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Abstract

Advances in technology enabled new types of networks
to appear (e.g. PDA based spontaneous networks). Here,
execution of transactions manipulating distributed objects
is affected by the intermittent connectivity thereby causing
unnecessary aborts.

This paper presents a solution to make transactions re-
silient to intermittent connections thus increasing transac-
tion throughput. This is achieved by i) allowing transac-
tions to further span in time and/or ii) relaxing the con-
sistency properties of transactions. For this purpose, ap-
plication programmers specify the minimum transaction re-
quirements (which depend on the application semantics) us-
ing policies. Evaluation shows that slightly increasing the
maximum transaction execution time and/or reducing con-
sistency, transaction throughput increases substantially.

This solution is implemented in MobileTrans – a dis-
tributed object-oriented middleware system providing adap-
tive transactions aiding the reliable management of dis-
tributed object graphs. Policies are specifically designed to
overcome the connectivity intermittence problem. The min-
imum transaction requirements are specified as parameters
to these policies without having to change application code.

1. Introduction

Advances in technology enabled the appearance of
portable devices, such as laptops, cell phones and PDAs,
equipped with wireless interfaces (eg. Bluetooth and Wi-
Fi) allowing them to communicate and share data with fixed
stations or with other portable devices. Spontaneous net-
works form when portable devices are in a range allowing
the establishment of wireless links between them. These
networks are, by nature, dynamic; nodes enter and leave
networks, communication links are more prone to failures
and disconnections are frequent. This feature leads dis-
tributed transactions running on these environments to abort
unnecessarily due to connectivity problems even though

conflicts do not exist between transactions. Current transac-
tion systems [6, 9] provide limited adaptability to deal with
variable network conditions and applications semantics.

This paper presents a solution for making transactions
resilient to intermittent connectivity. When connections
fail, transactions are prevented from aborting by i) postpon-
ing transactions until unavailable nodes become available
and/or ii) by relaxing the ACID1 [1] properties (e.g. pro-
viding inconsistent object replicas or discarding some up-
dates performed by transactions). The rationale is that ap-
plications may trade some properties offered by the strict
transactional model for a higher commit rate. Evaluation
shows that, slightly increasing the transaction execution
time and/or reducing acidity, increases the transaction com-
mit rate substantially.

These mechanisms are strongly dependent on the appli-
cation semantics since their side effects (spanned transac-
tion execution time due to transaction postponing and con-
sistency degradation due to acidity relaxation) may be un-
safe. Thus, application awareness is provided; application
programmers setup theexecution modeand theminimum
requirements. There are two execution modes –min-time
andmax-consistencymodes – chosen whether faster trans-
actions are preferred (with possible loss in data consistency)
or whether consistent transactions are preferred (with poten-
tially high execution times), respectively. The minimum re-
quirements characterize the conditions below which trans-
actions are aborted: the maximum execution time and the
minimum consistency level. Severalconsistency levelsare
defined for relaxing consistency.

Intermittent connectivity adaptation is achieved using
MobileTrans [8]. It is a transactional distributed object-
oriented middleware system providing transactions with an
adaptive behavior to mobile environments. Transaction be-
havior is specified through declarative policies; it is not nec-
essary to change the application code. A built-in system
policy enforces the previously described adaptive behavior
to intermittent connections. Application programmers pa-

1Atomicity, consistency, isolation and durability



MobileTrans Core
Client-Side

API

Application

Virtual Machine/OS

IT

Policy

IT

Policy

MobileTrans Core
Server-Side

Virtual Machine/OS

Repository

Client Node Server Node

Transactions

Configuration

Parameters

Cache

Figure 1. Architecture of MobileTrans.

rameterize this policy by providing theexecution modeand
theminimum requirements; no complicated policies have to
be developed and configuration is intuitive.

This paper is organized as follows. Section 2 briefly de-
scribes the MobileTrans system. Section 3 presents how
transactions are handled in the presence of intermittent con-
nections. Section 4 presents and discusses the obtained ex-
perimental results. Section 5 surveys the relevant related
work. Finally, Section 6 draws the conclusions of this paper
and presents future directions.

2. Architecture

MobileTrans is an adaptive transactional object-oriented
middleware system supporting applications for dynamic en-
vironments. This system providestransaction policysup-
port; application programmers provide declarative state-
ments (transaction policies) evaluated at run-time that adapt
the transactions behavior according to the changes of the
environment and the application semantics.

The MobileTrans architecture (see Figure 1) is client-
server. Both client and server run on top of a virtual ma-
chine. The MobileTrans server stores and exports shared
data. MobileTrans clients are applications bundled with a
client-side core component enabling applications to access
the data provided by the servers (running locally or in other
nodes). Nodes may be providers and consumers of data if
executing both server and client code.

Data is represented asobject graphs. Objects are stored
in repositoriesmanaged by the MobileTrans servers. There
is a single consistent version of each object, stored in a
repository whose node is called the objecthome node;
clients cache replicas of object (sub)graphs accessed by lo-
cal client applications in a client-sidecache. It is not guar-
anteed that objects fetched from caches are consistent.

Transactions are issued by client applications and fol-
low a distributed transaction model. Transactions start with
thebeginoperation and end upon issuing thecommitor the
abort operations. Objects are created and accessed within
transactions. To access remote objects, objects are first
replicated from a source site (the object home node, the
local cache or other client cache); this operation is called

object fetching. After fetching, accesses are performed on
the local object replicas (i.e. by invoking object methods
or manipulating object fields). Transactions finish success-
fully (i.e. all updates performed locally are made persistent
at their home nodes) if the commit operation succeeds.

Transactions behavior is independently specified in a
XML declarative file calledtransaction policy. The policy
mechanism and the mobile-aware transaction protocol sup-
port incorporate several configurable features [8] that affect
the properties of transactions and allow the fine-grain tuning
of transactions behavior. To deal with the intermittent con-
nectivity problem, a specific system provided intermittent
transaction policy (IT policy) was developed (see Figure 1).
This policy is configurable through parameters provided by
the application programmers (see Section 3).

3. Intermittent connectivity resilience

If connections are intermittent, nodes often cease to be
available. Normally, if transactions perform an operation
requiring accessing a node that is not available (object
fetching and commit operations), transactions would abort.
To prevent unnecessary aborts, a recovery procedurefT is
applied to the failing operation of transactionT . There are
two possible side effects toT resulting of applyingfT : an
increased transaction execution time or/and a loss of data
consistency. Thetransaction tolerance time(tT ) andtrans-
action consistency level(cT ) indicators are defined to con-
trol these effects on transactions.

Tolerance timetT = max(tf0 , . . . , ttn , tc), where tk
stands for the time that the transaction operationk requires
to wait for it to succeed;k = fi stands for theith fetch
operation andk = c for the commit operation. Informally,
the tolerance time provides the maximum time that any net-
work dependent operation performed by the transaction has
to wait until that operation is able to proceed successfully;
e.g., if connections are stable during the transaction execu-
tion, thentT = 0s.

Consistency levels are specified in Table 1. Each level
characterizes the requirements that transactions must hold
both at fetching time (to read objects) and at commit time
(to submit the object updates). Regarding fetching, it is pos-
sible to: i) get a full consistent replica of the required object;
ii) get any replica (possibly inconsistent) of the object; iii)
provide a null replica.2 Thus, in the first case, a specific
node must be available (the objects home node); in the sec-
ond case, any node containing a cached object replica (even
the local cache) must be available; in the third case, no node
has to be available for the operation to succeed. Regarding
commit, it is possible: i) to validate all transaction updates
which requires that all participants be available, ii) to dis-
card the updates whose nodes are not available at commit

2Obviously, application programmers must be aware of the possibility
of being provided inconsistent replicas or even null replicas.



c Fetching Commit
5 full consistent replicas no updates can be dropped
4 full consistent replicas updates can be dropped
3 inconsistent replicas no updates can be dropped
2 inconsistent replicas updates can be dropped
1 null replicas no updates can be dropped
0 null replicas updates can be dropped

Table 1. Consistency level ( c).
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Figure 2. Distribution of the transactions cT

and tT depending of the applied mode.

time (the updates w.r.t. the absent participants are discarded
and the updates w.r.t. the available ones are validated3).

In order to minimize aborts in the presence of inter-
mittent connections, the recovery procedurefT specifies a
course of action that may increasetT , decreasecT or both.
This course of action depends on theminimum requirements
and theexecution modespecified by the application pro-
grammer. The former declare the values, both in terms of
thecT andtT , below which transactions are aborted:cmin

specifies the minimum consistency level andtmax speci-
fies the maximum tolerance time. The execution mode (m)
characterizes thetT andcT balancing method. There are
two modes: themin-timeand themax-consistencymodes.
Which mode is preferable depends on the transaction prop-
erties that are mostly important to safeguard from the ap-
plication programmer’s viewpoint. The former privileges
faster transactions in detriment of a possible loss of data
consistency. The latter privileges high consistency of data
allowing longer execution delays. Figure 2 represents the
pairs (cT , tT ) of transactions when executing in the min-
time mode or when executing in the max-consistency mode.

In short, to describe how transactions overcome intermit-
tent connections, application programmers specify the tuple
[m, cmin, tmax]. The behavior taken by each of the execu-
tion modes and the explanation of howtmax andcmin are
handled in each execution mode is presented in the remain-
der of this section.

3MobileTrans allows objects of the transaction to be selectively marked
with different levels of consistency.

3.1. Min-time mode

In themin-timemode, when a network dependent opera-
tion cannot proceed, the transaction is postponed untilcmin

is reached. This may imply reducing the consistency level
cT (as long ascT ≥ cmin). Oncecmin is reached, the op-
eration concludes. If thetmax is exceeded and thecmin

is not achieved, the transaction is aborted. Thus, the min-
time mode aims at executing transactions as fast as possible,
trading it for a possible loss in consistency.

For example, suppose a configuration wherecmin = 3
andtmax = 15s. If a transaction is fetching an object, but
its home node is absent, an inconsistent replica of the object
is searched in the local cache or in a cache of a nearby node.
If the replica is found, thecmin is reached and the transac-
tion proceeds; otherwise, the transaction is postponed for a
maximum of 15s waiting that a node carrying the consistent
or an inconsistent replica of the object becomes available. If
tmax exceeds without this to happen, the transaction aborts.

3.2. Max-consistency mode

In themax-consistencymode, when a network dependent
operation cannot proceed, the transaction is postponed until
the consistency level is as high as possible (cmax = 5). Un-
til the consistency level does not reachcmax, the transaction
is postponed for a maximum timetmax. If tmax expires, the
transaction is checked for the reached consistency levelcT .
If cT ≥ cmin, the transaction proceeds with consistency
cT ; otherwise, it is aborted. Thus, the max-consistency
mode aims at executing transactions consistently, spanning,
if necessary, for longer periods of time.

For example, suppose thatcmin = 1, tmax = 3600 and a
transaction is trying to fetch an object from its absent home.
The transaction is then postponed until its home node be-
comes available ortmax exceeds. Iftmax (1 hour) exceeds,
the maximum consistency levelc achieved at that time is
applied (if cT ≥ cmin); for example, if, in the meantime,
an inconsistent replica of the object was found in the local
cache or in the cache of a nearby node,cT = 3; if no replica
was found during that period,cT = 1 (i.e. thecmin).

4. Evaluation

The MobileTrans prototype was implemented in Mi-
crosoft .Net and the intermittent transaction policy writ-
ten in a MobileTrans XML-based language. To evaluate
the proposed solution, several micro-benchmarks were con-
ducted. These consist of test transactions executed during a
fixed simulation time. Half the transactions are read-only
while the other half is read-write. For each simulation,
∼ 130 transactions are randomly launched. The total sim-
ulation time is 36s. Each transaction accesses 100 objects,
64 byte each. For simulation purposes, micro-benchmarks
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a. Scenario A : >70% time disconnected. b. Scenario B : ∼50% time disconnected. c. Scenario C : <30% time disconnected.
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Figure 3. Evaluation results for three simulated environments.

were executed on two Pentium 4, 2.8 Ghz, 512 MB PCs
connected by a 100Mb LAN: one PC running the Mobile-
Trans server, the other PC executing the console micro-
benchmark applications acting as clients.

Three simplified connectivity patterns were used in the
simulations. These patterns attempt to modulate real world
scenarios (see Figures 3.a-c). The square wave in the ba-
sis of each Figure represents the connectivity pattern: if it
is high (low), there is (not) connectivity with the destina-
tion node. Scenario A (Figure 3.a) refers to a pattern where
the total disconnection time is high (> 70% the simulation
time). Such situation is common among nodes that seldom
meet, but meet periodically and perform cooperative work,
e.g. workers of a transports company. On the contrary, in
scenario C (Figure 3.c) the total disconnection time is re-
duced (< 30% the simulation time). An example is the typ-
ical work meeting where connections may be interrupted
temporarily because one leaves the room for a coffee break.
Scenario B (Figure 3.b) provides an intermediate situation
where disconnections occupy∼ 50% the simulation time.
For each scenario, Figures 3.a-c describe the evolution of

transactions in time – the total number of transactions that
are launched, committed and aborted due to the intermit-
tent connectivity – without applying the recovery procedure
fT . Results show that the number of aborting transactions
is very high. Even in the highest connectivity scenario (sce-
nario C),∼50% of transactions aborted.

Simulations were performed separately for both execu-
tion modes. To observe the impact oftmax and cmin in
the transaction throughput, the minimum requirements were
varied and properly calibrated so that all transactions could
commit. The series of Figures 3.d-f (Figures 3.g-i) show the
results achieved for the min-time mode (max-consistency
mode). These results only refer to transactions that would
abort if recovery was not applied. The remainder of this
section analyzes these results and draws conclusions.

4.1. Min-time mode evaluation

The relevant factor affecting the transaction tolerance
time is thecmin; the less demanding are the consistency
requirements, the sooner conditions are achieved and trans-



actions may proceed. Thetmax bound is the factor that
may drive transactions to abort since, whentmax expires,
if cmin was not achieved, transactions are aborted. Figures
3.d-f reflect how transaction throughput changes for several
cmin. These results were obtained with atmax equal to the
simulation time such that all transactions commit. Thus, it
is possible to determine the abort rate for lowertmax, e.g.
(see Figure 3.d,cmin = 5) settingtmax = 2s, the commit
rate is∼ 20%. From these results two observations can be
drawn: i) by admitting a slight reduction of the consistency
level (cmin = 3) transaction throughput increases substan-
tially within a small period of time – by fixingtmax = 0.4s,
∼70% of the aborting transactions are now able to commit,
ii) if high consistency levels are needed (cmin ≥ 3), all
transactions are able to commit if settingtmax to the maxi-
mum disconnection period.

4.2. Max-consistency mode evaluation

In the max-consistency mode, transactions execute with
the highest possible consistency level. Thus, the relevant
factor affecting the achieved consistency level istmax; e.g.
if tmax = ∞, transactions always achieve the maximum
consistency level (assuming that eventually nodes become
reachable); however, transactions may last indefinitely. The
aborting factor iscmin since, whentmax expires, if it is
not possible to enforce thecmin at that time, transactions
are aborted. Figures 3.g-i reflect the transaction throughput
for severaltmax. Results show that as connectivity time in-
creases, the number of transactions that are able to commit
with the maximum consistency increases substantially. In
Figure 3.i, all transactions achieveqT = 5 with tT ≤ 5s.

5. Related Work

The Rover toolkit [2] is a client-server distributed ob-
ject model designed for mobile networks. It allows appli-
cation programmers to build their own transaction models.
However, this is a complex and cumbersome task since con-
sistency enforcement is not separated from the application
code. Proposals such as Clustering [5] and Prewrite [4] sup-
port mobile transactions by relaxing the strict ACID model.
These are mainly focused on the operation in disconnected
mode other than situations of intermittent connectivity. Mo-
bisnap [6] is a database middleware system that supports
applications running on mobile environments. It allows
caching of relational data in the clients who concurrently
update the database. The use of reservations provides some
support for conflict avoidance and reconciliation but it lacks
support for specifying the behavior of transactions. In Pro-
Motion [7] and Moflex [3] it is possible to specify how
mobile transactions behave during handover or how to per-
form hoarding and reconciliation of data. SyD [9] provides
services for performing QoS-aware transaction processing

across multiple devices of a mobile network. It is similar to
MobileTrans w.r.t. providing atomicity and consistency de-
grees and policies for tuning them. However it is not clear
how SyD is effective handling transaction execution under
intermittent network connections.

6. Conclusions and Future Work

In this paper we present a solution for making trans-
actions resilient to intermittent connections. An increased
transaction throughput is achieved by allowing transactions
to delay and by relaxing the consistency properties of trans-
actions. This solution is built on top of the MobileTrans sys-
tem which provides a policy based flexible transaction man-
agement for mobile environments. Evaluation results are
encouraging since slightly increasing the maximum trans-
action execution time and/or reducing consistency, transac-
tion throughput increases substantially.

As future directions, we underline the following. To au-
tomatically setup the optimalcmin and tmax by feeding
back the connectivity patterns sensed by the network, to
study further mobility scenarios and to appropriately de-
scribe them through policies, to improve the consistency
model so that it becomes more intuitive to the application
programmers. In short, to enhance the transaction model by
designing new features that increase transaction efficiency
and facilitate implementation of transactions.
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