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Abstract—Software security is a fundamental dimension in the
development of mobile applications (apps). Since many apps have
access to sensitive data (e.g., collected from a smartphone’s sen-
sors), the presence of security vulnerabilities may put that data
in danger and lead to privacy violations. Unfortunately, existing
security solutions for Android are either too cumbersome to use
by common app developers, or may require the modification
of Android OS. This paper presents Flowverine, a system for
building privacy-sensitive mobile apps for unmodified Android
platforms. Flowverine exposes an API based on a dataflow
programming model which allows for efficient taint tracking of
sensitive data flows within each app. By checking such flows
against a security policy, Flowverine can then prevent potential
privacy violations. We implemented a prototype of our system.
Our evaluation shows that Flowverine can be used to implement
mobile applications that handle security-sensitive information
flows while preserving compatibility with existing Android OS
and incurring small performance overheads.

I. INTRODUCTION

An ever-growing number of mobile apps collects highly
sensitive user data, e.g., location, photos, or health-related
data. As the leakage of personal data can cause serious privacy
breaches, app developers face the challenge of making sure
such data is handled securely. For instance, a fitness-tracking
app that reads the user’s heart rate from a Fitbit fitness tracker
must guarantee that this information can never be shared with
unauthorized parties. However, ensuring the absence of bugs
and security vulnerabilities is in itself a difficult task due to the
complexity of the Android API. Furthermore, any third-party
libraries [1, 2] (e.g., ad libs) included in the app, may have
their own vulnerabilities, or, worse, contain malicious code
leaking user data. Thus, it is important to have mechanisms
in place that allow both app developers and users to control
sensitive data flows within their apps, and consequently block
those flows that can lead to security or privacy violations.

Unfortunately, despite the number of security improvements
featured in the latest Android OS versions, no mechanisms are
yet available for enforcing information flow control (IFC) poli-
cies. Many proposals from academia [3–10] refine Android’s
coarse-grained permission system, but fall short at controlling
how sensitive data is processed inside the apps. Some other
tools [11–13] employ static code analysis, which, however, can
result in high false positive rates, fail to track flows performed
via the Android API, or may be impractical to adopt in case the
source code is not available (e.g., third-party libraries). Other

systems overcome these limitations through the use of dynamic
taint analysis [14, 15], but require changes to the Android OS.

To complement existing techniques, we propose Flowverine,
a system that allows app developers to build secure-by-design
privacy-aware Android apps. Flowverine apps run on commod-
ity Android devices and require no changes to the Android
OS in order to track sensitive data flows and enforce security
policies. The apps are written using a specific programming
model and API (possibly including third party libraries) so
that all sensitive data flows within an app can be tracked.
App developers can specify security policies for white-listing
sensitive data flows, e.g., “heart rate readings from a user’s
fitness tracker can be sent exclusively to a specific cloud
backend and nowhere else”. Users that install the app can
verify such policies and employ additional restrictions.

Flowverine implements a taint tracking mechanism based on
two techniques. Firstly, to increase the abstraction level and
enable efficient static taint tracking, we built upon the concept
of element-based programming recently proposed for (simple)
smart home apps [16], and apply it to complex Android apps.
In Flowverine, all sensitive data flows must become explicit
by construction, i.e., an app must be written as a graph where
the nodes (named elements) represent compute units and the
edges represent data flows. Flowverine provides a set of native
elements – named trusted elements – that mediate an app’s
access to the Android native API. Because trusted elements
come with a specification that describes how the data flows
through the Android runtime, Flowverine allows for sound
static taint tracking to be performed across Android API calls.

Secondly, if an app includes third party code that needs
to access the raw Android API, Flowverine uses sandboxes
to isolate such code inside untrusted elements, and Aspect-
Oriented Programming (AOP) to intercept native Android API
calls and perform dynamic taint analysis. AOP precludes the
need to modify the OS, thus favoring compatibility.

Our performance evaluation shows that Flowverine has a
relatively small impact on app execution time and has no
noticeable impact to the user experience. We implemented
three use case Android apps that showcase the ability of
Flowverine to (1) prevent sensitive data flows that are not
explicitly indicated in the app graph provided by the app
developer, (2) allow for the strict privilege separation of
multiple independent flows within any given app, and (3)
support the main Android API programming abstractions.



II. BUILDING PRIVACY-SENSITIVE APPS

A. Challenges in Building Android Apps

Android provides a popular platform for mobile apps. We
highlight three major challenges faced by developers when
building apps that manipulate privacy-sensitive data from local
sensors or external connected devices. These challenges arise
mainly from Android’s programming and security models.

Tracking direct sensitive data flows: Tracking information
flows between source and sink Android API calls – i.e., the
calls that allow an app to obtain sensitive data and send it
to remote parties, respectively – based on the inspection of
a data flow graph can be cumbersome and error-prone as a
result of the app separation into components (e.g., Activities)
and the asynchronous nature of Android programming. Many
static analysis tools can help to automate this task, but are
seldom used in practice because of high false positive rates.

Tracking indirect sensitive data flows: Sensitive data flows
can also be generated indirectly, i.e., outside the data flow
paths between source and sink API calls. Some flows can
be established through internal Android data structures, e.g.,
via an app context (akin to a global object store) in which
independent app components can store and retrieve data using
specific API calls. An indirect flow can then occur if one
component stores data inside the app context and another one
reads that data from it. Tracking such flows using existing taint
analysis tools requires changes of the Android OS [14].

Enforcing privilege separation: Another difficulty lies in the
fact that Android’s permissions are too coarse-grained and
many Android API calls have no differentiated access controls
for different parts of a given app. This complicates privilege
separation for different pieces of app logic. For instance, once
the network access has been granted to an app, one cannot
restrict the range of endpoints that the code (e.g., a third-party
ad library) can connect to. Android does not currently support
access control policies based, e.g., on the target URL.

B. Element-based Programming for Smart Homes

Element-based programming model was featured in Home-
Pad [16], a system that provides a privacy-friendly runtime
for apps that interact with smart home devices. HomePad’s
programming model enables users to find out how a given
app uses the collected data, and apply fine-grained security
policies based on the internal data flows generated by the app.

Element graphs: HomePad apps must be structured as a
directed graph of interconnected elements. Elements consist of
API functions that implement some well-defined behavior. The
edges of the graph express all possible data paths, as HomePad
only allows data to flow through these paths. Consider the
HomePad app example in Figure 1. The app uploads camera
frames to a cloud server when it identifies a person at the
front door of the house. The application is implemented by
three interconnected elements. The IPCamera and HttpReq
elements are part of HomePad’s native API, and are thus
deemed trusted. The developer needs to create an app-specific
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Fig. 1: Example of a HomePad application graph.
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Fig. 2: Programming models compared.

element – FaceDetector – which contains code to receive
camera frames, perform face detection, and send the results
to the cloud. Because the FaceDetector code is not part
of the native API (i.e., it is implemented by the developer,
possibly importing a third-party library) this element is termed
untrusted. Nevertheless, thanks to the connections indicated
in the element graph and by sandboxing untrusted elements’
code, HomePad only allows camera frames to be sent out via
the HttpReq element configured with a predefined URL.

Taint tracking: By representing an app in the form of an
element graph, HomePad allows for statically tracking both
direct and indirect information flows within each app. This is
achieved by the automatic generation of a data flow model
written in first-order logic which takes into account i) the
topology of the element graph to reason about the propagation
of taint, and ii) a predefined specification of how each trusted
element propagates taints from its inputs to its outputs depend-
ing on the semantics of the API call it invokes. Based on this
model, HomePad can then determine if any of the generated
app flows might violate a given security policy. Moreover,
since trusted elements operate with specific data sources or
sinks (e.g., exact camera, or URL, respectively), it is possible
to implement fine-grained information flow security policies
and enforce privilege separation. For instance, we can prevent
an app from sending a given camera footage to any Internet
address other than a particular (trusted) URL, while letting it
freely send unrelated data to other Internet hosts.

C. Proposal: Element-based Programming for Android Apps

Given the HomePad benefits, we propose to adopt an
element-based programming for building secure-by-design
Android apps. As such, we introduce several innovations:

1. Android app components as element graphs: In Flowver-
ine, each app component is written in the form of an element
graph (see Figure 2). As in HomePad, an element executes
some functional unit, and can only interact with other elements
through the explicit edges connecting them. The graphs are



expressed in a declarative fashion, which allows for integration
with popular visual programming tools for app development.
2. Trusted elements adopted for mobile API: The Flowver-
ine API consists of a set of trusted elements. These are
provided by certified modules that are assumed to work
properly without undesirable side effects. Access to the native
Android API, e.g., network calls, is mediated by specific
trusted elements that can be used for different purposes,
namely; i) obtain data from a given source (e.g., a hardware
sensor, UI, or another app component), ii) send data to an
external sink (e.g., a network host, UI, or another component),
or iii) perform data transformation (e.g., data encryption). Each
trusted element provides a well-defined interface.
3. Untrusted elements to host unmodified legacy code: As
in HomePad, untrusted elements serve the purpose of run-
ning sandboxed code provided by the developer. In addition,
Flowverine supports the inclusion of third-party legacy li-
braries, which often require direct access to the native Android
API. To prevent privacy breaches Flowverine hosts legacy code
inside untrusted elements and needs to implement additional
runtime mechanisms to block any unauthorized API accesses.

D. Challenges Related to Android Specifics

Unlike HomePad apps with a simple structure, Android apps
contain multiple components (e.g., activities or services) which
interact with each other through asynchronous callbacks.
Tracking sensitive data flows in such an intertwined system
of classes and methods is a challenging task. To address this
challenge, Flowverine implements a middleware that provides
an abstraction layer for all app components, including the UI
ones, and controls the propagation of events carrying sensitive
data between them. Flowverine intercepts native API calls
and enforces runtime security policies without changes in the
underlying OS. We provide more details in the next section.

III. DESIGN

This section presents Flowverine. We begin by describing its
architecture, and then discuss its most relevant design details.

A. Architecture

Flowverine provides a software framework for development
of privacy-sensitive Android apps such that the developers
and users alike maintain fine-grained control over the sen-
sitive information flows generated by these apps. To this end,
Flowverine provides a middleware that exposes an API based
on element-based programming and a set of mechanisms that
i) analyze the internal app data flows using static and dynamic
taint tracking, and ii) check such flows against an information
flow control (IFC) policy to identify potential security or
privacy breaches. An app developer can specify an IFC policy
to validate the app compliance with the terms of the service’s
privacy policy (which states how the personal data will be
collected and managed) and the data protection rules imposed
by law. The user can specify an IFC policy (through a user-
friendly interface) which prevents specific data flows that the
user deems privacy sensitive.
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Fig. 3: Flowverine framework components and workflow.

Figure 3 presents Flowverine’s components. It includes an
app development toolchain that allows developers to build
their apps, link them against the Flowverine API, and check
compliance against a developer-provided IFC policy. If the app
satisfies all the security requirements, the developer submits
a signed app package to an app store and registers it in the
Flowverine certification service, which validates that the app
has been properly instrumented by the toolchain. A user can
then install this app through the Flowverine manager app
running on the user’s smartphone. The manager app manages
all Flowverine apps on the device, e.g., fetches the app package
from the app store, and checks that the app has been properly
certified by the Flowverine certification service. The manager
app also provides a UI interface through which the user can
specify an IFC policy and check apps’ compliance with it.
If the app passes the check, it can then be executed. Every
Flowverine app is linked against the Flowverine middleware –
i.e., a set of libraries – that provides all the runtime support for
the execution of the app, which is based on an element graph.
Next, we describe how a Flowverine app can be developed.

B. Application Development

The process of developing a Flowverine app involves i)
the implementation of the app itself, and then ii) using the
toolchain to build the app, check IFC policy compliance,
generate the app package, and submit it for public release.

To implement an app, the developer creates individual
element graphs for every app component. To illustrate this
process, imagine we want to implement a simple Click-
Counter app that displays the number of times the button
on a screen was clicked. As in traditional Android program-
ming, in Flowverine, this app has an associated Activity
and a UI layout file written in XML. However, since this
Activity will be implemented as an element graph, it will
be programmed as a Java subclass of Flowverine’s API
ActivityGraphDescriptor. This class provides methods that
allow the developer to specify the elements of the graph and
their connections. Figure 4 shows what this graph looks like.

This graph consists of two trusted elements – ViewClick
and TextUpdater – and an untrusted one – HandleClick.
The former implement UI functions and serve as interfaces
to the button and a text view defined by their respective
IDs. The latter contains the code that handles a button click
event and increments the counter. This code is provided in
Listing 1. According to the app graph, the events generated
by ViewClick will be routed by the Flowverine runtime to
HandleClick, which in turn will increment the counter and
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Fig. 4: Element graph of ClickCounter app.

@CustomElement(name="HandleClick")
public class HandleClick extends Element{

int ctr = 0;
@EventReceiver
public void onEvent (...) {

sendEvent(new Event <String >("Cnt: "+(++ ctr)));
}}

Listing 1: Implementation of HandleClick element.

generate an output event. The Flowverine runtime will route
this event to TextUpdater which will display the counter value
on screen. Next, we present the Flowverine runtime internals.

C. Application Execution Runtime

The Flowverine runtime (see Figure 5) consists of a mid-
dleware comprising several libraries, which are included in the
app package along with the code responsible for the imple-
mentation of the app’s element graph. At runtime, Flowverine
materializes the elements of the app graph into three sets of
Java objects : i) stubs that point to the implementation of the
trusted elements referred to in the element graph, ii) sandboxes
initialized with instances of untrusted elements’ classes, and
iii) a path descriptor which restricts communication between
trusted elements’ stubs and untrusted elements’ sandboxes ac-
cording to the connections in the app graph. These objects are
created when the app starts and destroyed when it terminates.

Elements communicate by sending events to the correspond-
ing stub through an internal message broker: event bus. For
instance, ViewClick element sends an event on every button
click. These events are routed by the event bus strictly as
specified in the path descriptor, therefore ensuring that no
information flows can occur besides those specified in the
app’s element graph. The functions implemented by the trusted
elements – through a set of built-in drivers – is covered below.

D. Trusted Elements API and Drivers

The Flowverine API consists of a set of trusted elements
that developers can use to create their apps’ element graphs.
The logic of these elements is implemented by a set of drivers
which are part of the Flowverine middleware. One of the ob-
stacles in adopting element-based programming for Android,
is the complexity of Android API, both in terms of number of
calls, and the sophistication of operations they implement (e.g.,
multithreading). To cope with this complexity, we created
various types of drivers which interface with specific classes
of functions provided by the Android API. Next, we briefly
mention the most important types of Flowverine drivers:
1. UI drivers: As opposed to smart home apps, mobile
apps have very rich user interfaces. The Android API has
many classes for creating UI widgets named Views. A View
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Fig. 5: Execution runtime of a ClickCounter application.

represents a UI object on the screen which the user may
interact with. Flowverine’s API offers trusted UI elements,
e.g., the ViewClick and TextUpdater, which provide standard
functionalities of Button and TextView, respectively. These
elements have specific input and output ports which can be
connected to other elements. An input port of TextUpdater
element can be used to update a TextView on the screen, and
an output port of ViewClick can be used to emit a button
click event to any downstream element in the app graph.

2. Component drivers: Activities are very common compo-
nents. An Activity represents an app’s screen and is in charge
of UI-dependent tasks. Throughout its lifecycle an Activity
instance transitions through different states and provides a set
of callbacks that are invoked when it enters a new state –
e.g., onCreate or onDestroy. With Flowverine, developers
can handle these state changes by using the elements provided
as part of the Activity Life Cycle Module. For instance, the
ActivityCreated element notifies the elements connected to
its output port when the graph’s Activity is created.

3. System drivers: This class of drivers includes trusted
elements for supporting multithreading, inter-component com-
munication (ICC), and inter-process communication (IPC). For
multithreading support, Flowverine apps can execute tasks in
parallel with the AsyncFork and AsyncJoin elements. With
ICC driver elements the graphs of different app components
can be connected. Lastly, IPC drivers enable apps to interact
with each other via the Send/Received trusted elements.

4. I/O drivers: Flowverine implements several drivers for
interfacing with network, storage, and sensors. For networking,
Flowverine includes a Web driver which allows apps to
perform HTTP requests through trusted elements, such as
HttpGetReq or HttpPostReq. These elements must be set
up with i) the destination URL, and 2) the expected data
types received in the response. Other drivers provide access
to Bluetooth (BLE driver) and location services.

E. Protection against Untrusted Element Code

The code of the untrusted elements can be written by the
app developer or be part of a third-party library. In either case,
to ensure that the app’s data flows are strictly bound to the data
paths indicated in the app’s element graph, such code cannot
be allowed to execute without restrictions. Flowverine adopts
several mechanisms for securing legacy third-party libraries:



1. Sandboxing untrusted elements: To prevent untrusted
element code from interfering with other classes of the runtime
sharing the same ART virtual machine, we take advantage
of Java’s class loading model. Flowverine includes a custom-
made sandbox classloader which is in charge of resolving
classes within an isolated namespace. Each untrusted element
instance is placed inside its own sandbox such that only the
classes associated to it by the app developer can be loaded
and instantiated. Any attempts to access (blacklisted) classes
from the runtime environment will throw an exception. Some
(harmless) classes are whitelisted and are delegated to the
parent class loader, i.e., the class loader of the runtime.

2. Weaving untrusted elements code: It is also necessary to
prevent untrusted elements’ code from performing operations
that circumvent the data paths defined in the app graph. This
may cause a buggy code to interfere with the system or, worse,
a malicious code (e.g., spyware shipped with a third-party
library) to leak sensitive data. Therefore, an untrusted element
code must be prohibited to perform the following operations:

• Direct calls to the Android API methods, which are
reserved to be invoked by the Flowverine middleware.

• Execution of native (C/C++) code, which could be used
to inject malicious code in the Flowverine runtime.

To this end, the code is sanitized using Aspect-Oriented
Programming (AOP). With AOP, we define a set of execution
points patterns to be executed only by the middleware. By
weaving the app in search of points that match these patterns,
and injecting a safety-guard code, we can assure that untrusted
elements’ code has no access to Android’s API or to a Java
native interface. In Flowverine, weaving is performed at build
time, by a tool of Flowverine toolchain named code weaver.
It runs on Java bytecode files and inspects all the app code
provided by the developer, including any imported libraries.

Weaving is particularly useful in the case of legacy third-
party libraries which have not been modified to use Flowver-
ine’s trusted element API. At runtime, if an untrusted element
attempts to execute a flagged Android API call, the safety-
guard code takes over and lets the security monitor (see
Figure 5) decide what to do. The default procedure is to
terminate the app, but the security monitor may allow the
operation to proceed as long as the resulting data flow follows
the app’s graph connections. For instance, it can intercept an
HTTP call and forward it to the Flowverine network driver,
which, in turn, translates this call into an event compatible with
a trusted HTTP element. If such an element exists in the app’s
graph and connects with the currently executing untrusted
element, then this operation can be seamlessly carried out.

F. Validation of Information Flow Control Policies

By ensuring that an app can only generate information flows
explicitly declared in the app’s element graph, Flowverine
helps prevent security breaches that may result from program-
ming errors or by the inclusion of malicious libraries. Flowver-
ine provides complimentary tooling support for validating the
information flows of a given app against an information flow

(a) App installer screen. (b) Privacy report of an app.

Fig. 6: App Manager screenshots.

control (IFC) policy. Although for different contexts, IFC
policies are useful to both app developers and users.

An IFC policy consists of a set of rules aimed to flag specific
information flows between sources and sinks in a given app.
The sources and sinks are identified by the elements of the
app’s graph. A source is an element that collects sensitive data
type (e.g., an interface to a connected fitness tracker). A sink
is an element that can be used for sending data to a remote
location (e.g., an HTTP trusted element). Each rule identifies
some relevant information flow based on a 3-tuple: source,
sink, and data type. These rules are expressed in the form of
Prolog predicates and are matched against a model of the app’s
element graph also written in Prolog. This model consists of a
set of predicates, some of which are automatically generated
based on the app’s graph topology, and others are predefined.
The predefined predicates specify how information propagates
internally for each trusted element of the Flowverine API.
These predicates are loaded for each trusted app element and
come as part of the Flowverine software. Flowverine validates
if any of the app flows violate the IFC policy by using a Prolog
engine to query the app’s model based on the policy rules.

Flowverine provides two sets of tools for IFC policy val-
idation. App developers can use a policy checker included
in the toolchain to check for undesired information flows.
For debugging and testing purposes the app developers can
specify their own IFC policy in JSON (then converted to
a Prolog predicate and checked against the app’s element
graph). App users can use the App Manager to supervise the
information flows generated by Flowverine apps and block any
sensitive flows. Figure 6 presents two screenshots of the App
Manager’s UI. When installing an app (see Figure 6.a), the
user can select an app from a list provided by the Flowverine
app certification center. During installation, the App Manager
generates a default IFC policy that reflects the flows in the
app’s element graph. This policy is shown to the user (see
Figure 6.b), who can block specific data flows or disable the
app. The user may additionally force the app to ask permission
every time it attempts to obtain or send out a certain data type.



IV. IMPLEMENTATION

We implemented a Flowverine prototype, and we have
prepared a public release as an open-source project. In total
we wrote about 23K lines of Java code. This includes the
Flowverine middleware and trusted element API (9K LoC), the
App Manager (3.5K LoC), Flowverine toolchain (1K LoC), the
certification service (0.7K LoC), and five testing Flowverine
apps (9K LoC). We adopted tuProlog as Flowverine’s Prolog
engine, and leveraged AspectJ for code weaving. We imple-
mented a specific Flowverine BLE driver for interacting with
a Xiaomi Mi Band 2, which we used to develop a privacy-
sensitive fitness tracker app.

Our current prototype has several limitations. Given the
extent of the Android API, we have only implemented a
representative set of trusted elements for the Flowverine API.
In particular, our API is limited to: system drivers, Activity and
Service components, five different UI views, and I/O drivers
for networking, BLE interfacing, and location services.

V. EVALUATION

We evaluate Flowverine on several fronts, as described next.

A. Case Study

To help understand some key challenges in building secure
mobile apps, we introduce a simple health-monitoring app
named HeartBuddy. The app obtains a heart rate value from a
connected fitness tracker – via a Bluetooth Low Energy (BLE)
connection – displays it on the screen, and periodically sends
an average value to a hospital’s cloud service (nyp.org) for di-
agnosis of various heart-related diseases. The app also displays
an ad banner fetched from a remote server (adspull.com).

Due to the private nature of a heart rate data the app
developer must ensure that only the average values are sent to
the specified cloud service and nowhere else. Likewise, the app
users expect this property to hold at any time. Additionally,
the developer needs to guarantee that there is no interference
between the main app functionality and the ad library activity.
The ad library can never have access to heart rate data.

In Flowverine, the HeartBuddy app can be implemented as
a graph of elements displayed in Figure 7. On the left side,
there is BLE Service activity responsible for interacting with
a connected fitness tracker and properly decoding its signals
(proxied by native Android API). On the right, we see two app
activity graphs: one implementing the main app functionality,
and the other one responsible for ad banner activity. A new
heart rate data event emitted by a trusted HeartRateDecoder
element arrives to an untrusted HandleNewHR element, which
forwards it to the Reducer.Average element that computes an
average heart rate value and feeds it to the second untrusted
app element – SendHR. The latter one is responsible for prepar-
ing an HTTP POST request to a hospital’s cloud server. This
request will be sent when the user clicks the ”Send” button
on the screen (an event handled by the ButtonView.Click
element). Finally, the TextView.Update element updates the
current heart rate value on the screen. The ad banner oper-
ations are controlled by a second isolated graph consisting
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Fig. 7: Flowverine HeartBuddy app design.

of four elements. This graph starts execution when a new
activity is created (invoked by Activity.Create element).
The untrusted FetchAds element receives the latest ad data
by making an HTTP GET request to an adspull.com service
and displays it on the screen via ImageView.Set.

Since the main activity graph and the graph responsible for
ad activity are completely separated, there are no data flows
between their respective elements. Flowverine also ensures
that the network calls are restricted to endpoints that were
defined in the app package: HttpReq controls the destination
and type of requests. By analyzing both app graphs, Flowver-
ine can effectively track the heart rate data propagation and
transformation. The security monitor detects the data type
leaving the user phone (averaged value) which is in accord
with the user expectations. The security monitor also ensures
that a third-party ad library will not have access to heart rate
data and will not be in conflict with GDPR regulations.

B. Comparison with Vanilla Android

Our comparison between Flowverine and the vanilla An-
droid system is twofold. First, we analyze the security models
of both systems: the former which is based on an IFC model,
and the latter on a discretionary permissions system. Our goal
is to evaluate if apps developed with Flowverine are more
transparent regarding their sensitive data flows, and if our
framework allows users to understand and have a fine-grained
control over how installed apps treat sensitive data. To this
end, we use the example HeartBuddy app (see Figure 6). In
Flowverine, the App Manager reports to the user that: (1)
the app collects heart-rate data (i.e. data type) from a fitness
tracker (i.e. source), and (2) the app sends collected data to
nyp.org (i.e. sink). The user is then offered the option to either
block a given flow or require the app to ask for permission
each time the flow occurs. In vanilla Android, the permissions
system allows the user to deny the app’s access to BLE service,
but not to the Internet. Thus, in scenarios where mobile apps
need to send sensitive data to the cloud, Flowverine’s reports
are more informative and give the user better control over the
app’s activities than Android’s native permission system.

Secondly, we assess the development effort required to write
Flowverine apps in terms of lines of code (LoC) as compared
to the standard Android app programming model. Table I



TABLE I: Apps created for bare Android and with Flowverine.

App Name Accessed Resources Lines of Java Code (LoC)
Traditional Flowverine

ClickCounter UI 15 21

PhotoUploader UI, Filesystem, Internet 98 64

HeartBuddy UI, Dialog windows,
Internet, Bluetooth, Mi
Band 2 services

480 174

TABLE II: Build time for traditional and Flowverine apps.

App Name Build time (ms) Overhead (ms)
Traditional Flowverine

ClickCounter 1556 2164 608 (39%)

PhotoUploader 1938 2772 834 (43%)

HeartBuddy 1692 2374 682 (40%)

presents the results of this comparison for three apps of var-
ious complexity: ClickCounter (see Figure 4), PhotoUploader
(which uploads a photo to a cloud service), and HeartBuddy.
We see that for very simple apps, Flowverine requires more
lines of code. However, the LoC number is significantly
lower (sometimes almost 3x less) for complex Flowverine
apps that rely on multiple existing trusted elements to interact
with various resources (e.g. device sensors, storage, network).
Developers can thus benefit from higher-level programming
abstractions for writing their apps.

C. Performance

To evaluate the performance of Flowverine, we used a server
with a 2.80GHz Intel i7-7700HQ CPU and 16GB of RAM
for build-time and validation experiments. To evaluate the
Flowverine’s runtime and App Manager performance, as well
as its memory and battery consumption we use Neffos C5A
smartphone running Android 7.0 Nougat equipped with a 1.30
GHz quad-core processor 1GB RAM and a 2300 mAh battery.

To measure how much time Flowverine adds to application
compilation and packaging, we compare build times of the
three use-case apps developed using Flowverine and traditional
Android programming models (see Table II). Flowverine adds
on average 700 ms to the build time. In all cases the overhead
was mostly due to Code Transformer’s weaving process.

On average it takes 7.7 sec for Flowverine to perform
an integrity check on a newly published app package. The
validation time depends mainly on the app size, but with the
infrequent release cycle of apps, this delay can be tolerated.

Next, we analyzed the time that the App Manager needs
to inspect an app graph, extract data flows information, and
display this information to the user. The inspection time
correlates closely with the app graph complexity: with more
app elements generating various data types there are more
potential data flows for App Manager to inspect. It takes
between 2 to 7 sec to analyze the app graphs consisting of
3 and 21 elements respectively.
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Fig. 8: Runtime benchmarking tests results.

We also evaluate the Flowverine impact on apps’ startup
time and some of the common app activities. The results
are presented in Figure 8. Flowverine adds, on average, 200
ms to an app’s launch time, and 20 ms when switching app
activities. However, for other app activities, e.g. network calls,
the overhead is negligible (<1 ms). While Flowverine has a
noticeable impact on app startup time, there is no meaningful
performance loss on app activities after that. We note, however,
that further performance optimizations are possible.

Lastly, Figure 9 features the results of memory consumption
comparison. Flowverine apps use slightly more memory due to
the sandboxing mechanism which replicates classes bytecode
definitions consequently increasing the amount of memory
used by the app process. Also note that in our experiments
Flowverine had insignificant impact on app’s battery usage.

D. Security Assessment

Our system must defend against potential security vulner-
abilities introduced by buggy or malicious code contained
in a mobile app. Such vulnerabilities could result in the
circumvention of the data path restrictions enforced by the
app’s element graph, and / or in the violation of a given IFC
policy. To assess how Flowverine mitigates potential attacks,
we consider the following scenarios:

1) Untrusted elements directly interacting with the device
resources (direct access attack).

2) Unconnected untrusted elements sharing data with each
other (data sharing attack).

3) Malicious code set to run outside untrusted elements
(middleware bypass attack).

4) Altering the app’s bytecode after weaving-based saniti-
zation (weaving disable attack).

Flowverine introduces several mechanisms to make app
code more resilient to attacks. Its sandboxes prevent (1) and
(2) by blocking the execution of dangerous classes that aim
to access the device’s resources, and loading the classes
of untrusted element code in independent class loaders so
that they do not share memory. Flowverine’s code weaver
tool checks all the apps bytecode, preventing attacks of the
third kind. Lastly, the certification service of Flowverine only
validates apps that have been correctly sanitized by the code
weaver, essentially preventing attacks of the fourth type.
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Fig. 9: Memory usage: traditional apps vs. Flowverine apps.

VI. RELATED WORK

Information flow analysis tools for Android: Most of these
tools [11, 12, 14] employ some kind of taint tracking to inspect
the paths of tainted data samples. While these tools provide
high coverage, they may often lead to a high false-positive
rate, and overlook some control-flow data leaks. MutaFlow
[13] detects this last type of leak but fails to detect a delayed
attack. Furthermore, a study carried in 2018 [17] shows
that FlowDroid and IccTA fail to track flows that involve
ICC calls with complex strings formed from sensitive data.
TaintDroid [14] and TaintART [15] overcome these challenges,
but require changing Android’s core as they use dynamic
taint tracking. Additionally, these tools operate at a variable
level and are prone to side-channel attacks [18]. Flowverine
provides a complementary technique that combines both static
and dynamic taint analysis without changing the Android OS.

Extensions to Android’s permission system: Most proposed
extensions [5–8] enforce control over app data access but
ignore internal app data flows, making it difficult to determine,
e.g., the Internet locations where sensitive data is sent by a
given app. Some systems that monitor how data flows within
apps [9, 10], rely on TaintDroid [14] to detect leaks, which
means they inherit TaintDroid’s limitations discussed above.
Furthermore, all these solutions [3–6, 9, 10] but two [7, 8]
involve changes to Android’s core. Aurasium [7] and App-
Guard [8] do not modify the OS, but instead rely on dynamic
instrumentation of apps. However, both of these techniques
interfere with Android’s ecosystem and raise compatibility
problems. Another problem with the studied solutions is that
they all control access to data at a very low abstraction level,
such that it becomes hard for app developers and users to
understand how apps use sensitive data and for what purposes.

In summary, Flowverine finds itself in-between two worlds.
On the one hand, similarly to taint tracking tools, it checks
the propagation of sensitive data samples from their sources
to potential sinks. Flowverine however avoids overtainting by
operating on a higher level of abstraction (variable level vs.
user-friendly data type) and relying on predicates that describe
data propagation rules within the app. On the other hand,
Flowverine serves as a privacy enhancement to the Android
ecosystem without requiring any changes to its core modules.

VII. CONCLUSION

We proposed Flowverine, a new system for Android that
helps app developers and users to protect sensitive data ma-
nipulated by mobile apps. Flowverine’s dataflow programming
model allows app developers to expose how apps internally
collect and share user’s sensitive data. Our evaluation shows
that Flowverine performs well, and that, despite the introduc-
tion of a new programming model, new secure-by-design apps
can be created without much additional effort. Flowverine can
also make app development accessible to a wider community,
as it can be easily integrated with visual programming tools.
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