
Using ARM TrustZone to Build a

Trusted Language Runtime for Mobile Applications

Nuno Santos†1, Himanshu Raj‡2, Stefan Saroiu‡3, Alec Wolman‡4

†INESC-ID / Instituto Superior Técnico, University of Lisbon
‡Microsoft Research

1nuno.santos@inesc-id.pt, 2rhim@microsoft.com, 3ssaroiu@microsoft.com, 4alecw@microsoft.com

Abstract

This paper presents the design, implementation, and eval-

uation of the Trusted Language Runtime (TLR), a system

that protects the confidentiality and integrity of .NET mo-

bile applications from OS security breaches. TLR enables

separating an application’s security-sensitive logic from the

rest of the application, and isolates it from the OS and other

apps. TLR provides runtime support for the secure compo-

nent based on a .NET implementation for embedded devices.

TLR reduces the TCB of an open source .NET implementa-

tion by a factor of 78 with a tolerable performance cost. The

main benefit of the TLR is to bring the developer benefits of

managed code to trusted computing. With the TLR, develop-

ers can build their trusted components with the productivity

benefits of modern high-level languages, such as strong typ-

ing and garbage collection.

Categories and Subject Descriptors D.4.6 [Security and

Protection]: Security Kernels

Keywords Mobile Computing; Trusted Computing; ARM

TrustZone; Language Runtime

1. Introduction

E-wallet and e-health mobile apps have already started to

revolutionize the way people make purchases, and how they

handle their health records. As mobile apps start to han-

dle security-sensitive data, smartphones become an attrac-

tive target for attacks. In particular, data such as personal

photos, location trails, and online banking information have

a high value to spammers and identity thieves. As a result,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’14, March 1–5, 2014, Salt Lake City, Utah, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541949

mobile applications have emerged recently with question-

able practices [20] as well as outright malware [24].

Unfortunately, protecting data on mobile devices is far

from trivial. Typically, mobile apps rely on ad-hoc OS and

application-level mechanisms to protect sensitive data and

prevent leaks. However, the Trusted Computing Base (TCB)

code that mobile apps depend upon is very complex: popular

mobile platforms based on iOS [3], Android [1], or Windows

8 [11] comprise a full blown OS, local services, and sys-

tem libraries, consisting of millions of lines of code (LOC).

Therefore it is difficult to ensure the absence of exploitable

code vulnerabilities that could be used to disable security

checks and retrieve sensitive data.

To improve this situation, the research community has

studied the design of trusted computing systems with small

TCBs. Flicker [28] and TrustVisor [29] provide confiden-

tiality and integrity protection of application code and data

while depending on a small TCB. These systems allow ap-

plication developers to execute parts of the application logic

in a trusted environment isolated from the OS. Because only

a few basic services are offered in the trusted environment,

in their minimal setup these systems can be built with a TCB

on the order of tens of thousands of lines of code.

However, while this prior research has managed to ex-

plore the limits in shrinking the TCB of trusted computing

systems, the functionality of these systems may be too re-

strictive for mobile applications. Mobile apps are typically

written in high-level languages and compiled to intermediate

code (e.g., Dalvik bytecode [2] or .NET managed code [5]).

Flicker and TrustVisor can only execute small pieces of ap-

plication logic written in native code; they have no built-in

runtime engine and are unable to interpret intermediate code.

This paper presents the Trusted Language Runtime

(TLR), a small runtime engine capable of interpreting .NET

managed code inside a trusted environment. While adding

this runtime increases the TCB size, TLR is carefully crafted

to avoid a bloated TCB and keep it significantly smaller than

a full-blown .NET framework and a full-featured OS. TLR

uses three techniques to keep the TCB small: (i) allow ap-

plication developers to factor out the security-sensitive app

logic into classes that transparently run in a trusted environ-

ment, (ii) isolate the TLR and the trusted app code from the

bulk of the system software by using ARM TrustZone tech-

nology [14], and (iii) borrow parts of the runtime engine de-

sign from the .NET Micro Framework (NETMF) [6], a small

.NET implementation designed for embedded devices.

Although we presented the basic TLR design in an ear-

lier workshop paper [34], this paper goes beyond the orig-

inal TLR proposal and makes the following contributions.

First, we provide a complete design of the TLR architecture

describing the components running in the trusted environ-

ment, in the OS, and in the untrusted application. We handle

issues such as the arbitration of resource management be-

tween both the TLR and the native OS (i.e., how to securely

share memory, CPU, and handle interrupts across domains)

and include low-level mechanisms that coordinate the exe-

cution flow of the applications between the trusted and the

untrusted domains (e.g., transparently bind the native-code

processes of the OS with managed-code threads in the TLR).

Second, we describe our TLR prototype implementation

on real TrustZone hardware, rather than in an ARM simula-

tor. We present the challenges related to the TrustZone com-

patibility and portability issues of a large OS, namely Linux.

Third, we present a thorough evaluation of the TLR.

We describe the performance overhead due to running in-

terpreted code rather than native code. However, this over-

head does not hurt the user experience for the use cases and

benchmarks we tested. To illustrate that the TLR can be use-

ful for realistic applications, we implemented several finan-

cial and e-health mobile apps. This experience shows that

the TLR is easy to program because of its tight integration

with .NET that offers the productivity benefits of modern

high-level languages and rich software development tools.

Our results show that, although the TCB size of the TLR is

larger than existing trusted computing systems (namely, it is

6× larger than TrustVisor), the TLR’s TCB reduction when

targeting an open source .NET setup based on Mono [4] and

Linux is substantial, namely by a factor of 78.

2. Background

This section provides background on ARM TrustZone and

the .NET Micro Framework (NETMF), which are the key

technologies used in the design of the TLR.

2.1 ARM TrustZone

TrustZone [14] is a hardware security technology incorpo-

rated into recent ARM processors. It consists of security

extensions to an ARM System-On-Chip (SoC) covering the

processor, memory, and peripherals. These mechanisms can

be leveraged by system designers to run secure services in

isolation from the operating system (OS). The secure ser-

vices that can be built range from a simple library to a com-

plete OS [14]. We briefly describe the relevant TrustZone

mechanisms.

Figure 1. Processor modes of ARM-based device with

TrustZone extensions.

With TrustZone, the processor can execute instructions in

one of two possible security modes, referred to as the normal

world, where untrusted code executes, and the secure world,

where secure services run (see Figure 1). These processor

modes have independent memory address spaces and differ-

ent privileges. While code running in the normal world can-

not access the secure world address space, code running in

the secure world can access the normal world address space

in certain conditions. A special processor bit, the NS bit, in-

dicates which world the processor is currently executing in,

and this bit is sent over the memory bus and certain I/O buses

for peripherals. This enables the system designer to allocate

memory solely to the secure world, and to control which de-

vices are accessible from the different worlds. Hardware in-

terrupts can trap directly into the secure world interrupt han-

dler, which then enables flexible routing of those interrupts

to either world.

Because the processor executes in one security mode at

a time, to execute software in another security mode the

processor must switch worlds. World switch is done via a

special instruction called the Secure Monitor Call (smc).

When the CPU executes the smc instruction, the hardware

switches into the secure monitor, which (i) performs a secure

context switch into the secure world, and (ii) enables sharing

data by copying data across worlds.

2.2 Microsoft .NET Micro Framework

We use the .NET Micro Framework (NETMF) [6] as a start-

ing point for the TLR design. The NETMF is a lightweight

implementation of Microsoft’s .NET optimized for embed-

ded systems, such as sensor networks, robotics, and wear-

able devices [13].

The NETMF design was driven by three main tenets.

First, an emphasis was put on offering a user-friendly and

robust programming environment. To this end, NETMF en-

ables application programmers to use fully featured devel-

opment tools like Microsoft Visual Studio, high-level lan-

guages like C#, and a collection of code libraries to program

embedded systems. Applications are compiled into managed

code, an intermediate language comparable to Java byte-

codes, and interpreted by a CLR runtime (the equivalent ver-

sion of the Java virtual machine in .NET terminology). The

CLR included in NETMF provides a type system, code exe-

cution safety, and garbage collection. Second, NETMF was

Figure 2. Architecture of the .NET Micro Framework.

tailored for resource constrained devices. For improved ef-

ficiency, NETMF precludes the existence of an underlying

OS and runs directly on metal. Internally, NETMF owns all

execution and it includes only the bare system functionality

for managing memory, CPU, and peripherals. To optimize

resources, some .NET features are not currently supported

(e.g., no support for multidimensional arrays, and no tem-

plates). Third, NETMF was geared towards customizability

for a wide variety of devices. For this reason, it includes a

hardware abstraction layer (HAL) and a platform abstraction

layer (PAL).

Figure 2 shows the NETMF hardware and software ar-

chitecture in more detail. The hardware layer consists of the

processor and peripherals. The runtime layer includes the

CLR, the HAL, and the PAL. The CLR contains modules

for managed code execution, thread scheduling, memory

management, and other system services. The HAL and PAL

manage the underlying hardware components. The class li-

brary layer is an object-oriented collection of classes imple-

mented in C# that application developers can use to program

embedded applications. The application layer contains the

managed code of apps.

3. Goals, Assumptions, and Threat Model

TLR was designed to meet the following three goals:

1. Small TCB size: The TCB of the TLR should not include

the OS nor any untrusted application code.

2. Ease of programming: Programming the TLR should be

as simple as programming any of today’s managed code

environments such as Java or .NET.

3. Compatible with legacy software environments: De-

ploying the TLR should not require a radical redesign of

today’s legacy operating systems or other legacy software

running on the mobile device.

We require that mobile devices where the TLR is de-

ployed support the TrustZone security extensions, and that

their hardware behaves correctly. We assume the existence

Figure 3. TLR high-level architecture.

of external trusted parties, such as offline certification au-

thorities or online services with which security-sensitive

apps deployed on the TLR can communicate over secure

channels. Lastly, we rely on the correctness of cryptographic

primitives and algorithms. Note that we make no assump-

tions about the correctness of the operating system on the

mobile platform.

TLR protects the application state against the following

adversary. The attacker can compromise the OS and have ac-

cess to the TLR interface, which is provided through specific

TrustZone mechanisms. The attacker can reboot the mobile

platform and gain access to data residing on persistent stor-

age. She can eavesdrop the network and interfere with the

communication between the TLR and any third party trusted

components outside the device. However, we do not consider

side-channel attacks nor physical attacks that fall outside the

defense capabilities of TrustZone technology, namely those

that require disassembling the chip packages of application

processors or memory modules.

4. Overview of Trusted Language Runtime

Figure 3 illustrates the TLR’s high-level architecture. TLR

provides two execution environments: an untrusted one

where the smartphone’s OS and most application software

run, and a trusted one, where the TLR code and security-

sensitive application components run. These environments

map to TrustZone’s normal and secure worlds, respectively.

Code running in the trusted environment is isolated via

TrustZone from all code running in the untrusted one. TLR

provides a secure communication channel between the two

environments.

With the TLR, a mobile application must be partitioned

into two components: a small trusted component running in

the secure world, and a larger untrusted component imple-

menting most of the application’s functionality. This parti-

tioning technique is similar to privilege separation [17] and

to partitioning of applications for improved security in dis-

tributed systems [19].

In the trusted world, TLR provides a language runtime

based on NETMF. Application code running in the TLR can

only perform computations and has no access to peripher-

als, which are all managed by the untrusted OS. We deliber-

ately limit TLR’s access to peripherals to keep a small TCB.

Adding I/O access requires building drivers inside the Trust-

Zone, that may have large codebases. Even without access

to peripherals, TLR offers enough functionality to meet the

security needs of many mobile applications. Section 5 will

describe four such applications.

4.1 TLR Primitives

1. Trustbox. A trustbox is an isolation runtime environment

that protects the integrity and confidentiality of code and

data. The smartphone’s OS (or any untrusted application

code) cannot tamper with code running in a trustbox nor

inspect its state.

2. Trustlet. A trustlet is a class within an application desig-

nated to run inside a trustbox. The trustlet specifies an inter-

face that defines what data can cross the boundary between

the trustbox and the untrusted world. The .NET runtime’s

use of strong types ensures that the data crossing this bound-

ary is clearly defined.

3. Platform identity. Each device that supports the TLR

must provide a unique cryptographic platform identity used

for platform authentication and for protection of any trusted

code and data deployed on the platform (using encryption).

We use a public key pair as the platform ID, and the TLR

ensures that the private key is never revealed to any external

component.

4. Seal/Unseal data. The seal primitive encrypts data and

binds it to a particular trustlet and platform identity. The

trustlet’s identity is based on a secure hash of its code (e.g.,

SHA-2). The unseal primitive yields the data contained in

the sealed envelope only if this operation is performed (i)

inside a trustbox, and (ii) by the trustlet and platform ID

originally specified upon seal. To recover sealed data, unseal

decrypts it and checks that the hash of the requesting trustlet

matches the hash of the trustlet that sealed the data. Seal and

Unseal serve two roles: (i) allowing a trustlet to persist state

across reboots, and (ii) enabling a remote trusted party (e.g.,

a trusted server) to encrypt data so that only a designated

trustlet can decrypt it.

Typical development scenario. To build a trusted mobile

application with the TLR, a developer typically performs

the following four steps: (i) partition off a small part of the

application that needs to handle sensitive data into a trustlet,

(ii) deploy the trustlet on the designated platform, (iii) ensure

that sensitive data can only be accessed on a designated

platform by sealing the data to the trustlet running on the

designated platform, and (iv) deploy the sealed data to the

designated platform to run it inside its trustbox, thereby

ensuring that the trustlet state is protected at runtime.

5. Use Cases

To illustrate TLR’s practicality, we show how to implement

four common security use cases in TLR: storing one-time

passwords, user authentication, secure mobile transactions,

and access control to sensitive data. We describe these use

cases in the context of four applications. While our descrip-

tion is done at a high-level, more details of these applica-

tions’ security protocols can be found in Appendix A.

5.1 One-time Passwords

A commonly used form of one-time passwords is Transac-

tion Authentication Numbers (TANs) [8] for online banking

purposes. Today, some banks send paper cards to their cus-

tomers with a list of TANs. When a customer initiates an

online transfer, the bank specifies an index into the TAN list

and asks for the associated TAN. The customer, in addition

to typing their personal password, must respond with the cor-

rect TAN, otherwise the transaction is aborted. Each TAN is

used once; when all TANs are used, the bank sends a new

TAN list to the customer.

To avoid the burden of carrying a physical TAN list, banks

can use the TLR to provide secure storage of digital TAN

lists. A mobile app using the TLR keeps track of the TAN list

on the customer’s smartphone, and provides an interface for

querying a TAN based on a TAN index. The TAN indices are

not simply sequential integers, instead they are capabilities:

hard-to-guess numbers chosen from a large address space.

The bank seals TAN lists on a per-customer basis such

that it can only be unsealed by the bank’s trustlet running

on the customer’s smartphone. When the customer initiates

a bank transfer, the bank sends a TAN index challenge to the

trustlet, and the trustlet unseals the TAN list, finds the index,

and responds to the bank with the appropriate TAN value that

authorizes the transfer. Because TAN indices are only used

once, there is no opportunity for man-in-the-middle replay

attacks. Because TAN indices are hard-to-guess, there is no

opportunity for a malicious entity to obtain the TAN list. The

trustlet interface only requires two methods: LoadTanLst,

and GetTan (see Figure 5 for code excerpts).

5.2 User Authentication

Our second use case shows how to use the TLR for user

authentication purposes by implementing a mobile ticketing

app. Unlike existing digital ticket mechanisms that reveal the

ticket during validation (e.g., QR codes), user authentication

can be done by a TLR app without disclosing the ticket

details. Apps that only send proof of ticket possession reduce

the possibility of ticket theft by malware.

We illustrate how mobile ticketing could be done for a

public transit company. There are three actors: a ticket issuer

(the public transit service), a mobile ticketing app with a

trustlet, and ticket verifiers (terminals at the entrance to the

bus or subway). The issuer sends sealed tickets to the trustlet

at purchase time. To obtain access, the user validates the

digital ticket by asking the trustlet to issue a ticket proof to

the terminal. If the proof is valid, the terminal produces a

visual or audio output reflecting the verification result.

5.3 Secure Mobile Transactions

Our third use case uses the TLR to perform secure trans-

actions. The mobile app enables payments at point of sale

(POS) terminals by simply waving a smartphone in front

of the POS. A trustlet stores the customer’s credit card de-

tails and engages in a payment protocol with the POS (e.g.,

via Near Field Communication (NFC) wireless technology).

The TLR’s role is to secure the runtime state of the mobile

app.

We illustrate this mobile payment scenario involving

three actors: a bank, which issues credit card information,

the mobile payment trustlet, which keeps track of the credit

card details, and the POS vending terminal. The bank seals

the credit card information to the trustlet. To perform a trans-

action, the POS terminal issues a sealed challenge to the

trustlet that includes the transaction amount. If the user au-

thorizes the transaction, the trustlet answers the challenge,

otherwise it aborts. Possibly at a later point in time, the trust-

let communicates with the banks to record the transactions.

5.4 Access Control to Sensitive Data

Our final use case describes enforcing access control policies

for security-sensitive data in the context of an e-health app.

The app’s goal is to store a personal clinical history on the

smartphone and to give health providers secure access to this

information during patient visits.

Because giving health providers unrestricted access to

health records could raise serious privacy concerns, the TLR

can restrict health providers’ privileges to this data. Assum-

ing that a central Health Care Authority (HCA) defines a

user’s access control policy for their clinical history, the

TLR can enforce these policies and regulate access to health

record information stored on mobile devices.

Our e-health app involves three actors: the HCA, the

health providers, and the e-health trustlet. The HCA seals

the health records and access control policies to the e-health

trustlet. When a health provider asks for a record, the re-

quest is sealed to the trustlet. The trustlet unseals it, checks

whether the provider’s permissions meet the access control

policy, and returns the relevant information if the policy is

met.

6. Detailed Design

This section describes the internals and key design features

of the TLR.

6.1 TLR Components

Figure 4 shows a detailed view of the TLR architecture. TLR

spans the two TrustZone security worlds: the TLR-domain

running in the secure world and the OS-domain running

in the normal world. The TLR-domain hosts the TCB of

the system: the TLR core components and the application

trustlets. The OS-domain hosts the untrusted system compo-

nents: the OS, the TLR stubs, and the untrusted application

partitions. The TLR stack consists of four layers:

1. Application layer: corresponds to the logic of a mobile

app split between a trustlet and an untrusted partition.

Figure 4. Component diagram of the entire TLR system.

Components in each layer use the same color.

2. Trustbox layer: manages the state of the trustlet instances

living in trustboxes. In the TLR-domain, dedicated service

threads host the runtime state of trustlets. In the OS-domain,

the TLR libraries and proxies contain the logic that bridges

the untrusted app partition with the trustlet logic.

3. Runtime layer: executes the managed code of trustlet

instances and serves their memory allocation needs. In the

TLR-domain, the TLR runtime manages the service threads,

interprets trustlets’ managed code, and manages trustbox re-

sources. In the OS-domain, a a TLR-specific system call

bridges the trustbox requests coming from the local appli-

cation processes (running the untrusted app code) and the

TLR.

4. Trustzone layer: consists of drivers providing the low-

level TrustZone mechanisms responsible for world switch-

ing, interrupt handling, communication, and protection.

6.2 Programming Model

To implement a trusted application with the TLR, a devel-

oper performs the following five steps. As we explain each

step, we refer to Figure 5 which contains code snippets of

the TAN-based e-banking application previously described

in Section 5.1.

1. Specify the security-sensitive logic: The security-

sensitive app logic must be enclosed in a trustlet class. The

developer creates a trustlet by defining its interface, imple-

menting the class, and creating a meta-data file—the mani-

fest (see Figure 5). The trustlet interface must inherit from

the IEntrypoint interface, and the trustlet main class must

inherit from the Trustlet class and implement the trustlet

interface. The public methods that implement the trustlet in-

terface enable data to cross the barrier between the trusted

and untrusted worlds. The programmer must be careful not

to let any sensitive data protected by the trustbox leak out

into the untrusted world. The manifest’s role is to specify

the trustlet’s class and interface.

2. Instantiate a trustlet inside a trustbox container: The

developer must instantiate the trustlet class inside a TLR

trustbox. To create a TLR trustbox, an application invokes

Trustlet Interface

public interface ITanWallet : IEntrypoint
{

public void Load(Envelope tanLst);
public Tan GetTan(long id);

}

Trustlet Main Class

public class TanWallet: ITanWallet, Trustlet
{

private TanList _tanLst = null;

public void Load(Envelope tans) {
try {

_tanLst = (TanList) this.Unseal(tans);
} catch(Exception e) {

throw new Exception("Cannot unseal TAN list.");
}

}

public Tan GetTan(long id) {
Tan tan = _tanLst.Search(id);
if (tan == null) {

throw new Exception("ID invalid.");
} else {

return tan;
}

}
}

Trustlet Manifest

<trustlet name="TanWallet">
<interface name="ITanWallet" />
<implementation name="TanWallet" />

</trustlet>

Snippet of Main Class

// setup the TAN wallet trustlet in a trustbox
Trustbox tbox = Trustbox.Create("TanWallet.pkg");

// obtain a reference to trustbox entrypoint
ITanWallet twallet = (ITanWallet) tbox.Entrypoint();

// load the TAN list issued and sealed by bank
twallet.Load(myTanLst);

// obtain a TAN with id requested by bank
Tan tan = twallet.GetTan(id);

Snippet of Third Party Service

// the bank generats TAN list for customer
TanList newLst = customer.GenTanLst();

// seal the list
Envelope sealedLst = Trustlet.Seal(customer.PlatformID(),

Trustlet.Hash("TanWallet.pkg"), newLst);

Figure 5. Code sample of a TLR application that man-
ages Transaction Authentication Numbers (TAN) for online
banking services (written in C#).

the Create method, which takes as input the manifest de-

scribing the trustlet class to be instantiated. The role of the

Destroy method is to clean up the trustbox and release all

its resources.

3. Interact with the trustlet instance: The untrusted app

partition interacts with the trustlet by invoking its methods.

Because the trustlet instance and the untrusted application

partition reside in separate domains, the calls must be routed

across domains. To make this process transparent to the

developer, the TLR library returns a proxy object with a

method interface compatible with the trustlet.

Figure 6. Details of the trustbox layer.

4. Validate trustlet identity and integrity: Because arbi-

trary trustlet code can be instantiated inside trustboxes, third

parties must validate the identity and integrity of the trustlet

instances before uploading security-sensitive data into the

trustbox. For this, the TLR provides the Seal and Unseal

primitives, whose behavior is presented in Section 4.

5. Compiling and packaging the application: In addition

to the standard compilation and linking operations, two addi-

tional steps are required. First, using a pre-compilation tool,

we generate transparent proxies for trustlet instances. Prox-

ies marshal the parameters and return values of the trustlet

method call invocation, and encode them into messages ex-

changed with the TLR. Second, using a packaging tool, we

bundle the manifest and the code of all trustlet classes into a

single package. This package is signed so that the trustlet’s

identity and integrity can be verified during unseal.

6.3 Trustbox Management

After compiling and packaging an app, users can execute it

on a smartphone. The TLR automatically manages the trust-

boxes created by the app, loads and instantiates trustlet code

in the trustboxes, and routes method calls across worlds. All

these tasks are performed by the trustbox layer (see Fig-

ure 4).

The trustbox layer handles three issues. First, trustbox

requests submitted by different applications must be prop-

erly routed to the intended trustboxes. Second, trustlet in-

stances residing in trustboxes must be isolated from each

other. Third, the runtime state of trustboxes and respective

trustlet instances must be consistent across world changes.

To satisfy these requirements, the TLR maintains dedi-

cated service threads for servicing the trustboxes owned by

each application. Each service thread uses trustbox holder

data structures (see Figure 6) that contain a trustbox ID

and a sandbox object. The sandbox object is a container for

the state of a trustlet instance: it handles loading of trustlet

classes into memory, enforces isolation across trustbox do-

mains, and provides an interface for invoking the methods

of the trustlet instance. In .NET, the sandbox object is im-

plemented using AppDomain objects.

Based on these mechanisms, the trustbox layer handles

the three main events of the trustbox lifecycle as follows:

1. Trustbox creation: When the application requests cre-

ation of a trustbox, the TLR library sends a request to the

respective service thread running in the TLR-domain. This

service thread then: (i) creates a new trustbox holder, con-

taining a new ID and a sandbox; (ii) computes the hash of the

trustlet code specified in the manifest; (iii) loads the trustlet

classes into the sandbox; and (iv) creates an instance of the

trustlet’s main class.

2. Trustbox invocation: When the application calls the

Entrypoint method, the TLR library creates a transpar-

ent proxy and returns it to the untrusted part of the appli-

cation. When the untrusted application invokes a method on

the proxy, it forwards this invocation request to the TLR-

domain service thread. There, the request is decoded and the

corresponding method is invoked on the corresponding trust-

let instance.

3. Trustbox destruction: Finally, destroying a trustbox trig-

gers a request to the service thread for releasing all resources

associated with the respective trustbox holder. To persist

state across instances, the developer can use he seal prim-

itive to encrypt the relevant state and store it persistently.

6.4 Runtime Support

The runtime layer must handle the following three issues.

First, because trustlets are managed rather than native code,

the TLR must be able to interpret managed code. Second,

because multiple applications can execute concurrently, the

TLR runtime must be multitasked. Thus, each trustlet ser-

vice thread is bound to the respective application process

running in the OS-domain. Finally, because the runtime

layer provides a message delivery to the trustbox layer, an

appropriate interface must be devised for this service, prefer-

ably without requiring significant OS changes.

To address these issues, the runtime layer implements

several mechanisms In the TLR-domain, the TLR runtime

includes subcomponents that allow managed code to exe-

cute: a managed code interpreter, a type system enforcer,

and a garbage collector. The TLR runtime waits for incom-

ing requests from the OS-domain and interprets the managed

code required for servicing them. To enable service threads

to execute trustlets, service threads are implemented as man-

aged code threads scheduled by the TLR runtime. A service

thread is bound to an application process by annotating the

service thread descriptor with the PID of the application pro-

cess.

In the OS-domain, the OS coordinates the service of

trustbox requests by the TLR runtime via a special TLR

system call added to the OS. Because the TLR runtime is not

aware of application processes’ lifetimes, the OS instructs

the TLR runtime to create and destroy service threads as

application processes are created and killed, respectively.

Figure 7. Details of the system layer.

The OS can exchange the following three messages with

the TLR runtime:

1. Create service thread: The first time a TLR system

call is issued by an application, no service thread for that

process exists, and so it must be created. To keep track of the

binding between service threads and application processes

the OS maintains a descriptor table. To bind an application

process, the OS issues a “create service thread” request to

the TLR runtime. The TLR runtime creates a new service

thread and annotates it with the caller’s PID contained in the

request.

2. Call service thread: This operation forwards the trust-

box message requests received via the system call interface

to the calling application process. After validating that the

calling process is bound, the OS dispatches the request to the

TLR runtime. The TLR runtime retrieves the trustbox mes-

sage from the payload of the request, queues the message,

and resumes the execution of the respective service thread.

The service thread dequeues the request and processes it in

the trustbox layer.

3. Kill service thread: This operation is issued by the OS

to terminate a service thread and free its resources. This op-

eration can be issued explicitly by an application or, alterna-

tively, the OS periodically kills service threads of terminated

applications. To kill a service thread, the OS simply sends a

request to the TLR runtime and updates the local OS data

structures.

6.5 Cross-world Communication and

Interrupt Handling

Communication between the TLR-domain and the OS-

domain is handled by the TLR’s TrustZone layer (see Fig-

ure 8). This layer implements: (i) context save and restore

for switching between normal and secure world; (ii) a sim-

ple message passing interface for exchanging data between

the two worlds; and (iii) interrupt handling and re-routing if

an interrupt arrives destined for a normal world device driver

when the secure world is executing.

Figure 8. Details of the TrustZone layer.

To implement world switching, the secure world Trust-

Zone driver maintains two world descriptors, each of which

contains a snapshot of the processor state (CPU registers).

The secure monitor implements world switching by detect-

ing the direction of the transition, saving and restoring pro-

cessor state from the corresponding world descriptors, and

then toggling the processor mode bit. To ensure security, the

world descriptors are stored in SW memory. A world switch

can be activated in one of two ways: (i) a synchronous world-

switch is caused when the smc instruction is issued, and

(ii) an asynchronous world-switch is caused when a hard-

ware interrupt fires in the secure world destined for a normal

world device driver. Interrupts generated while the processor

is executing in the NW do not cause a world switch.

To provide cross-world communication, the secure mon-

itor implements data copying between the two worlds. This

secure monitor must execute in the secure world so it can

simultaneously address memory in both worlds.

One challenge is the support for interrupt handling and

re-routing. Interrupts can be triggered while the processor is

executing in the secure world, yet the normal-world OS re-

tains control of system resources and contains all the I/O de-

vice drivers. Therefore, whenever an interrupt fires in the se-

cure world, the secure world interrupt handler should switch

worlds and hand control to the OS.

Because interrupts can fire in the middle of TLR runtime

calls, the normal world OS must detect whether the secure

world exiting is caused by TLR call completion or by an in-

terrupt. If a TLR call completes, the OS can fetch the return

parameters and schedule the application process. If any TLR

calls are in progress, the OS must periodically switch worlds

to continue executing those calls. When re-entering the se-

cure world, the TLR decides if it should resume executing a

prior service thread, or switch to a different service thread.

The TrustZone layer keeps track of the state of all ongo-

ing TLR runtime calls. For each call, the TrustZone drivers

maintain a descriptor that contains the call ID, input param-

eters, output parameters, and the current status of the call.

Because this state must be accessible in both worlds, this

descriptor table is replicated in both worlds (see Figure 8),

and synchronized upon world transitions. Figure 9 shows the

state machine for an individual TLR call.

Figure 9. State machine of a TLR call as implemented in

the TrustZone layer. Events in bold take place in the NW,

and events in italic in the SW.

Init state: When the OS initiates a new TLR runtime re-

quest, the call status field is set to the Init value. On transi-

tion into the secure world, the input parameters are copied

from the normal world and the call status is changed to

Ongoing.

Ongoing state: This state indicates that a TLR call is in

progress. This indicates to the OS that it should continue

scheduling re-entry into the secure world until the call status

changes to Finished.

Finished state: When a call is finished, the secure world

TrustZone driver copies the output results to the normal

world, and initiates a world switch.

6.6 Memory Management

To serve its memory needs, the TLR requires physical RAM

dedicated to the secure world. The secure world bootloader

uses low-level system firmware to statically allocate a fixed

quantity of physically contiguous system RAM for secure

world memory. TrustZone ensures that the normal world

cannot address or otherwise access any of this RAM. The

TLR then uses an internal memory allocator for all its in-

ternal state needs. In future work, we are considering allow-

ing the OS to fine-tune how the TLR allocates memory to

trustlets. Because the OS already controls allocation of sys-

tem resources in the normal world, we can allow it to specify

quotas to the TLR for trustlets, and balance those requests

with fairness constraints.

6.7 System Boot

When an ARM SoC supports TrustZone, the processor ini-

tializes in secure mode and runs the secure world bootloader.

This bootloader copies the TLR image into secure world

memory and checks its integrity using a hash value signed

with the platform ID. Next, the bootloader initializes the

TLR runtime, and then performs the first world switch into

the normal world, at which point the untrusted bootloader

begins the standard OS boot sequence.

6.8 Platform Identity

The TLR requires a single, persistent per-device public key

pair. This key pair constitutes a unique platform identity,

similar to the role that the Endorsement Key (EK) plays

for TPMs [22]. The device manufacturer must certify the

platform ID in the same way that TPM manufacturers issue

EK certificates.

To protect the platform ID, the key pair is provisioned by

the device manufacturer for each TrustZone-enabled smart-

phone and tablet. The result of provisioning is writing the

platform ID into secure fuses (a write-once persistent mem-

ory) accessible only from the secure world. The TLR offers

methods for trustlets to obtain the public part of the platform

ID, and makes sure that the private key is never leaked.

To preserve users’ privacy, TLR also borrows ideas from

solutions developed for TPMs. First, is the notion of a pri-

vacy CA [32]: the device attests its identity to the trusted

privacy CA, which in turn issues new platform credentials

signed by the privacy CA. These new credentials improve

anonymity because the device can now have multiple trusted

identities, and can choose which one to use depending on

which entity the trustlet is communication with. An alterna-

tive design borrows ideas from group signatures (similar to

TPM Direct Anonymous Attestation [16]). The device could

be equipped with a shared platform ID, and others could not

distinguish between different devices sharing their IDs.

6.9 Seal and Unseal Primitives

Seal and Unseal use the device platform ID for crypto-

graphic operations. Sealing a piece of data to a trustlet T

running on device D consists of encrypting the data with a

symmetric key, and then encrypting the symmetric key and

T’s hash with D’s public key. Unsealing is the reverse: using

D’s private key to decrypt the symmetric key and the hash

of T, validating the hash of the running trustlet matches, and

finally decrypting the data using the symmetric key.

Sealed data is made persistent in encrypted form, but the

TLR does not have direct access to the disk. Instead the

TLR passes encrypted blobs to the disk managed by the

untrusted OS. To prevent rollback attacks and enforce state

continuity [31], we adopt the following defense. TrustZone-

enabled devices use an eMMC storage controller that offers

a security feature called replay-protected memory blocks

(RPMB) (see [38]). The RPMB is a storage partition where

operations from the secure world are authenticated and pro-

tected against rollback attacks. To achieve this, a key derived

from the platform ID is also injected at manufacturing time

into the eMMC controller. This key, shared between the se-

cure world and the storage controller, is used to authenticate

writes and a secure counter is also used to prevent rollbacks.

6.10 Trusted I/O Path

The TLR support for a trusted I/O path is limited to the

storage functionality described above. TLR also adapts the

same protocol to enable authenticated and replay-protected

communication with external cloud services, even though all

network communication is handled by the untrusted OS.

If we were to enable trusted I/O to the device’s peripher-

als from the secure world, this would enable broader func-

tionality within trustlets. For example, trustlets could di-

rectly interact with the device’s sensors and directly display

screen output. However, the cost of this approach would be

a much larger TCB that incorporates device-specific drivers.

In contrast, the current TLR design is generic – it works with

all TrustZone-equipped devices.

Instead, we envision a future in which manufacturers

equip their sensing hardware and other I/O peripherals with

a secret key shared between the peripheral and the secure

world. For input data, this allows sensors to gather and

encrypt data before passing it to the untrusted OS, and only

the TLR in the secure world can decrypt and use the data.

For output, and it allows the I/O device to authenticate the

data sent from the secure world before performing the output

operation. This alternative allows the TLR to remain generic

and eliminates driver code from its TCB.

7. Implementation

We implemented a TLR prototype for a TrustZone hardware

testbed and leveraged existing open source software.

7.1 Hardware Testbed

Finding a TrustZone-compatible hardware testbed was not

easy. Although the ARM TrustZone technology is prevalent

in modern ARM-based SoCs, in most devices this technol-

ogy is locked and cannot be used by application develop-

ers. We bypassed this limitation using a development board:

NVidia’s Tegra 250 Dev Kit [9].

The Tegra 250 board is equipped with dual-core 1 GHz

Cortex A9 processors, 1 GB of RAM, 512 MB of flash

memory, and multiple peripherals. Because the processor

boots the OS in secure world, we can override the secure

world environment and boot TLR. However, this board dis-

allows flashing a unique key into the boards secure fuses,

preventing us from implementing the platform ID in hard-

ware. Moreover, the primary boot loader is closed-source,

preventing us from modifying the secure world setup code

in the first stage bootloader.

We address the first limitation by hard-coding the plat-

form ID credentials in software. To address the second lim-

itation, we boot the TLR using a customized second-level

bootloader (u-boot [10]). This results in the unnecessary in-

clusion of the first-level bootloader in the TCB. These short-

comings are not fundamental and could be overcome with

source access to a full-featured TrustZone board.

7.2 Software Implementation

In the OS-domain, we use Linux and Mono [4] v2.6.7 (an

open source .NET framework implementation). We imple-

ment the TLR library for Mono and modify the Linux ker-

nel in two ways: (i) implement the TLR system call, and

(ii) change the kernel to eliminate all dependencies on re-

sources only available in the secure world. In particular, we

(i) modify the interrupt masks appropriately, (ii) disable cer-

tain cache control initialization code, and (iii) remove some

UC1-Seal

UC1-LoadTanLst

UC1-GetTan

UC2-Seal

UC2-SetupTicket

UC2-Validate

UC3-Seal

UC3-SetupCC

UC3-InitPay

UC3-Pay

UC4-Seal

UC4-SetupRecs

UC4-InitQuery

UC4-QueryRecs

1 10 100 1K 10K 100K 1M

Time (µs)

U
s
e

 C
a

s
e

 T
ru

s
tl
e

t
M

e
th

o
d

s

TLR

Mono

Figure 10. Execution time of trustlet methods from our use

case prototypes.

processor initialization code. The goal of all these changes

is to enable Linux to boot correctly in the normal world.

In the TLR-domain, our implementation covers the TLR

and the bootloader. To build the TLR we leverage the code-

base of NETMF v4.1 [6]. We borrow the CLR and PAL code

from the NETMF and implement the remaining components

in the HAL and application layers (see Figure 2). To cus-

tomize the NETMF, we use the NETMF porting kit [12].

We also customize u-boot to initialize the TLR in the secure

world, and to yield to the OS in the normal world.

8. Evaluation

This section presents a performance evaluation of the TLR

and an analysis of its TCB size, programming complexity,

and security.

8.1 Performance

We evaluate two sources of performance overhead for TLR

applications when compared to standard .NET applications:

(i) the overhead due to NETMF, a less efficient .NET stack

than full-blown .NET, and (ii) the overhead due to executing

additional TLR primitives.

Methodology. To evaluate the performance of trustlet code

and TLR primitives, we run multiple experiments based on

micro-benchmarks. We run our experiments in the hardware

testbed described in Section 7. In all our measurements,

we run ten trials and report the mean time and standard

deviation.

We use our four use case applications as well as a spe-

cific benchmark suite. The use case prototypes allow us to

measure the TLR performance with realistic apps. In to-

tal, we evaluate 14 methods: three for Use Case 1 (on-

line banking transfers), three for Use Case 2 (mobile tick-

eting), four for Use Case 3 (mobile payments), and four

for Use Case 4 (e-health application). For an in-depth de-

scription of these methods’ roles see Appendix A. In addi-

MatrixMult

Polynomial

Sudoku

CryptoRSA

CryptoAES

 0 1 2 3 4 5 6 7 8 9

Time (s)

µ
B

e
n

c
h

m
a

rk

TLR

Mono

Figure 11. Performance of our benchmark suite executed

on the TLR and on Mono.

tion, we implemented a specific benchmark suite to help dis-

cover the source of inefficiencies of the TLR runtime. This

benchmark suite consists of five CPU-intensive programs:

MatrixMult, which is a straightforward O(n3) matrix mul-

tiplication program; Poly, which computes the value of a

100-degree polynomial using floating point match; Sudoku,

which is a sudoku solver; CryptoRSA, which performs RSA

cryptographic operations (signatures, encryptions, and de-

cryptions) using 1024-bit keys; and CryptoAES, which per-

forms AES cryptographic operations (encryptions and de-

cryptions) with 256-bit keys. We run each test both on the

TLR and on an efficient .NET runtime (Mono) and then

compute the difference.

Performance of trustlet code execution. Figure 11 plots

the evaluation results of our use case prototypes, showing

the execution time of all trustlet methods on the TLR and

on Mono. The results show that Mono slightly outperforms

the TLR: 57% of the methods execute on average 4.27×
faster in Mono, whereas 43% of the methods execute on

average 2.34× faster in the TLR. We find these numbers

quite surprising, because we expected Mono to significantly

outperform the TLR. Our expectation is justified by the fact

that, in Mono, the trustlets’ managed code is pre-compiled

by a built-in jitter into native code, which runs on bare metal.

In contrast, in the TLR, all the managed code is interpreted

by the TLR, with the exception of certain libraries, such as

the cryptographic library, which are implemented in native

code.

To investigate why TLR’s overhead is not more pro-

nounced, we ran additional experiments using our specific

benchmark suite. Figure 11 shows that, with the exception

of CryptoRSA, all other programs of the benchmark run on

average 54× slower on the TLR. This difference is particu-

larly large for programs whose code the TLR must entirely

interpret, such as Sudoku, where the difference reaches a fac-

tor of 176. However, this difference is clearly inverted in the

CryptoRSA, which runs 3.3× faster on the TLR. This sug-

gests that Mono’s implementation of RSA is particularly in-

efficient.

We infer that, in the evaluation of our use case prototypes

(see Figure 10), the TLR outperforms Mono when the trust-

1

10

100

1K

10K

100K

C
reateTrustbox

InvokeM
ethod

SealD
ata

U
nsealD

ata

D
eleteTrustbox

T
im

e
 (

µ
s
)

Figure 12. Baseline execution time of TLR primitives.

0.01

0.1

1

10

100

1K

1 10 100 1K 10K 100K

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Parameter size (bytes)

Method invocation

Figure 13. Performance of cross world method invocation

varying the size of the method parameters.

let code makes heavy use of RSA. Since Mono’s inefficiency

is not fundamental, in general we should expect the TLR’s

performance slowdown to be more pronounced.

Performance of the TLR primitives. We implemented

micro-benchmarks that stress each of the five operations

related to the trustbox lifecycle: trustbox creation, trustlet

method invocation, data seal, data unseal, and trustbox dele-

tion. Because these operations’ durations depend on their pa-

rameter sizes, we further measure the factors responsible for

such variation, namely the cross world communication (rele-

vant in trustbox creation and trustlet method invocation) and

cryptographic computations (relevant in seal and unseal).

Figure 12 shows the minimum execution time of the TLR

primitives. While seal and unseal take on average 15.2ms,

the remaining primitives execute on average in 75.8µs. This

difference is explained by the heavy use of cryptographic

operations in seal and unseal. With the exception of delete

trustbox, which executes in a constant time of 38µs, the du-

ration of the TLR primitives depends on their input param-

eters, namely 1) the amount of data that needs to be trans-

ferred across worlds, or 2) the amount of data that needs to

be encrypted or decrypted.

Figure 13 plots the execution time of method invocation

while varying the size of the parameters transferred between

worlds. The method execution time increases linearly at an

approximate rate of 5.6ms/KB. This overhead is explained

by the need to marshal the parameters and pass them by

value to the TLR. In fact, the parameters cannot be trans-

ferred across worlds by reference (which would take a con-

stant time) because TLR’s internal data structures inherited

from NETMF are incompatible with Mono’s.

Lastly, to shed some light on the impact of cryptographic

operations on the performance of TLR primitives, Figure 14

plots our evaluation results of seal and unseal as we vary the

1

10

100

1K

1 10 100 1K 10K 100K

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Data size (bytes)

Seal
Unseal

Figure 14. Performance of seal and unseal primitives vary-

ing the size of sealed and unsealed data, respectively.

size of the data to be sealed and the size of the envelope to be

unsealed, respectively. Sealing 1KB takes 5.3ms and unseal-

ing the same amount of data takes 33.6ms; these operations

are dominated by the time complexity of the RSA algorithm

used in their implementation. Seal and unseal are efficient,

because the TLR makes use of the OpenSSL library, which

implements cryptographic operations in native code.

8.2 TCB Size

To evaluate the TLR’s TCB reduction, we compare its TCB

size against that of two representative systems: TrustVisor

v0.2 [29], and a setup based on Mono v2.6.7 and Linux

v3.5.1 (Mono+Linux). While the former gives us an idea of

the minimum TCB size achieved by a state-of-the-art system

for securing native code apps, the latter points to the TCB

size required by managed code .NET apps.

Table 1 presents the TCB sizes of the TLR, TrustVisor,

and Mono+Linux. This table indicates which part of the

codebase corresponds to native code (typically in C or C++)

and which part to managed code (typically C#). The table

also indicates which code belongs to the core versus to

libraries of the system. To measure the TCB size, we use

the metric of lines of code (LOC), which counts all lines of

a system’s codebase (including comments and empty lines).

Comparing TLR with TrustVisor, we see that TLR is ap-

proximately 6 times larger than TrustVisor: the TLR and

TrustVisor comprise, respectively, 152.7 KLOC and 25.3
KLOC. This difference can be explained by the fact that, un-

like the TLR, TrustVisor neither needs to implement a man-

aged code runtime nor to include managed code libraries.

Comparing the TLR with the Mono+Linux setup, we

see that the TLR drastically shrinks the TCB. While the

TCB size of Mono+Linux is 11.9 MLOC 1, the TLR’s is

152.7 KLOC, i.e., approximately 78 times smaller. The TLR

cuts down the TCB size due to its design, which limits the

services offered to trustlets and blends the OS and runtime

functionality into a compact single system.

8.3 Programming Complexity

Since assessing the complexity of programming applications

for the TLR is difficult, we mostly make an account of our

experience with building the use case prototypes and bench-

1 Appendix B explains how this number was obtained.

Code (LOC) TrustVisor TLR Mono+Linux

Managed Libs N/A 19.9K (C#) 3, 305.3K (C#)

Native Libs 18.1K (C) 80.5K (C++) 1, 308.6K (C)

Native Core 7.2K (C) 52.3K (C++) 7, 302.9K (C)

Total 25.3K 152.7K 11, 916.8K

Table 1. TCB size of the TLR, TrustVisor, and

Mono+Linux.

Use Case Code Size (LOC) # Methods

Online banking 179 3

Mobile ticketing 450 3

Mobile payments 754 4

E-health app 974 4

Table 2. Programming complexity of the use case proto-

types measured in code size and number of methods.

mark programs. In our experience, programming with TLR

apps is relatively easy. Once we sketched the security proto-

cols for the four use cases (see Appendix A), programming

their respective trustlets was done by a grad student in 3.5

days. Table 1 shows the codebase size and the number of

methods implemented by each trustlet. These numbers show

that the average code size is relatively small, consisting of

590 LOC in C#, and the trustlet interfaces are simple, con-

sisting of three to four methods. Although real world appli-

cations would likely demand a bigger programming effort,

our intuition is that such an effort is comparable to app de-

velopment for standard .NET.

8.4 Security Analysis

The attack surface of the TLR comprises the smc instruc-

tion exposed to the OS and the managed code interface ex-

posed to the trustlets. The smc interface is relatively narrow,

which limits the exposure of code vulnerabilities. The man-

aged code interface offers a larger attack surface: an attacker

could exploit a bug in the TLR runtime by injecting carefully

crafted code sequences in the trustlet code.

TLR can only provide limited protection against physical

attacks: an attacker with the capability of tampering with

the hardware could disable the TrustZone protections and

bypass TLR. However, such attacks require a high degree

of sophistication: since the core of the system (the SoC) is

packaged in a single die, an attacker would need to break

into the SoC and tamper with the TrustZone hardware.

9. Related Work

TLR borrows many concepts from previous work on build-

ing trusted execution environments (TEE). Some previous

systems such as XOM [26] and AEGIS [36] require specific

hardware that is not yet available on commodity processors.

For x86 platforms, a typical TEE system is based upon a

Trusted Platform Module (TPM) and a trusted kernel [21].

The TPM is used to bootstrap trust in the system, and the

trusted kernel provides runtime state protection for trusted

application code. Because the security of such systems de-

pends on the correctness of the trusted kernel, a lot of effort

has been put into reducing the TCB size. In the first gener-

ation of these systems, the trusted kernel consisted of a full

blown Virtual Machine Monitor (VMM) as in Terra [21],

Proxos [37], and Overshadow [18]. Researchers also pro-

posed systems based on microkernels, as in Nizza [23] and

Nova [35]. Currently, the state of the art consists of tiny

kernels implemented using late launch technology as in

Flicker [28], hardware virtualization as in TrustVisor [29],

and the handler code of the System Management Mode

(SMM) as in SICE [15]. Reducing the TCB size, how-

ever, makes these systems difficult to program. In contrast,

TLR aims to provide richer programming abstractions while

keeping the TCB small.

For ARM TrustZone, the closest piece of work to TLR is

Nokia’s OnBoard Credentials (ObC) [25]. ObC can execute

programs written in a modified variant of the LUA scripting

language running in an isolated environment protected by

TrustZone. TLR’s primary benefit over ObC is bringing the

trustbox and trustlet concepts to a mature managed-code en-

vironment, as well as providing a richer set of abstractions.

Developers will find trusted computing primitives easier to

program with .NET because it offers the productivity ben-

efits of modern high-level languages, such as strong typing

and garbage collection, to application developers.

Other previous systems leverage ARM TrustZone to im-

plement specific security services. One system uses Trust-

Zone to implement trusted sensors [27], which enable mo-

bile apps to obtain guarantees of authenticity and integrity

of sensor readings. In the commercial sphere, Proxama uses

ARM TrustZone to enable secure mobile payments [7].

There is a large body of work on improving the security

of OSes and mobile apps. In particular, researchers have

paid considerable attention to protecting personal user data

(e.g., address book, user photos, password information, GPS

location) and preventing its unauthorized access and leakage

by proposing novel techniques, such as new access control

mechanisms [33] and information flow analysis [20]. This

work, however, is complementary to ours: TLR does not

need to trust the OS unlike this previous work.

Another research area uses privilege separation for par-

titioning an application into security-sensitive and security-

insensitive components. These systems expose a partition-

ing interface at the level of the programming language,

and enforce this separation by using a runtime [30], or the

OS itself [17]. Such approaches still depend on a large

TCB, which includes the OS and the runtime. TLR offers a

coarser-grained privilege separation by compartmentalizing

an application, but has a smaller TCB.

Setup: 1. Bank→Device:sealT,D([TANLST])

Query: 1. Svc→Device: index

2. Device→Svc: TANLST(index)

Figure 15. Use Case 1: Online banking transfers.

Purchase:1. PTS→Device:

sealT,D([tinfo, KT, certPTS(KT)])

Validate: 1. Bus→Device: nb, time

2. Device→Bus: [{nb}KT, certPTS(KT)] | fail

Figure 16. Use Case 2: Mobile ticketing.

10. Conclusions

This paper presents the design, implementation, and evalua-

tion of the Trusted Language Runtime (TLR), a system for

running security-sensitive applications on mobile devices.

TLR offers programming primitives that allow small appli-

cation components to execute within a trusted environment

isolated from the operating system and other applications.

The TLR protects the integrity and confidentiality of appli-

cation code and data within the trusted environment. TLR

provides these features using the ARM TrustZone hardware

support for trusted computing found in ARM SoCs. Our

evaluation shows that the TLR achieves a significant reduc-

tion in the TCB of mobile apps with an acceptable perfor-

mance cost.

Acknowledgments

We are grateful to the anonymous reviewers for their com-

ments. This work was partly supported by national funds

through FCT (Fundação para a Ciência e Tecnologia) under

project PEst-OE/EEI/LA0021/2013, and by PCAS project

(co-financed by the European Commission through the con-

tract no. 610713).

Appendix A: Use Case Protocols

This section presents a brief description of the security pro-

tocols that implement the use cases presented in Section 5.

Setup: 1. Bank→Device:

sealT,D([CC, PIN, KT, KTID, certB(KT), certM(VT)])

Pay: 1. Device→VT: nd

2. VT→Device: VTID, amount, date, nd, nv,

h(PIN,nd,amount), σVT, certM(VT)

3. Device→VT: [VTID, amount, date, KTID,

nv, σKT, certB(KT)] | abort

Commit: 1. VT→Bank: VTID, amount, date, nv, KTID, σKT

Figure 17. Use Case 3: Mobile payments.

Deploy: 1. HA→Device:

sealT,D([[R0, . . . , Rn], ACPOL, KT, certHA(KT)])

Query: 1. Device→HP: nd

2. HP→Device: [RID
k], nh, {nd}KH, certHA(KH)

3. Device→HP: [〈Ri. . .Rj〉K,

{K, nh}KT, certHA(KT)] | fail

Figure 18. Use Case 4: E-health application.

To represent cryptographic operations, we use following no-

tation. For asymmetric cryptography,K and KP denote pri-

vate and public keys, respectively. For symmetric keys, we

drop the superscript. Notation 〈x〉K indicates data x en-

crypted with key K , and {y}K indicates data y signed with

key K . We represent nonces as n.

The protocols implementing each of our four use cases

are represented in Figures 15–18, respectively.

Appendix B: TCB of Mono+Linux Setup

The Linux+Mono TCB includes part of the Linux kernel

(6.9 MLOC), Mono’s runtime (471 KLOC), native code

libraries, such as Glib2 (1.3 MLOC), and managed code

libraries shipped with Mono (3.3 MLOC). Since real Linux

deployments do not include all device drivers shipped in

the kernel, to avoid reporting an artificially bloated Linux

kernel, we conservatively exclude the drivers’ source code.

References

[1] Android. http://www.android.com.

[2] Dalvik VM Internals. https://sites.google.com/site/

io/dalvik-vm-internals.

[3] Apple iOS 6. http://www.apple.com/ios.

[4] Mono. http://www.mono-project.com/Main_Page/.

[5] Common Language Runtime (CLR), . http://msdn.

microsoft.com/en-us/library/8bs2ecf4.aspx.

[6] .NET Micro Framework, . http://www.microsoft.com/

netmf/default.mspx.

[7] Proxama. http://www.proxama.com/

products-and-services/trustzone.

[8] Transaction authentication number. http://www.

wikipedia.org/wiki/Transaction_authentication_

number.

[9] Tegra 250 Dev Board. https://developer.nvidia.com/

tegra-250-development-board-features/ .

[10] U-boot Bootloader. http://www.denx.de/en/News/

WebHome/.

[11] Microsoft Windows 8. http://windows.microsoft.com/

en-us/windows-8/meet.

[12] Porting the .NET Micro Framework. Microsoft Techni-

cal White Paper, 2007. http://msdn.microsoft.com/

en-us/netframework/bb267253.aspx.

[13] Understanding .NET Micro Framework Architecture,

2010. http://msdn.microsoft.com/en-us/library/

cc533001.aspx.

[14] ARM. ARM Security Technology – Building a Secure System

using TrustZone Technology. ARM Technical White Paper,

2009. http://infocenter.arm.com/help/topic/com.

arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_

trustzone_security_whitepaper.pdf.

[15] A. M. Azab, P. Ning, and X. Zhang. SICE: A Hardware-Level

Strongly Isolated Computing Environment for x86 Multi-core

Platforms. In Proc. of CCS, 2011.

[16] Brickell, Ernie and Camenisch, Jan and Chen, Liqun. Direct

Anonymous Attestation. In Proc. of CCS, 2004.

[17] D. Brumley and D. Song. Privtrans: automatically partition-

ing programs for privilege separation. In Proc. of USENIX

Security ’04, 2004.

[18] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.

Waldspurger, D. Boneh, J. Dwoskin, and D. R. K. Ports. Over-

shadow: A Virtualization-Based Approach to Retrofitting Pro-

tection in Commodity Operating Systems. In Proc. of ASP-

LOS, 2008.

[19] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,

and X. Zheng. Secure web applications via automatic parti-

tioning. In Proc. of SOSP ’07, 2007.

[20] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-

Daniel, and A. N. Sheth. TaintDroid: an information-flow

tracking system for realtime privacy monitoring on smart-

phones. In Proc of OSDI’10, 2010.

[21] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.

Terra: A Virtual Machine-Based Platform for Trusted Com-

puting. In Proc. of SOSP, 2003.

[22] T. C. Group. TPM Main Specification Level 2 Version 1.2,

Revision 130, 2006.

[23] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzyn-

ski, F. Mehnert, and M. Peter. The Nizza Secure-System Ar-

chitecture. CollaborateCom, 2005.

[24] M. Hypponen. Malware goes Mobile. Scientific American,

November 2006.

[25] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala. On-

board Credentials with Open Provisioning. In Proc. of ASI-

ACCS, 2009.

[26] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,

J. C. Mitchell, and M. Horowitz. Architectural Support for

Copy and Tamper Resistant Software. In Proc. of ASPLOS,

2000.

[27] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software Abstrac-

tions for Trusted Sensors. In Proc. of Mobisys, 2012.

[28] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and

H. Isozaki. Flicker: An Execution Infrastructure for TCB Min-

imization. In Proc. of EuroSys, 2008.

[29] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D. Gligor,

and A. Perrig. TrustVisor: Efficient TCB Reduction and At-

testation. In Proc. of IEEE S&P, 2010.

[30] A. C. Myers. JFlow: Practical Mostly-Static Information Flow

Control. In Proc. of POPL ’99, 1999.

[31] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.

Mccune. Memoir: Practical State Continuity for Protected

Modules. In Proc. of IEEE S&P, 2011.

[32] PrivacyCA. PrivacyCA. http://privacyca.com.

[33] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang,

and C. Cowan. User-Driven Access Control: Rethinking Per-

mission Granting in Modern Operating Systems. In Proc. of

IEEE S&P, 2012.

[34] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Trusted

Language Runtime (TLR): Enabling Trusted Applications on

Smartphones. In Proc. of HotMobile, 2011.

[35] U. Steinberg and B. Kauer. Nova: A microhypervisor-based

secure virtualization architecture. In Eurosys, 2010.

[36] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. De-

vadas. AEGIS: Architecture for Tamper-Evident and Tamper-

Resistant Processing. In Proc. of ICS, 2003.

[37] R. Ta-Min, L. Litty, and D. Lie. Splitting Interfaces:

Making Trust Between Applications and Operating Systems

Congurable. In Proc. of OSDI, 2006.

[38] V. Tsai. eMMC v4.41 and v4.5. http://www.jedec.org/

sites/default/files/Victor_Tsai.pdf.

http://www.android.com
https://sites.google.com/site/io/dalvik-vm-internals
https://sites.google.com/site/io/dalvik-vm-internals
http://www.apple.com/ios
http://www.mono-project.com/Main_Page/
http://msdn.microsoft.com/en-us/library/8bs2ecf4.aspx
http://msdn.microsoft.com/en-us/library/8bs2ecf4.aspx
http://www.microsoft.com/netmf/default.mspx
http://www.microsoft.com/netmf/default.mspx
http://www.proxama.com/products-and-services/trustzone
http://www.proxama.com/products-and-services/trustzone
http://www.wikipedia.org/wiki/Transaction_authentication_number
http://www.wikipedia.org/wiki/Transaction_authentication_number
http://www.wikipedia.org/wiki/Transaction_authentication_number
https://developer.nvidia.com/tegra-250-development-board-features/
https://developer.nvidia.com/tegra-250-development-board-features/
http://www.denx.de/en/News/WebHome/
http://www.denx.de/en/News/WebHome/
http://windows.microsoft.com/en-us/windows-8/meet
http://windows.microsoft.com/en-us/windows-8/meet
http://msdn.microsoft.com/en-us/netframework/bb267253.aspx
http://msdn.microsoft.com/en-us/netframework/bb267253.aspx
http://msdn.microsoft.com/en-us/library/cc533001.aspx
http://msdn.microsoft.com/en-us/library/cc533001.aspx
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://privacyca.com
http://www.jedec.org/sites/default/files/Victor_Tsai.pdf
http://www.jedec.org/sites/default/files/Victor_Tsai.pdf

	Introduction
	Background
	ARM TrustZone
	Microsoft .NET Micro Framework

	Goals, Assumptions, and Threat Model
	Overview of Trusted Language Runtime
	TLR Primitives

	Use Cases
	One-time Passwords
	User Authentication
	Secure Mobile Transactions
	Access Control to Sensitive Data

	Detailed Design
	TLR Components
	Programming Model
	Trustbox Management
	Runtime Support
	Cross-world Communication andInterrupt Handling
	Memory Management
	System Boot
	Platform Identity
	Seal and Unseal Primitives
	Trusted I/O Path

	Implementation
	Hardware Testbed
	Software Implementation

	Evaluation
	Performance
	TCB Size
	Programming Complexity
	Security Analysis

	Related Work
	Conclusions

