.01) that provides abstractions for developing a runtime for
GOGF 21/53 (2013.01) executing trusted applications or portions thereof securely
(52) US. CL on a mobile device (e.g., a smartphone). TLR offers at least
CPC GO6F 21/575 (2013.01); GO6F 21/53 two abstractions to mobile developers: a trustbox and a
(2013.01) trustlet. The trustbox is a runtime environment that offers
(58) Field of Classification Search code and data integrity, and confidentiality. Code and data
None running inside a trustbox cannot be read or modified by any
See application file for complete search history. code running outside the trustbox. A trustlet is the code
portion of an application that runs inside a trustbox. With
(56) References Cited TLR, programmers can write applications in .NET and

U.S. PATENT DOCUMENTS

7,069,442 B2 6/2006 Sutto et al.

specify which parts of the application handle sensitive data,
and thus, run inside the trustbox. With the TLR, the devel-
oper places these parts in a trustlet class, and the TLR

7.203.833 B1* 4/2007 Abadi et al. w.occorrooro.... 726/22 provides all support needed to run the parts in the trustbox.
7,380,276 B2* 5/2008 Sahaccoeo.... GO6F 21/53
726/22 24 Claims, 10 Drawing Sheets
100
102 110
UNTRUSTED TRUSTED
EXECUTION EXECUTION
ENVIRONMENT ! ENVIRONMENT
L1 SECURE
APPLICATION | | cOMMUNICATIONS 12
10 COMPONENT TRUSTED
UNTRUSTED 116 CODE
CODE SEC-COM
CHANNEL
r 104
OPERATING
SYSTEM
r 118
BOOTSTRAP COMPONENT

US 10,496,824 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0220494 Al
2008/0005794 Al*

9/2007 Spooner
1/2008 Inoue et al.ccceovveen 726/22

2009/0282477 Al* 11/2009 Chen et al. 726/22
2010/0011446 Al1* 1/2010 Klucher GO6F 21/10
726/27

2010/0100591 Al 4/2010 Mabhaffey et al.
2010/0106926 Al* 4/2010 Kandasamy GO6F 11/366
711/163
2010/0153693 Al* 6/2010 Stall ..o GO6F 9/30189
712/229

OTHER PUBLICATIONS

“NET Micro Framework”, Retrieved from: https://web.archive.org/
web/20081013145937/https://www.microsoft.com/netmf/default.
mspx, Retrieved Date: Oct. 13, 2008, 01 Page.

“ARM RealView Development Suite”, Retrieved from: http://www.
arm.com/products/tools/software-tools/index.php, Retrieved Date:
Oct. 21, 2010, 30 Pages.

“ARM Security Technology, Building a Secure System using TrustZone
Technology”, Retrieved from http://webcache.googleusercontent.
com/search?q=cache:OcfSXqyZ7Xgl:infocenter.arm.com/help/topic/
com.arm.doc.prd29-genc-009492¢/PRD29-GENC-009492C _trustzone
security_whitepaper.pdf+&cd=1&hl=en&ct=clnk&gl=in, Jan. 2009,
108 Pages.

“Porting the NET Micro Framework.”, Retrieved from: https://web.
archive.org/web/20090322080443/http://msdn. microsoft.com/en-
us/netframework/bb267253.aspx, Retrieved Date: Mar. 22, 2009, 02
Pages.

“SAgent: A Security Framework for JADE”, In Proceedings of the
fifth international joint conference on Autonomous agents and
multiagent systems, May 8, 2006, 17 Pages.

“Transaction authentication number”, Retrieved from: https://web.
archive.org/web/20100901101909/http://en. wikipedia.org: 80/wiki/
Transaction_authentication_number, Retrieved Date: Sep. 1, 2010,
03 Pages.

“Trusted platform module specification”, In Publication of Trusted
Computing Group, Version 1.2, Level 2, Revision 103, Jul. 9, 2007,
710 Pages.

Bickford, et al., “Rootkits on Smart Phones: Attacks, Implications
and Opportunities”, In Proceedings of the Eleventh Workshop on
Mobile Computing Systems & Applications, Feb. 22, 2010, pp.
49-54.

Brumley, et al., “Privtrans: automatically partitioning programs for
privilege separation”, In Proceedings of the 13th conference on
USENIX Security Symposium—vol. 13, Aug. 9, 2004, 15 Pages.

Chong, et al., “Secure Web Applications via Automatic Partition-
ing”, In Proceedings of Twenty-First ACM SIGOPS Symposium on
Operating Systems Principles, Oct. 14, 2007, pp. 31-44.

Enck, et al., “TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones”, In Proceedings of
the 9th USENIX conference on Operating systems design and
implementation, Oct. 4, 2010, pp. 393-407.

Garfinkel, et al., “Terra: A Virtual Machine-Based Platform for
Trusted Computing”, In Proceedings of the Nineteenth ACM Sym-
posium on Operating Systems Principles, Oct. 19, 2003, pp. 193-
206.

Garrigues, et al., “Promoting the development of secure mobile
agent applications”, Retrieved from: http://openaccess.uoc.edu/
webapps/02/bitstream/10609/5186/1/main.pdf, Nov. 5, 2010, 27
Pages.

Hypponen, Mikko, “Malware goes Mobile”, In Publication of
Scientific American, Nov. 2006, 08 Pages.

Igbal, et al., “An Overview of Microkemel, Hypervisor and Microvi-
sor Virtualization Approaches for Embedded Systems”, In Report of
Department of Electrical and Information Technology, Lund Uni-
versity, Jan. 2009, 15 Pages.

McCune, et al., “Flicker: An Execution Infrastructure for TCB
Minimization”, In Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems, vol. 42, Issue 4, Apr.
1, 2008, pp. 315-328.

McCune, et al., “TrustVisor: Efficient TCB Reduction and Attesta-
tion”, In Symposium on Security and Privacy, May 16, 2010, pp.
143-158.

Myers, C. Andrew., “JFlow Practical Mostly-Static Information
Flow Control”, In Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, Jan.
20, 1999, pp. 228-241.

Patel, et al. “A Platform for Device and Computation Management”,
In Journal of Transactions on Circuits and Systems, vol. 4, Issue 11,
Oct. 27, 2005, pp. 1742-1751.

Serhani, et al., “Toward an Efficient Framework for Designing,
Developing, and Using Secure Mobile Applications”, In Proceed-
ings of International Conference on Software and Data Engineering,
Apr. 23, 2009, pp. 256-262.

Winter, Johannes, “Trusted Computing Building Blocks for Embed-
ded Linux-Based Arm Trustzone Platforms”, In Proceedings of the
3rd ACM Workshop on ScalableTrusted Computing, Oct. 31, 2008,
pp. 21-30.

* cited by examiner

U.S. Patent Dec. 3, 2019 Sheet 1 of 10 US 10,496,824 B2

100
102 10
UNTRUSTED TRUSTED
EXECUTION EXECUTION
ENVIRONMENT 114 ENVIRONMENT
[108 [
SECURE 2
APPLICATION COMMUNICATIONS s
[106 COMPONENT TRUSTED
UNTRUSTED 116 CODE
DE
o SEC-COM
CHANNEL
104
OPERATING
SYSTEM
18
BOOTSTRAP COMPONENT

FIG. 1

U.S. Patent Dec. 3, 2019 Sheet 2 of 10 US 10,496,824 B2

e 200
Ve 102 e 110
UNTRUSTED EXECUTION L 208 TRUSTED EXECUTION
ENVIRONMENT ! ENVIRONMENT r 202
: TRUSTED LANGUAGE RUNTIME
]
APP #1 APP #2 | see 1 — 206
[}
108 ! — 204
H TRUSTLET TRUSTLET
] sse
OPERATING SYSTEM E TRUSTBOX TRUSTBOX
I
HARDWARE 210

FIG. 2

U.S. Patent Dec. 3, 2019 Sheet 3 of 10 US 10,496,824 B2

300
102 110
UNTRUSTED EXECUTION TRUSTED EXECUTION
ENVIRONMENT ~ ,—208 ENVIRONMENT
302
APPLICATION[PROXY TRUSTLET
MANAGED

CODE

NATIVE
CODE

L e e e e e ——————

HARDWARE

FIG. 3

U.S. Patent

Dec. 3, 2019 Sheet 4 of 10 US 10,496,824 B2
[~ 400
SMART DEVICE
406
APPLICATIONS SUBSCRIBER
| IDENTITY
412 SYSTEM
OTHER APPS
408 [3! FIRMWARE
VIDEO SYS [€ Ul
COMMUNICATIONS COMPONENT
~ 410
CLIENT
DISPLAY |&— MODE, | ... | MODEy
'y | | TXRX TXRX
402~ |
IMAGE SYS [€—1—3] PROCESSOR [¢ TXRX
A 1
404~ |
Vo < MEMORY ¢
INTERFACE ’ LOCATION
COMPONENT
» AUDIO I/O Y
POWER | | POWER
SOURCE e}

FIG. 4

U.S. Patent Dec. 3, 2019 Sheet 5 of 10 US 10,496,824 B2

CREATE A TRUSTED EXECUTION 500
ENVIRONMENT IN A MOBILE DEVICE USING
PROCESSOR-BASED ISOLATION EXTENSIONS

I

ESTABLISH SECURE COMMUNICATIONS

CHANNEL BETWEEN THE TRUSTED _— 502
EXECUTION ENVIRONMENT AND AN

UNTRUSTED EXECUTION ENVIRONMENT

I

RUN PORTION OF TRUSTED CODE OF AN 504
UNTRUSTED APPLICATION IN THE TRUSTED P~
EXECUTION ENVIRONMENT

I

COMMUNICATE CALL TO THE PORTION OF
TRUSTED CODE IN THE TRUSTED EXECUTION
ENVIRONMENT OVER THE SECURE — 506

COMMUNICATIONS CHANNEL, THE CALL
GENERATED IN RESPONSE TO AN INVOKED
METHOD OF THE UNTRUSTED APPLICATION

I

RETURN ARGUMENTS AND VALUES TO THE

UNTRUSTED EXECUTION ENVIRONMENT | — 508

OVER THE SECURE COMMUNICATIONS
CHANNEL, BASED ON THE CALL

STOP

FIG. 5

U.S. Patent Dec. 3, 2019 Sheet 6 of 10 US 10,496,824 B2

(FIG.5 }

_— 600

ISOLATE THE PORTION OF TRUSTED CODE
FROM INSPECTION BY UNTRUSTED
APPLICATION CODE AND OPERATING
SYSTEM OF THE MOBILE DEVICE USING THE
TRUSTED EXECUTION ENVIRONMENT

Y

DEFINE AN INTERFACE IN THE PORTION OF
TRUSTED CODE THAT IDENTIFIES DATA
» COMMUNICATED BETWEEN THE TRUSTED
EXECUTION ENVIRONMENT AND
UNTRUSTED EXECUTION ENVIRONMENT

Y.

AUTHENTICATE MOBILE DEVICE BASED ON
» A CRYPTOGRAPHIC DEVICE IDENTIFIER OF >
THE MOBILE DEVICE

_— 606

ENCRYPT AND BIND DATA TO THE MOBILE
DEVICE AND A SPECIFIC PORTION OF

TRUSTED CODE IN THE TRUSTED EXECUTION -

ENVIRONMENT OF THE MOBILE DEVICE

_— 608

DESTROY THE TRUSTED EXECUTION
ENVIRONMENT BY DESTROYING AN
ASSOCIATED CONTAINER OF THE CODE AND
DATA

\ 4

‘ STOP)

FIG. 6

U.S. Patent Dec. 3, 2019 Sheet 7 of 10 US 10,496,824 B2

(FIG.5)

EXECUTE A SECURE BOOTLOADER TO LOAD
.| A TRUSTED LANGUAGE RUNTIME IMAGE

"I INTO MEMORY AND PERFORM AN INTEGRITY
CHECK ON THE IMAGE

4 — 702

INITIATE TRUSTED LANGUAGE RUNTIME
INITIALIZATION CODE TO CREATE THE
TRUSTED EXECUTION ENVIRONMENT

\ 4 704

THEREAFTER EXECUTE A BOOTLOADER IN
THE UNTRUSTED EXECUTION ENVIRONMENT
TO FURTHER EXECUTE AN OPERATING
SYSTEM BOOT SEQUENCE TO CREATE THE
UNTRUSTED EXECUTION ENVIRONMENT

A 4

(STOP)

FIG. 7

U.S. Patent Dec. 3, 2019 Sheet 8 of 10 US 10,496,824 B2

(START)

A 4
CREATE A TRUSTED EXECUTION 800

ENVIRONMENT IN A MOBILE DEVICE USING

PROCESSOR-BASED ISOLATION EXTENSIONS

Y

DEFINE AN INTERFACE IN A PORTION OF
TRUSTED CODE OF AN UNTRUSTED
APPLICATION, THE INTERFACE IDENTIFIES | — 802
DATA COMMUNICATED BETWEEN THE
TRUSTED EXECUTION ENVIRONMENT AND
AN UNTRUSTED EXECUTION ENVIRONMENT

\ 4
ISOLATE PORTION OF TRUSTED CODE FROM
INSPECTION BY UNTRUSTED APPLICATION
CODE AND OPERATING SYSTEM OF THE b 3%

MOBILE DEVICE USING THE TRUSTED
EXECUTION ENVIRONMENT

y

ESTABLISH A SECURE COMMUNICATIONS
CHANNEL BETWEEN THE TRUSTED
EXECUTION ENVIRONMENT AND THE — 806
UNTRUSTED EXECUTION ENVIRONMENT
USING KERNEL MODE DEVICE DRIVERS

y

RUN THE PORTION OF TRUSTED CODE IN THE | — 808
TRUSTED EXECUTION ENVIRONMENT

y

COMMUNICATE A CALL OVER THE SECURE
COMMUNICATIONS CHANNEL TO THE
PORTION OF TRUSTED CODE AND RETURN | — 810
DATA OVER THE SECURE COMMUNICATIONS
CHANNEL TO THE UNTRUSTED EXECUTION
ENVIRONMENT

A 4

(STOP)

FIG. 8

U.S. Patent

(FIG.8 >

Dec. 3, 2019 Sheet 9 of 10

US 10,496,824 B2

_— 900

EXECUTE A SECURE BOOTLOADER TO
CREATE THE TRUSTED EXECUTION
ENVIRONMENT AND THEREAFTER

EXECUTE A BOOTLOADER TO CREATE

THE UNTRUSTED EXECUTION
ENVIRONMENT

z

902

CREATE TRUSTED EXECUTION
ENVIRONMENT ABSENT UTILIZATION

> INPUT-OUTPUT INTERFACES AND >
INPUT-OUTPUT DEVICE DRIVERS
STORE AND RESTORE PROCESSOR
STATE WHEN SWITCHING BETWEEN A

SECURE MODE AND AN UNSECURE
MODE

FIG. 9

STOP

US 10,496,824 B2

U.S. Patent Dec. 3, 2019 Sheet 10 of 10
1000
{-‘
L~ 1002
s 1008 - 1018
REMOVABLE €“c————>
MEMORY
SUBSYSTEM
L~ 1004
PROCESSING
UNIT(S) ke /_—10;01
006! T o5 |
! -~ L9051
MEMORY | 1022
SUBSYSTEM | r T ares” |
1010 b=
L —1 r 1024'
VOL : LMODULES-; |
1012 | r——'Clﬂ%F'
S NON-VOL | L DATA _ :
Y L__ —_——
S 1016 Y o
T
B STORAGE STORAGE
M INTERFACE(S) SUBSYSTEM(S) 1044
5 1002 NETWORKS,
G COMPUTERS,
S WIRE/WIRELESS | —g WIRELESS
COMMUNICATIONS |« > PERIPHERALS,
SUBSYSTEM WIRELESS
INPUT
- 1036 1040 DEVICES,...
ONBOARD 1038
GRAPHICS [% "1 DISPLAY L
INTERFACE(S) | 5| EXTERNAL
< 1030 ”| DISPLAY(S)
/__ 1032 ONBOARD
| USER INPUT 1028
VODEVICE |, DEVICES % 5?55 I;\II\;%LT
INTERFACE(S) DEVICES
< 1034
| | ourpUT
”| PERIPHERALS

FIG. 10

US 10,496,824 B2

1
TRUSTED LANGUAGE RUNTIME ON A
MOBILE PLATFORM

BACKGROUND

Mobile systems, such as smartphones, lack support for
building and running secure and trusted applications without
including a large amount of code in the application’s trusted
computing base, such as a complete operating system and a
managed language runtime. Solutions designed for tradi-
tional desktop or server machines using virtualization tech-
nology are excessively heavyweight for mobile systems.
Moreover, hardware-based solutions provide a low-level
interface that makes the solutions inordinately difficult to
program.

Existing approaches to providing secure and trusted run-
time environments do not meet the needs of today’s mobile
landscape for multiple reasons. In one example, the majority
of mobile handhelds are ARM-based (a processor dedicated
for security), and hence, cannot directly utilize x86-based
solutions. Additionally, unlike desktops, mobile devices are
oftentimes resource constrained. A system for running
trusted applications on a smartphone needs to be light-
weight. While previous hypervisor-based solutions offer
isolation from malicious code, such solutions are too heavy-
weight for a smartphone when considering the impact on
memory use, performance, and energy consumption. Finally,
the popularity of smartphones has resulted in a large number
of developers developing a highly diverse set of mobile
applications. Any system that offers trusted computing
primitives to such a large number of third-party developers
with varying skills and backgrounds needs to offer easy-to-
use, rich programming abstractions.

SUMMARY

The following presents a simplified summary in order to
provide a basic understanding of some novel embodiments
described herein. This summary is not an extensive over-
view, and it is not intended to identify key/critical elements
or to delineate the scope thereof. Its sole purpose is to
present some concepts in a simplified form as a prelude to
the more detailed description that is presented later.

Disclosed is a trusted language runtime (TLR) architec-
ture that provides abstractions for developing a runtime for
executing trusted applications or portions thereof securely
on a mobile device (e.g., a smartphone). A trusted execution
environment is created in the mobile device using hardware
processor-based isolation extensions. TLR offers at least two
abstractions to mobile developers: a trustbox and a trustlet.
The trustbox is a runtime environment that offers code and
data integrity, and confidentiality. Code and data running
inside trustbox cannot be read or modified by any code
running outside the trustbox. A trustlet is the portion of an
application that runs inside a trustbox. A trustlet can be
a NET-based class whose interface defines the data that can
flow in or out of the trustbox.

With TLR, programmers can write applications in .NET
and specify which parts of the application handle sensitive
data, and thus, run inside the trustbox. With the TLR, the
developer places these parts in a trustlet class, and the TLR
provides all support needed to run the parts in a trustbox. By
splitting an application into a small trusted component (a
trustlet) and a large untrusted component, the application’s
attack surface is reduced. Any exploitable bug in the
untrusted component does not affect the trusted component’s
integrity and confidentiality.

10

15

20

25

30

35

40

45

50

55

60

65

2

The TLR can utilize the ARM TrustZone™ memory
protection and interrupt delivery control mechanisms, thus
reducing the size of its trusted computing base (TCB). TLR
also uses the ARM TrustZone hardware support that pro-
vides underlying trusted computing primitives with a small
TCB, and that yet does not include the operating system.

Additionally, TLR can utilize a NET MicroFramework™
(by Microsoft Corporation) (or other suitable development
and execution environment), which is a language runtime
for embedded and resource-constrained device that offers
the productivity benefits of modern high-level languages to
application developers.

To the accomplishment of the foregoing and related ends,
certain illustrative aspects are described herein in connection
with the following description and the annexed drawings.
These aspects are indicative of the various ways in which the
principles disclosed herein can be practiced and all aspects
and equivalents thereof are intended to be within the scope
of the claimed subject matter. Other advantages and novel
features will become apparent from the following detailed
description when considered in conjunction with the draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an execution system in accordance with
the disclosed architecture.

FIG. 2 illustrates a high-level architecture of the trusted
language runtime.

FIG. 3 illustrates a detailed view of trusted language
runtime components.

FIG. 4 illustrates a schematic block diagram of an exem-
plary smart mobile device that a host the trusted language
runtime architecture in accordance with the disclosed archi-
tecture.

FIG. 5 illustrates a computer-implemented execution
method in accordance with the disclosed architecture.

FIG. 6 illustrates further aspects of the method of FIG. 5.

FIG. 7 illustrates further aspects of the method of FIG. 5.

FIG. 8 illustrates an alternative execution method in
accordance with the disclosed architecture.

FIG. 9 illustrates further aspects of the method of FIG. 8.

FIG. 10 illustrates a block diagram of a computing system
that executes the trusted language runtime architecture.

DETAILED DESCRIPTION

The disclosed trusted language runtime (TLR) architec-
ture provides abstractions for developing a runtime for
running secure and trusted applications on a platform, such
as a smartphone. The TLR can utilize ARM TrustZone
hardware support, for example, that provides underlying
trusted computing primitives with a small trusted computing
base (TCB) that does not include the device operating
system (OS). Further, TLR can utilize a language runtime
for embedded and resource-constrained device that offers
the productivity benefits of modern high-level languages to
application developers (e.g., the NET Micro Framework).

This allows applications to be built with modern program-
ming languages, such as C#, that improve programmer
productivity through features such as strong type checking
and garbage collection. Where the .NET Micro Framework
is employed, the NET Framework is a much smaller version
of the standard .NET framework, and is specifically
designed for resource constrained devices. In addition to its
smaller codebase, the NET Micro Framework implements
the minimal system support code needed to run directly on

US 10,496,824 B2

3
the hardware inside the trusted environment without includ-
ing the OS as part of the TCB.

The TCB of the trusted environment is further reduced by
eliminating all support for I/O (input-output). This greatly
reduces the size of the class libraries. For example, the GUI
(graphical user interface) libraries which typically compose
a large portion of the class libraries needed by applications
are no longer needed. Moreover, eliminating support for [/O
also eliminates the need for I/O device drivers, which drivers
typically constitute the largest fraction of the TCB in modern
operating systems.

Reference is now made to the drawings, wherein like
reference numerals are used to refer to like elements
throughout. In the following description, for purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding thereof. It may be
evident, however, that the novel embodiments can be prac-
ticed without these specific details. In other instances, well
known structures and devices are shown in block diagram
form in order to facilitate a description thereof. The intention
is to cover all modifications, equivalents, and alternatives
falling within the spirit and scope of the claimed subject
matter.

FIG. 1 illustrates an execution system 100 in accordance
with the disclosed architecture. The system 100 includes an
untrusted execution environment 102 (e.g., of a mobile
device) where an operating system 104 and untrusted code
106 of an application 108 execute. The system 100 also
includes a trusted execution environment 110 (e.g., of the
mobile device) where trusted code 112 of the application
108 executes. The trusted code 112 is isolated from inspec-
tion and modification by the untrusted code 106.

A secure communications component 114 (e.g., of the
mobile device) provides a secure communications (denoted
SEC-COM) channel 116 between the trusted execution
environment 110 and untrusted execution environment 102.
The secure communications component 114 encrypts data
and binds the encrypted data to a specific set of trusted code
in the trusted execution environment 110, which environ-
ment 110 can include multiples sets of trusted code. The
secure communications component 114 switches between a
secure mode and an unsecure mode. The secure communi-
cations component 114 saves and restores processor state of
the trusted and untrusted execution environments (110 and
102) based on mode.

The secure communications component 114 establishes
the secure communications channel 116 in response to a call,
the channel 116 based on kernel-mode drivers, one of which
initiates a secure mode. The secure communications com-
ponent 114 establishes the secure communications channel
116 based on libraries at a language runtime level of the
trusted and untrusted execution environments (110 and 102),
and communications drivers at a system support level of the
trusted and untrusted execution environments (110 and 102).

The trusted code 112 is identified in the application 108
according to a class that defines data which flows between
the trusted execution environment 110 and the untrusted
execution environment 102. In one embodiment, the trusted
execution environment 110 is absent of input-output inter-
faces and device drivers. In another embodiment, the trusted
execution environment 110 can utilize input-output inter-
faces and device drivers. The trusted execution environment
110 executes according to a language runtime environment
that runs using hardware-based isolation protection exten-
sions.

The system 100 further comprises a bootstrap component
118 that first boots the mobile device into a secure mode and

25

30

40

45

50

65

4

runs a secure bootloader to establish the trusted execution
environment 110, and thereafter, invokes an untrusted boot-
loader to execute a standard boot sequence for the operating
system 104.

To build a trusted mobile application with the TLR, the
developer typically determines which part of an application
handles sensitive data, seals the sensitive data by binding it
to the trustlet, and deploys trustlet and sealed data to the
platform (e.g., smartphone) and runs the trustlet and data
inside of a trustbox.

To define a trustlet, the developer identifies the applica-
tion’s sensitive data, and separates the program logic that
needs to operate on this data, into the trustlet. The public
interface to the trustlet’s main class is defined, as this
interface controls the data that crosses the boundary between
the trusted and untrusted environments. A trustlet may use
many helper classes, and may even comprise multiple
assemblies, yet there is only one class that defines the
trustlet’s boundary. Once all classes are compiled into
assemblies, the developer runs a TLR post-compilation tool
for creating a package that contains the closure of the
assemblies, and a manifest.

With respect to sealing the sensitive data by binding the
data to the trustlet, although any application developer can
encrypt data without the help of the TLR, the TLR provides
special encryption primitives called seal and unseal. These
operations allow a developer to encrypt (seal) an object such
that it can only be decrypted (unsealed) on a specific
platform, by a specific trustlet.

Both the platform and trustlet identities can be specified
at seal time: a unique public/private key pair for the plat-
form, and a secure hash (e.g., SHA-1) of the trustlet assem-
blies. To recover sealed data, the TLR decrypts the sealed
data using the platform key, and checks that the hash of the
trustlet requesting to unseal the data matches the hash of the
trustlet that originally sealed the data. This mechanism
enables the application to store trustlet data across multiple
sessions in persistent storage, and it allows external parties
(e.g., a trusted service) to ensure that sealed data can only be
accessed on platforms it trusts.

To ensure that the trustlet state is protected at runtime, the
developer instantiates a trustbox by providing the trustlet’s
manifest. At this point, the TLR loads the trustlet’s assem-
blies and creates an instance of the trustlet main class. The
resulting object constitutes the runtime state of the trustlet
until the application destroys the trustbox. To allow the
application to interact with the trustlet, the application
requests that the TLR create an entrypoint object, which is
a transparent proxy to the trustlet interface. Whenever the
application invokes methods on the entrypoint, the TLR
transparently forwards these calls to the trustlet main object.

One common primitive used to build trusted applications
is “remote attestation”: the ability of a computer to attest its
own software configuration to a remote party. In one imple-
mentation, a remote attestation mechanism is employed. In
an alternative implementation, remote attestation is omitted
to reduce the overall system complexity. TLR finds particu-
lar applicability to smartphones. In one usage model, smart-
phone manufacturers initialize and ship devices with a
trusted (uncompromised) TLR implementation. The manu-
facturer signs this TLR configuration, and the boot process
performs signature verification. As long as the TLR imple-
mentation is not compromised, it then protects the integrity
and confidentiality of data and code running in a trustbox.
With this model, the TLR offers adequate trust properties
even without remote attestation.

US 10,496,824 B2

5

FIG. 2 illustrates a high-level architecture 200 of the
trusted language runtime 202. The architecture 200 provides
two execution environments: the untrusted execution envi-
ronment 102 (where the mobile device OS and most appli-
cation software runs) and the trusted execution environment
110. The code running in the trusted environment 110 is
isolated from any code running in the untrusted environment
102. Untrusted code (e.g., in application 108) cannot inspect
or modify the trusted code (e.g., in a first trustlet 204 of a
first trustbox 206). To enable interaction, the TLR 202
provides a secure communication channel between the two
environments (102 and 110). The TLR 202 ensures both
integrity and confidentiality for code and data inside the
trusted environment 110.

The trusted environment 110 offers a language runtime
with minimal library support (e.g., .NET Micro Frame-
work™ by Microsoft Corporation). A resource-constrained
runtime environment offers flexibility to accommodate the
trusted computing needs of mobile applications while keep-
ing the TCB of the TLR 202 small. With the TLR 202, a
developer partitions a mobile application (e.g., application
108) into components (e.g., two): a small-sized trusted
component (e.g., the first trustlet 204) that can run on the
resource-constrained runtime 202 of the trusted environment
110, and a large-sized untrusted component (e.g., untrusted
code 106) that implements most of the application’s func-
tionality.

Four primitives are described in the design of the TLR
202. The trustbox 206 is an isolation environment that
protects the integrity and confidentiality of any code running
inside, as well as its state. The OS 104 (and/or any untrusted
application code) can neither tamper with the trusted code
running in the trustbox 206 nor inspect state of the trusted
code.

The trustlet 204 is a class within an application that runs
inside a trustbox. The trustlet 204 specifies an interface that
defines the data that can cross a boundary 208 between the
trustbox 206 and the untrusted environment 102. The run-
time’s use of strong types ensures that the data crossing the
boundary 208 is clearly defined.

With respect to platform (device) identity, each device
that supports the TLR 202 provides a cryptographic platform
identity (e.g., unique). This identity is used to authenticate
the platform and to protect (using encryption) any trusted
application and data deployed to the platform. In one imple-
mentation, a public/private key pair is employed. Access to
the private key is provided solely to the TLR 202, which
never reveals the private key.

The seal and unseal of data are abstractions that serve two
roles: a trustlet can persist state across reboots, and a remote
trusted party (e.g., a trusted server) can communicate with a
trustlet securely. Sealing data is defined as data that is
encrypted and bound to a particular trustlet and platform
before being released to the untrusted environment 102. The
TLR 202 unseals data only to the same trustlet (e.g., trustlet
204) on the same platform that originally sealed it. The
trustlet’s identity can be based on a secure hash of its code.
As depicted in FIG. 2, the TLR 202 operates directly from
the hardware 210 of the platform (e.g., mobile device).

FIG. 3 illustrates a detailed view 300 of TLR components.
The darkest shade shows the TLR components, the light
shading shows the device standard system components, and
the application components are in white. As previously
described, to enable communication between the untrusted
and trusted worlds, a secure procedure call (SPC) mecha-
nism (e.g., secure communications component 114 of FIG.
1) is provided. Four components implement this capability:

10

15

20

25

30

35

40

45

50

55

60

65

6

an untrusted environment library (denoted the UWLib) and
a trusted environment library (denoted TWLib), both at the
language runtime (or managed code) level, and an untrusted
environment communication driver (denoted UWDrv) and a
trusted environment communication driver (denoted
TWDrv), both at the system support (native code) level. The
drivers implement context switching in and out of secure
mode, and the library components hand off the appropriate
input and output data to the drivers.

To enable application partitioning, the TLR implements
the trustlet and trustbox classes. The trustlet defines the
self-contained application code which is to be run inside the
isolated trustbox. To build an application that uses the TLR,
at a minimum the programmer implements 1) the main
trustlet class that defines the public interface between the
trusted and untrusted environments (110 and 102), and 2) the
code that manages the lifetime of the trustbox.

To implement the trustlet main class, a new class is
defined that inherits from the Trustlet class and that imple-
ments an [Entrypoint interface. Any public method defined
in this class enables data to cross the barrier (boundary 208)
between the trusted and untrusted environments (110 and
102). All Trustlet objects also provide two methods, Init and
Finish, which are called when the trustbox is created and
destroyed, respectively. These methods can be overridden to
perform any application specific operations during these
events. The use of a strongly typed runtime ensures that it is
simple to reason about the kinds of data crossing this barrier,
so that the sensitive data protected by the trustbox does not
leak into the untrusted environment 102.

To manage the lifetime of a trustbox, the TLR provides
three methods implemented by the Trustbox class. To create
a trustbox, an application invokes a Create method, which
takes as input the trustlet manifest, and creates a new
trustbox dedicated to hosting the trustlet. The trustbox
reference returned by Create can then be used by the
application to obtain a transparent proxy 302 to the trustlet
entrypoint, by calling the Entrypoint method. The transpar-
ent proxy 302 is used to ensure that all calls into the trustlet
are routed through the SPC mechanism. Finally, when the
application wishes to terminate, it invokes a Destroy method
to clean up the runtime state of the trustlet.

Finally, the TLR provides Seal and Unseal operations.
Sealing is a form of encryption that binds the encrypted data
to a specific trustlet running on a specific system. To
accomplish this, each unique device (e.g., smartphone) has
a public/private key pair referred to as the platform ID. The
platform ID is used in combination with a secure hash of the
trustlet codebase to identify a particular instance of a trustlet.
Seal takes three inputs: 1) the object to be sealed, 2) the
public key of the target platform ID, and 3) a secure hash of
the target trustlet. Seal returns an envelope which comprises
of the serialized object concatenated with the trusted hash
value, encrypted using the platform ID public key. Unseal
decrypts the envelope (which can only be done using with
the platform ID private key), and then returns the original
data only if the currently running trustlet hash value matches
the envelope hash value. As a result, unseal ensures the
trustlet identity and integrity.

Following is a sample application to illustrate how these
constructs work together. To improve security, banking
services typically rely on multiple mechanisms for authen-
ticating customers during online transactions. In addition to
the customer password, banks normally issue a list of
Transaction Authentication Numbers (TANs), each of which
constitutes a one-time password for authorizing a bank
transfer. The bank sends a list of TANs to each customer, and

US 10,496,824 B2

7

whenever the customer performs an online transfer, the bank
specifies an index into the TAN list and asks for the TAN
associated with that index. Today, banks usually record the
TAN list on a plastic card, and send that card to the customer
over an out-of-band channel (e.g., physical mail).

Banks can take advantage of the TLR to build an appli-
cation that can protect the confidentiality of the TAN list
when stored on a customer’s smartphone. To accomplish
this, the bank create a trustlet (code that is trusted by the
bank), and seals the TAN list on a per-customer basis so that
the list can only be unsealed by the bank’s trustlet running
on that specific customer’s phone. The code running within
the trustlet can access the TAN list, retrieve the appropriate
TAN number, and pass it to the untrusted environment to be
sent to the remote bank server. The trustlet and the remote
server communicate using SSL (secure socket layer) to
protect the confidentiality of the data while in flight.

Following is an implementation of a trustlet for the above
example.

public interface ITanWallet : IEntrypoint

public void Load(Envelope tanLst);
public Tan GetTan(long id);

public class TanWallet: ITanWallet, Trustlet
{

private TanList _tanLst = null;

public override void Init() { }

public void Load(Envelope tanLst) {

_ tanLst = (TanList) this.Unseal(tanLst);
} catch(Exception e) {
throw new Exception(“Cannot recover TAN list.”);

}

public Tan GetTan(long id) {
Tan tan = _ tanLst.Search(id);
if (tan == null) {
throw new Exception(“TAN id invalid.”);

}else {

return tan;

public override void Finish() { }

The following code illustrates the calling services on a
trustbox.

// setup the TAN wallet trustlet in a trustbox

Trustbox tbox = Trustbox.Create(“TanWallet.manifest”);
// obtain a reference to the trustbox entrypoint
ITanWallet twallet = (ITanWallet) tbox.Entrypoint();

// load the TAN list issued and sealed by the bank
twallet.Load(myTanLst);

// run online transaction with the bank

// obtain a TAN with id requested by the bank

Tan tan = twallet.GetTan(id);

The following code illustrates the trusted service sending
confidential data to a trustlet.

// the bank generates a TAN list for the customer

TanList newLst = customer.GenTanLst();

// seal the list

Envelope sealedLst = Trustlet.Seal(customer.PlatformID(),
Trustlet. Hash(“TanWallet.manifest”), newLst);

// send the sealed list to the customer

10

15

20

25

30

35

40

45

50

55

60

65

8

Following is a description of the runtime operation. When
the hardware processor (e.g., an ARM processor) supports
security extensions (e.g., TrustZone), at boot time, the
processor starts in secure mode and runs the secure boot-
loader. A secure bootloader loads the TLR image into
memory and checks the image integrity. Based on hardware
support for memory isolation, the TLR runtime lives in the
address space of the trusted environment, and therefore,
cannot be accessed from the untrusted environment. Next,
the secure bootloader hands off to the initialization code
within the TLR runtime. After the TLR initialization code
finishes, a mode switch instruction is used to exit secure
mode, at which point the untrusted environment bootloader
is invoked. The standard OS boot sequence is then executed.

The TLR provides the SPC, which enables a secure
communication channel between the trusted and untrusted
environments. To enable switching between the trusted and
untrusted environments, the UWDry and TWDry drivers use
the processor secure extension instructions that enable
switching in and out of secure mode.

When the UWDry receives an SPC request, the driver
executes the smc instruction, which raises a processor
exception. This exception causes the processor to enter a
privileged mode called monitor mode, and then jumps to the
appropriate exception handler which is implemented by the
TWDry driver. This handler implements the context switch
by storing the processor state from the untrusted world, and
restoring the trusted world processor state. The processor
then leaves monitor mode, and the TWDry forwards the
request up to the trusted environment library (TWLib),
which calls a managed code handler to service the SPC
request. When this handler finishes, the system returns to the
untrusted environment using the same mechanism. The
drivers are also responsible for marshaling the arguments
and return values.

With respect to trustbox creation and termination, when
the application requests the creation of a trustbox, the TLR
performs the following steps: 1) computes the hash of the
trustlet assemblies specified by the manifest, 2) creates a
new sandboxed environment inside the trusted environment
(e.g., using a .NET AppDomain container, which is how
multiple trustlets that live in the trusted environment can be
isolated from each other), 3) loads the trustlet assemblies
into the container, and 4) creates an instance of the trustlet’s
main class. After these operations succeed, the TLR pro-
vides a reference to the trustbox as the return value of the
SPC. This reference can be used for future interactions with
the trustbox.

When the application calls the Entrypoint method on the
trustbox reference, the untrusted world library (UWLib)
creates the transparent proxy and returns it to the untrusted
part of the application. After this step, whenever the
untrusted application invokes a method on the proxy, the
UWLib forwards this invocation to the appropriate trustlet
inside the trustbox, using the SPC mechanism described
herein. This invocation is fully transparent to the applica-
tion, and the object state is preserved across these calls. To
destroy a trustbox, the TLR runtime deletes the container of
the trustbox, thereby freeing all its resources and discarding
its internal state. If the developer wants to save any state
persistently across instances, a trustlet method can be imple-
mented to seal the relevant state, and have the application
store the sealed relevant state persistently.

FIG. 4 illustrates a schematic block diagram of an exem-
plary smart mobile device 400 configured to host the trusted
language runtime architecture in accordance with the dis-
closed architecture. In order to provide additional context for

US 10,496,824 B2

9

various aspects thereof, FIG. 4 and the following discussion
are intended to provide a brief, general description of a
suitable environment in which the various aspects of the
innovation can be implemented. While the description
includes a general context of computer-executable instruc-
tions, those skilled in the art will recognize that the inno-
vation also can be implemented in combination with other
program modules and/or as a combination of hardware and
software.

Generally, applications (e.g., program modules) can
include routines, programs, components, data structures,
etc., that perform particular tasks or implement particular
abstract data types. Moreover, those skilled in the art will
appreciate that the inventive methods can be practiced with
other system configurations, including single-processor or
multiprocessor systems, minicomputers, mainframe com-
puters, as well as personal computers, hand-held computing
devices, microprocessor-based or programmable consumer
electronics, and the like, each of which can be operatively
coupled to one or more associated devices.

The smart device 400 (e.g., a cell phone, PDA) can
typically include a variety of computer-readable media.
Computer-readable media can be any available media
accessed by the handset systems and includes volatile and
non-volatile media, removable and non-removable media.
By way of example, and not limitation, computer-readable
media can comprise device storage media and communica-
tion media. Storage media includes volatile and/or non-
volatile, removable and/or non-removable media imple-
mented in any method or technology for the storage of
information such as computer-readable instructions, data
structures, program modules or other data. Storage media
can include, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digi-
tal video disc (DVD) or other optical disk storage, magnetic
tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired information and which can be accessed by the
mobile device systems.

The smart device 400 includes a processor 402 (e.g.,
ARM) for controlling and processing onboard operations
and functions. A memory 404 interfaces to the processor 402
for the storage of data and one or more applications 406
(e.g., a video player software, user feedback component
software, etc.).

The applications 406 can include an untrusted application
having portions thereof designated as trustlets for secure
execution in the trusted execution environment(s).

The applications 406 can also include a user interface (UI)
application 408 that operates with a client 410 (e.g., oper-
ating system) to facilitate user interaction with handset
functionality and data, for example, answering/initiating
calls, entering/deleting data, configuring settings, address
book manipulation, multimode interaction, etc. The appli-
cations 406 can include other applications 412 that came
installed with the device 400 and/or can be installed as
add-ons or plug-ins to the client 410 and/or UI 408, for
example, or for other purposes (e.g., processor, firmware,
etc.).

Included herein is a set of flow charts representative of
exemplary methodologies for performing novel aspects of
the disclosed architecture. While, for purposes of simplicity
of explanation, the one or more methodologies shown
herein, for example, in the form of a flow chart or flow
diagram, are shown and described as a series of acts, it is to
be understood and appreciated that the methodologies are
not limited by the order of acts, as some acts may, in

10

15

20

25

30

35

40

45

50

55

60

65

10

accordance therewith, occur in a different order and/or
concurrently with other acts from that shown and described
herein. For example, those skilled in the art will understand
and appreciate that a methodology could alternatively be
represented as a series of interrelated states or events, such
as in a state diagram. Moreover, not all acts illustrated in a
methodology may be required for a novel implementation.

FIG. 5 illustrates a computer-implemented execution
method in accordance with the disclosed architecture. At
500 a trusted execution environment is created in a mobile
device using processor-based isolation extensions. At 502, a
secure communications channel is establish between the
trusted execution environment and an untrusted execution
environment. At 504, a portion of trusted code of an
untrusted application is run in the trusted execution envi-
ronment. At 506, a call to the portion of trusted code in the
trusted execution environment is communicated over the
secure communications channel. The call can be generated
in response to an invoked method of the untrusted applica-
tion. At 508, arguments and values are returned to the
untrusted execution environment over the secure communi-
cations channel, based on the call.

FIG. 6 illustrates further aspects of the method of FIG. 5.
Note that the flow indicates that each block can represent a
step that can be included, separately or in combination with
other blocks, as additional aspects of the method represented
by the flow chart of FIG. 5. At 600, the portion of trusted
code is isolated from inspection by untrusted application
code and operating system of the mobile device using the
trusted execution environment. At 602, an interface is
defined in the portion of trusted code that identifies data
communicated between the trusted execution environment
and untrusted execution environment. At 604, the mobile
device is authenticated based on a cryptographic device
identifier of the mobile device. At 606, data is encrypted and
bound to the mobile device and a specific portion of trusted
code in the trusted execution environment of the mobile
device. At 608, the trusted execution environment is
destroyed by destroying an associated container of the code
and data.

FIG. 7 illustrates further aspects of the method of FIG. 5.
Note that the flow indicates that each block can represent a
step that can be included, separately or in combination with
other blocks, as additional aspects of the method represented
by the flow chart of FIG. 5. At 700, a secure bootloader is
executed to load a trusted language runtime image into
memory and perform an integrity check on the image. At
702, trusted language runtime initialization code is initial-
ized to create the trusted execution environment. At 704, a
bootloader is thereafter executed in the untrusted execution
environment to further execute an operating system boot
sequence to create the untrusted execution environment.

FIG. 8 illustrates an alternative execution method in
accordance with the disclosed architecture. At 800, a trusted
execution environment is created in a mobile device using
processor-based isolation extensions. At 802, an interface is
defined in a portion of trusted code of an untrusted appli-
cation, the interface identifies data communicated between
the trusted execution environment and an untrusted execu-
tion environment. At 804, the portion of trusted code is
isolated from inspection by untrusted application code and
operating system of the mobile device using the trusted
execution environment. At 806, a secure communications
channel is established between the trusted execution envi-
ronment and the untrusted execution environment using
kernel mode device drivers. At 808, the portion of trusted
code is run in the trusted execution environment. At 810, a

US 10,496,824 B2

11

call is communicated over the secure communications chan-
nel to the portion of trusted code and data returned over the
secure communications channel to the untrusted execution
environment.

FIG. 9 illustrates further aspects of the method of FIG. 8.
Note that the flow indicates that each block can represent a
step that can be included, separately or in combination with
other blocks, as additional aspects of the method represented
by the flow chart of FIG. 8. At 900, a secure bootloader is
executed to create the trusted execution environment and
thereafter a bootloader is executed to create the untrusted
execution environment. At 902, the trusted execution envi-
ronment is created absent utilization input-output interfaces
and input-output device drivers. As previously described,
however, input-output interfaces and input-output device
drivers can be utilized in the trusted execution environment.
At 904, processor state is stored and restored when switch-
ing between a secure mode and an unsecure mode.

As used in this application, the terms “component” and
“system” are intended to refer to a computer-related entity,
either hardware, a combination of software and tangible
hardware, software, or software in execution. For example,
a component can be, but is not limited to, tangible compo-
nents such as a processor, chip memory, mass storage
devices (e.g., optical drives, solid state drives, and/or mag-
netic storage media drives), and computers, and software
components such as a process running on a processor, an
object, an executable, a data structure (stored in volatile or
non-volatile storage media), a module, a thread of execution,
and/or a program. By way of illustration, both an application
running on a server and the server can be a component. One
or more components can reside within a process and/or
thread of execution, and a component can be localized on
one computer and/or distributed between two or more com-
puters. The word “exemplary” may be used herein to mean
serving as an example, instance, or illustration. Any aspect
or design described herein as “exemplary” is not necessarily
to be construed as preferred or advantageous over other
aspects or designs.

Referring now to FIG. 10, there is illustrated a block
diagram of a computing system 1000 that executes the
trusted language runtime architecture. However, it is appre-
ciated that the some or all aspects of the disclosed methods
and/or systems can be implemented as a system-on-a-chip,
where analog, digital, mixed signals, and other functions are
fabricated on a single chip substrate. In order to provide
additional context for various aspects thereof, FIG. 10 and
the following description are intended to provide a brief,
general description of the suitable computing system 1000 in
which the various aspects can be implemented. While the
description above is in the general context of computer-
executable instructions that can run on one or more com-
puters, those skilled in the art will recognize that a novel
embodiment also can be implemented in combination with
other program modules and/or as a combination of hardware
and software.

The computing system 1000 for implementing various
aspects includes the computer 1002 having processing
unit(s) 1004, a computer-readable storage such as a system
memory 1006, and a system bus 1008. The processing
unit(s) 1004 can be any of various commercially available
processors such as single-processor, multiprocessor, single-
core units and multi-core units. Moreover, those skilled in
the art will appreciate that the novel methods can be prac-
ticed with other computer system configurations, including
minicomputers, mainframe computers, as well as personal
computers (e.g., desktop, laptop, etc.), hand-held computing

10

15

20

25

30

40

45

50

55

60

65

12

devices, microprocessor-based or programmable consumer
electronics, and the like, each of which can be operatively
coupled to one or more associated devices.

The system memory 1006 can include computer-readable
storage (physical storage media) such as a volatile (VOL)
memory 1010 (e.g., random access memory (RAM)) and
non-volatile memory (NON-VOL) 1012 (e.g., ROM,
EPROM, EEPROM, etc.). A basic input/output system
(BIOS) can be stored in the non-volatile memory 1012, and
includes the basic routines that facilitate the communication
of data and signals between components within the com-
puter 1002, such as during startup. The volatile memory
1010 can also include a high-speed RAM such as static
RAM for caching data.

The system bus 1008 provides an interface for system
components including, but not limited to, the system
memory 1006 to the processing unit(s) 1004. The system bus
1008 can be any of several types of bus structure that can
further interconnect to a memory bus (with or without a
memory controller), and a peripheral bus (e.g., PCI, PCle,
AGP, LPC, etc.), using any of a variety of commercially
available bus architectures.

The computer 1002 further includes machine readable
storage subsystem(s) 1014 and storage interface(s) 1016 for
interfacing the storage subsystem(s) 1014 to the system bus
1008 and other desired computer components. The storage
subsystem(s) 1014 (physical storage media) can include one
or more of a hard disk drive (HDD), a magnetic floppy disk
drive (FDD), and/or optical disk storage drive (e.g., a
CD-ROM drive DVD drive), for example. The storage
interface(s) 1016 can include interface technologies such as
EIDE, ATA, SATA, and IEEE 1394, for example.

One or more programs and data can be stored in the
memory subsystem 1006, a machine readable and remov-
able memory subsystem 1018 (e.g., flash drive form factor
technology), and/or the storage subsystem(s) 1014 (e.g.,
optical, magnetic, solid state), including an operating system
1020, one or more application programs 1022, other pro-
gram modules 1024, and program data 1026.

The operating system 1020, one or more application
programs 1022, other program modules 1024, and/or pro-
gram data 1026 can include entities and components of the
system 100 of FIG. 1, entities and components of the
architecture 200 of FIG. 2, entities and components of the
view 300 of FIG. 3, and the methods represented by the
flowcharts of FIGS. 5-9, for example.

Generally, programs include routines, methods, data
structures, other software components, etc., that perform
particular tasks or implement particular abstract data types.
All or portions of the operating system 1020, applications
1022, modules 1024, and/or data 1026 can also be cached in
memory such as the volatile memory 1010, for example. It
is to be appreciated that the disclosed architecture can be
implemented with various commercially available operating
systems or combinations of operating systems (e.g., as
virtual machines).

The storage subsystem(s) 1014 and memory subsystems
(1006 and 1018) serve as computer readable media for
volatile and non-volatile storage of data, data structures,
computer-executable instructions, and so forth. Such
instructions, when executed by a computer or other machine,
can cause the computer or other machine to perform one or
more acts of a method. The instructions to perform the acts
can be stored on one medium, or could be stored across
multiple media, so that the instructions appear collectively

US 10,496,824 B2

13

on the one or more computer-readable storage media,
regardless of whether all of the instructions are on the same
media.

Computer readable media can be any available media that
can be accessed by the computer 1002 and includes volatile
and non-volatile internal and/or external media that is
removable or non-removable. For the computer 1002, the
media accommodate the storage of data in any suitable
digital format. It should be appreciated by those skilled in
the art that other types of computer readable media can be
employed such as zip drives, magnetic tape, flash memory
cards, flash drives, cartridges, and the like, for storing
computer executable instructions for performing the novel
methods of the disclosed architecture.

A user can interact with the computer 1002, programs,
and data using external user input devices 1028 such as a
keyboard and a mouse. Other external user input devices
1028 can include a microphone, an IR (infrared) remote
control, a joystick, a game pad, camera recognition systems,
a stylus pen, touch screen, gesture systems (e.g., eye move-
ment, head movement, etc.), and/or the like. The user can
interact with the computer 1002, programs, and data using
onboard user input devices 1030 such a touchpad, micro-
phone, keyboard, etc., where the computer 1002 is a portable
computer, for example. These and other input devices are
connected to the processing unit(s) 1004 through input/
output (I/O) device interface(s) 1032 via the system bus
1008, but can be connected by other interfaces such as a
parallel port, IEEE 1394 serial port, a game port, a USB port,
an IR interface, short-range wireless (e.g., Bluetooth) and
other personal area network (PAN) technologies, etc. The
1/0 device interface(s) 1032 also facilitate the use of output
peripherals 1034 such as printers, audio devices, camera
devices, and so on, such as a sound card and/or onboard
audio processing capability.

One or more graphics interface(s) 1036 (also commonly
referred to as a graphics processing unit (GPU)) provide
graphics and video signals between the computer 1002 and
external display(s) 1038 (e.g., LCD, plasma) and/or onboard
displays 1040 (e.g., for portable computer). The graphics
interface(s) 1036 can also be manufactured as part of the
computer system board.

The computer 1002 can operate in a networked environ-
ment (e.g., [P-based) using logical connections via a wired/
wireless communications subsystem 1042 to one or more
networks and/or other computers. The other computers can
include workstations, servers, routers, personal computers,
microprocessor-based entertainment appliances, peer
devices or other common network nodes, and typically
include many or all of the elements described relative to the
computer 1002. The logical connections can include wired/
wireless connectivity to a local area network (LAN), a wide
area network (WAN), hotspot, and so on. LAN and WAN
networking environments are commonplace in offices and
companies and facilitate enterprise-wide computer net-
works, such as intranets, all of which may connect to a
global communications network such as the Internet.

When used in a networking environment the computer
1002 connects to the network via a wired/wireless commu-
nication subsystem 1042 (e.g., a network interface adapter,
onboard transceiver subsystem, etc.) to communicate with
wired/wireless networks, wired/wireless printers, wired/
wireless input devices 1044, and so on. The computer 1002
can include a modem or other means for establishing com-
munications over the network. In a networked environment,
programs and data relative to the computer 1002 can be
stored in the remote memory/storage device, as is associated

10

15

20

25

30

35

40

45

50

55

60

65

14

with a distributed system. It will be appreciated that the
network connections shown are exemplary and other means
of establishing a communications link between the comput-
ers can be used.

The computer 1002 is operable to communicate with
wired/wireless devices or entities using the radio technolo-
gies such as the IEEE 802.xx family of standards, such as
wireless devices operatively disposed in wireless commu-
nication (e.g., IEEE 802.11 over-the-air modulation tech-
niques) with, for example, a printer, scanner, desktop and/or
portable computer, personal digital assistant (PDA), com-
munications satellite, any piece of equipment or location
associated with a wirelessly detectable tag (e.g., a kiosk,
news stand, restroom), and telephone. This includes at least
Wi-Fi (or Wireless Fidelity) for hotspots, WiMax, and
Bluetooth™ wireless technologies. Thus, the communica-
tions can be a predefined structure as with a conventional
network or simply an ad hoc communication between at
least two devices. Wi-Fi networks use radio technologies
called IEEE 802.11x (a, b, g, etc.) to provide secure, reliable,
fast wireless connectivity. A Wi-Fi network can be used to
connect computers to each other, to the Internet, and to wire
networks (which use IEEE 802.3-related media and func-
tions).

What has been described above includes examples of the
disclosed architecture. It is, of course, not possible to
describe every conceivable combination of components and/
or methodologies, but one of ordinary skill in the art may
recognize that many further combinations and permutations
are possible. Accordingly, the novel architecture is intended
to embrace all such alterations, modifications and variations
that fall within the spirit and scope of the appended claims.
Furthermore, to the extent that the term “includes” is used in
either the detailed description or the claims, such term is
intended to be inclusive in a manner similar to the term
“comprising” as “comprising” is interpreted when employed
as a transitional word in a claim.

What is claimed is:

1. A computer-implemented execution system, compris-

ing:

an untrusted execution environment of a mobile device
where an operating system and untrusted code of an
application execute;

a trusted execution environment of the mobile device
where trusted code of the application executes, wherein
the trusted code, data and execution of the trusted code
in the trusted execution environment are inaccessible
from inspection and modification by the execution of
the untrusted code in the untrusted execution environ-
ment, the trusted code defining an interface that iden-
tifies data communicated between the trusted execution
environment and the untrusted execution environment;

a secure communications component of the mobile device
that provides a secure communications channel
between the trusted code executing in the trusted
execution environment and the untrusted code execut-
ing in the untrusted execution environment;

a runtime component of the mobile device that identifies
the trusted code of the application and enables the
trusted code of the application to be executed in the
trusted execution environment; and

a processor that executes computer-executable instruc-
tions of the untrusted code of the application within the
untrusted execution environment and the trusted code
of the application within the trusted execution environ-
ment.

US 10,496,824 B2

15

2. The system of claim 1, wherein the trusted execution
environment is absent of an operating system.

3. The system of claim 1, wherein the trusted execution
environment is absent of input-output interfaces and device
drivers.

4. The system of claim 1, wherein the trusted execution
environment executes according to a language runtime envi-
ronment that runs using hardware-based isolation protection
extensions.

5. The system of claim 1, wherein the secure communi-
cations component encrypts data and binds the encrypted
data to a specific set of trusted code in the trusted execution
environment, which environment includes one or more sets
of trusted code.

6. The system of claim 1, wherein the secure communi-
cations component switches between a secure mode and an
unsecure mode, the secure communications component
saves and restores processor state of the trusted and
untrusted execution environments based on mode.

7. The system of claim 1, wherein the secure communi-
cations component establishes the secure communications
channel in response to a call, the channel based on kernel-
mode drivers one of which initiates a secure mode.

8. The system of claim 1, wherein the secure communi-
cations component establishes the secure communications
channel based on libraries at a language runtime level of the
trusted and untrusted execution environments, and commu-
nications drivers at a system support level of the trusted and
untrusted execution environments.

9. The system of claim 1, further comprising a bootstrap
component that first boots the mobile device into a secure
mode and runs a secure bootloader to establish the trusted
execution environment, and thereafter, invokes an untrusted
bootloader to execute a standard boot sequence for the
operating system.

10. The system of claim 1, wherein the operating system
cannot access the trusted execution environment.

11. A computer-implemented execution method, compris-
ing the acts of:

creating a trusted execution environment in a mobile

device using processor-based isolation extensions,
wherein trusted code and data in the trusted execution
environment are inaccessible from inspection by
untrusted code;

establishing a secure communications channel between

the trusted execution environment and an untrusted
execution environment;

identifying a portion of the trusted code of an application

as code to be executed within the trusted environment,
the portion of the trusted code defining an interface that
identifies data communicated between the trusted
execution environment and the untrusted execution
environment;

executing the portion of trusted code of the application in

the trusted execution environment based on the iden-
tifying, and further executing a portion of untrusted
code of the application in the untrusted execution
environment, wherein the application comprises the
portion of trusted code and the portion of untrusted
code that is not executed in the trusted execution
environment;

communicating a call to the portion of trusted code in the

trusted execution environment over the secure commu-
nications channel, the call generated in response to an
invoked method of the portion of untrusted code of the
application;

5

10

15

20

25

35

45

50

55

60

65

16

returning arguments and values to the portion of untrusted
code of the application in the untrusted execution
environment over the secure communications channel,
based on the call; and

utilizing a processor that executes instructions of the

portion of trusted code of the application in the trusted
execution environment and the portion of untrusted
code of the application in the untrusted execution
environment.

12. The method of claim 11, wherein the trusted execution
environment is absent of an operating system.

13. The method of claim 11, further comprising authen-
ticating the mobile device based on a cryptographic device
identifier of the mobile device.

14. The method of claim 11, further comprising encrypt-
ing and binding data to the mobile device and a specific
portion of trusted code in the trusted execution environment
of the mobile device.

15. The method of claim 11, further comprising destroy-
ing the trusted execution environment by destroying an
associated container of the code and data.

16. The method of claim 11, further comprising:

executing a secure bootloader to load a trusted language

runtime image into memory and perform an integrity
check on the image;
initiating trusted language runtime initialization code to
create the trusted execution environment; and

thereafter executing a bootloader in the untrusted execu-
tion environment to further execute an operating sys-
tem boot sequence to create the untrusted execution
environment.
17. The method of claim 11, wherein the trusted execution
environment is inaccessible to an operating system of the
mobile device.
18. A computer-implemented execution method, compris-
ing the acts of:
creating a trusted execution environment in a mobile
device using processor-based isolation extensions,
wherein trusted code and data in the trusted execution
environment are inaccessible from inspection by
untrusted code;
defining an interface in a portion of trusted code of an
application, the application comprising the portion of
trusted code and a portion of untrusted code, wherein
the interface identifies data communicated between the
portion of trusted code executing in the trusted execu-
tion environment and the portion of untrusted code
executing in an untrusted execution environment;

isolating the portion of trusted code from inspection by
the portion of untrusted code and operating system of
the mobile device using the trusted execution environ-
ment;

establishing a secure communications channel between

the trusted execution environment and the untrusted
execution environment using kernel mode device driv-
ers;

executing the portion of trusted code in the trusted execu-

tion environment, and further executing a portion of
untrusted code of the application in the untrusted
execution environment;

communicating a call over the secure communications

channel to the portion of trusted code and returning
data over the secure communications channel to the
portion of untrusted code executing in the untrusted
execution environment; and

utilizing a processor that executes instructions stored in

memory corresponding to running the portion of trusted

US 10,496,824 B2

17

code of the application in the trusted execution envi-
ronment and the portion of untrusted code of the
application in the untrusted execution environment.

19. The method of claim 18, further comprising executing
a secure bootloader to create the trusted execution environ-
ment and thereafter executing a bootloader to create the
untrusted execution environment.

20. The method of claim 18, further comprising creating
the trusted execution environment absent utilization input-
output interfaces and input-output device drivers in the
trusted execution environment.

21. The method of claim 18, further comprising storing
and restoring processor state when switching between a
secure mode and an unsecure mode.

22. The method of claim 18, wherein the trusted execution
environment is absent of an operating system.

23. The method of claim 18, wherein the trusted execution
environment is inaccessible to the operating system of the
mobile device.

24. computer-implemented execution system, compris-
ing:

an untrusted execution environment of a mobile device

where an operating system and untrusted code of an
application execute;

10

15

20

18

a trusted execution environment of the mobile device
where trusted code of the application executes, wherein
the trusted code, data and execution of the trusted code
in the trusted execution environment are inaccessible
from inspection and modification by the execution of
the untrusted code in the untrusted execution environ-
ment, the trusted code defining an interface that iden-
tifies data communicated between the trusted execution
environment and the untrusted execution environment;

a secure communications component of the mobile device
that provides a secure communications channel
between the trusted code executing in the trusted
execution environment and the untrusted code execut-
ing in the untrusted execution environment; and

a runtime component of the mobile device that identifies
the trusted code of the application and enables the
trusted code of the application to be executed in the
trusted execution environment,

wherein the runtime component executes computer-ex-
ecutable instructions of the untrusted code of the appli-
cation within the untrusted execution environment and
the trusted code of the application within the trusted
execution environment.

#* #* #* #* #*

