
SCADAMAR: Scalable and Data-Efficient Internet
MapReduce

Rodrigo Bruno
INESC-ID

Instituto Superior Técnico
Lisboa, Portual

rodrigo.bruno@tecnico.ulisboa.pt

Paulo Ferreira
INESC-ID

Instituto Superior Técnico
Lisboa, Portual

paulo.ferreira.inesc-id.pt

ABSTRACT
Recent developments of popular programming models, namely
MapReduce, have raised the interest of running MapReduce
applications over the large scale Internet. However, current
data distribution techniques used in Internet wide comput-
ing platforms to distribute the high volumes of information,
which are needed to run MapReduce jobs, are naive, and
therefore need to be re-thought.

Thus, we present a computing platform called SCADA-
MAR that runs MapReduce jobs over the Internet and pro-
vides two new main contributions: i) improves data distribu-
tion by using the BitTorrent protocol to distribute all data,
and ii) improves intermediate data availability by replicating
tasks or data through nodes in order to avoid losing inter-
mediate data and consequently preventing big delays on the
MapReduce overall execution time.

Along with the design of our solution, we present an exten-
sive set of performance results which confirm the usefulness
of the above mentioned contributions, improved data distri-
bution and availability, thus making our platform a feasible
approach to run MapReduce jobs.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Data communications; C.2.4 [Computer-Communication
Networks]: Distributed Systems—Distributed applications;
C.4 [Performance of Systems]: Reliability, availability,
and serviceability

General Terms
Algorithms, Performance, Realiability

Keywords
Volunteer Computing, BitTorrent, BOINC, MapReduce

1. INTRODUCTION
With the ever growing demand for computational power,

scientists and companies all over the world strive to harvest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CrossCloud Brokers ’14 December 8, 2014, Bordeaux, France
Copyright 2014 ACM 978-1-4503-3233-0/14/12 ...$15.00.

more computational resources in order to solve more and
bigger problems in less time, while spending the minimum
money possible. With these two objectives in mind, we think
of utilizing available resources all over the world through the
Internet as a viable solution to access huge amounts of com-
putational resources.

With time, more computing devices (PCs, gaming con-
soles, tablets, mobile phones, ...) join the network. By ag-
gregating all these resources in a global computational pool,
it is possible to obtain huge amounts of computational re-
sources that would be impossible, or impractical, for most
grids, supercomputers, and clusters. For example, recent
data from BOINC [2], a Volunteer Computing project, shows
that, currently, there are 50 supported projects sustained by
an average computational power of over 7 PetaFLOPS1.

In addition, recent developments of popular programming
models, namely MapReduce2 [6], have raised the interest of
using MapReduce applications over the Internet. Although
increasing its attractiveness, it also brings the need to re-
think and evolve current computing platforms’ architectures,
in particular, data distribution, to adapt to these new pro-
gramming models.

Hence, we present a system called SCADAMAR, a com-
puting platform which has as its ultimate goal to aggregate
as many computational resources as possible in order to run
MapReduce jobs in a scalable and efficient way, over the In-
ternet. To be successful, SCADAMAR must fulfill several
key objectives: i) scale up with the number of nodes, ii)
collect nodes’ resources such as CPU cycles, network band-
width, and storage in an efficient way, iii) tolerate byzantine
and fail-stop failures, and iv) support MapReduce, a partic-
ularly interesting programming model, given its relevance for
a large number of applications.

MapReduce applications commonly have two key features:
i) depend on large amounts of information to run and ii) may
run for several cycles (where data can be processed and trans-
formed several times). Therefore, in order to take full advan-
tage of the MapReduce model, SCADAMAR must be able
to distribute large amounts of data efficiently while allowing
applications to perform several MapReduce cycles without
compromising its scalability.

In order to understand the challenges inherent to building
a solution like SCADAMAR, it is important to emphasize
its target environment: computation pools. Computation
pools are made of arbitrary computers, owned by individu-
als, institutions, or cloud providers around the world. Nodes

1Statistics from boincstats.com
2MapReduce is a popular programming model composed by
two operations, Map and Reduce

have variable Internet connection bandwidth, node churn is
very high (compared to clusters or grids), nodes are very
asymmetrical in hardware and software and their computing
resources may be focused on user tasks. Finally, as opposed
to grids and clusters, nodes cannot be trusted since they may
be managed by malicious users.

By considering all the available solutions, it is important
to note that solutions based on clusters and/or grids do not
fit our needs. Such solutions are designed for controlled en-
vironments where node churn is expected to be low, where
nodes are typically well connected with each other, nodes
can be trusted, and are very similar in terms of software and
hardware. Therefore, solutions like HTCondor [16], Hadoop
[17], XtremWeb [8] and other similar computing platforms
are of no use to attain our goals.

When we turn to platforms that harness resources all over
the Internet, we observe that most existing solutions are built
and optimized to run Bag-of-Tasks applications. Therefore,
solutions such as BOINC, GridBot [14], Bayanihan [13], and
many others [1, 3, 4, 12] do not support the execution of
MapReduce jobs, which is one of our main requirements.

With respect to the few solutions [11, 15, 7, 5] that sup-
port MapReduce, we are able to point out some issues (more
details on Section 4): data distribution could be improved,
intermediate data availability is overlooked, and lack of sup-
port for multiple cycle MapReduce applications.

To solve the aforementioned problems, we present SCADA-
MAR, a BOINC compatible computing platform that enables
the deployment of MapReduce applications over the Internet.
Besides supporting MapReduce jobs, SCADAMAR goes one
step further by allowing nodes (mappers or reducers) to help
distributing both the input, intermediate output and final
output data, through the BitTorrent3 protocol and not point-
to-point protocols (such as HTTP and FTP). SCADAMAR
will therefore benefit from nodes’ network bandwidth to dis-
tribute data. Additionally, SCADAMAR allows sequences of
MapReduce cycles to run without having to wait for the data
server, i.e., data can flow directly from reducers to mappers
(of the next cycle). Regarding the availability of intermedi-
ate data, SCADAMAR proposes an enhanced work scheduler
that automatically replicates data or tasks to minimize the
risk of loosing intermediate data.

By providing these functionalities, SCADAMAR achieves
higher scalability (reducing the burden on the data server),
reduced transfer time (improving the overall turn-around
time), and augmented fault tolerance (since nodes can fail
during the transfer without compromising the data transfer).

In short, the contributions of this work are the following: i)
a BOINC compatible computing platform; ii) enhanced data
distribution for MapReduce workflows using BitTorrent; iii)
enhanced intermediate data availability using data and task
replication.

To conclude, we envision that our project could be of
great, use namely for cloud providers. Using SCADAMAR,
a cloud provider could decide whether to use its own re-
sources, or to export some MapReduce computation to other
cloud providers, or even to some individual/volunteer desk-
top. Such cloud provider could use some resource market
solution (that is out of the scope of this paper) that could
enable users to choose where to place the computation de-
pending, for example, on its price.

3Official BitTorrent specification can be found at
www.bittorrent.org

Figure 1: Server-Side Architecture

2. SCADAMAR
Along this section, we start by describing how and which

techniques are used to achieve the proposed goals. Next,
we present our data distribution algorithms (used to provide
fast and scalable data transfers in the context of MapReduce
jobs). We finish this section with some techniques that ad-
dress the availability problem of intermediate data and some
implementation notes.

2.1 Architecture Overview
SCADAMAR is divided into two major components: client

and server. The server is responsible for delivering and man-
aging tasks (work units) while the client is responsible for
executing and reporting results. At a very high level, the
server is composed by a scheduler (that manages and deliv-
ers tasks) and by a data server (that stages the input and
the output of jobs).

BitTorrent is a peer-to-peer protocol that allows nodes
around the world to exchange data. In our project, we use
it to spread input, intermediate and output data. Using Bit-
Torrent, the central server and all client nodes become part
of several swarms, networks of nodes that share a particular
file. This way, nodes can download each file from multiple
sources at the same time (therefore alleviating the burden on
the central server).

In order to introduce BitTorrent as the data distribution
protocol, two new entities are added to the central server (see
Figure 1): a BitTorrent Tracker and a BitTorrent Client. The
tracker is essential to provide information so that new nodes
are able to find others that have a particular file. The BitTor-
rent client (which is also added to all clients) is responsible
for handling the BitTorrent protocol and all the necessary
communication to perform the transfers.

At a very high level, our approach to introduce MapReduce
in SCADAMAR can be described as follows: i) the client
side executes the map tasks and reports hashes of the output
files to the central server; ii) the central server validates the
hashes and then shuffles intermediate data; iii) reduce tasks
run and the results are sent to the central server.

The shuffle phase is a necessary step in the MapReduce
workflow. As each mapper might produce output to every
reducer, there is the need to organize the inputs for the re-
duce tasks. Figure 2 shows this operation. This operation is
performed by the central server once it detects that all map
tasks are validated. It is important to note that this opera-
tion manages hash files (known as .torrent files). This way,
the shuffle phase is extremely fast and the scalability of the
system is not compromised. Once this operation is finished,
new reduce tasks can be delivered to new nodes.

2.2 Data Distribution Algorithm
We now detail how we use the BitTorrent file sharing pro-

tocol to coordinate input, intermediate and final output data
transfers. Still on our data distribution algorithm, we show
how SCADAMAR is able to run multiple MapReduce cy-

Figure 2: Shuffle Phase Example

cles without compromising its scalability (i.e. avoiding high
burden on the data server).

2.2.1 Input Distribution
Input distribution is the very first step in every MapRe-

duce application. Input must be split over multiple mappers.
To do so, each mapper downloads an input file hash (the
.torrent file) that identifies an input file at the central data
server.

For each input file, the server plays as original seed. If we
take into consideration that each map task is replicated over
at least three nodes (for replication purposes), then, when a
new map task begins, the node will have at least one seed (the
data server) and possibly up to the task replication factor
minus one, additional nodes sharing the file (each node shares
all the input file chunks that it has using the BitTorrent
protocol).

Therefore, we can leverage the task replication mechanisms
to share the burden of the data server. Even if the server is
unable to respond, a new mapper may continue to download
its input data from other mappers. The transfer bandwidth
will also be bigger since a mapper may download input data
from multiple sources in parallel.

2.2.2 Intermediate Output Distribution
Figure 3 illustrates the steps for the intermediate data dis-

tribution. Once a map task is finished, the mapper has an
intermediate output ready to be used. The first step is to
create a hash of the output (1). Then, the BitTorrent client,
running at the client node, automatically contacts the Bit-
Torrent tracker (2), running at the central server, to report
new data (the hash of the output is used as an identifier).
The third step is to make the server aware of the map task
finish. To this end, the mapper contacts the server and sends
the hash file just created for the intermediate output (3).

As more intermediate file hashes arrive at the server, the
server is able to decide (using a quorum of results) which
mappers have the correct intermediate files (by comparing
all hashes). When all the intermediate outputs are avail-
able and validated, the server shuffles all hash files and saves
them at the data server(4 and 5). When new nodes request
work, the scheduler starts issuing reducer tasks (6). These
reducer tasks contain references to the hash files that were
successfully validated and that need to be downloaded (7).

Figure 3: Intermediate Data Distribution

Once a reducer has access to these hash files, it contacts the
BitTorrent Tracker (using the hashes as file identifiers) to
know which nodes have the intermediate data (8), and starts
transferring intermediate files (using the BitTorrent proto-
col) from all the nodes reported by the tracker (9). Reduce
tasks start as soon as all the needed intermediate values are
successfully transfered.

2.2.3 Output Distribution
Given that reduce tasks are replicated over at least three

nodes, it is possible to accelerate the upload of the final out-
put files from reducers to the data server.

The procedure is similar to the one used for intermediate
outputs. Once a reduce task finishes, the reducer computes
a hash for its fraction of the final output. Then, it informs
the BitTorrent Tracker that some output data is available
at the reducer node. The next step is to send a message to
the central scheduler containing the hash of the output file
and acknowledging the task completion. Once the scheduler
receives enough results from reducers, it can proceed with
validation and decide which hashes will be used to download
the final output. All the trustworthy hashes are then used by
the BitTorrent client at the central server to download the
final output.

Using BitTorrent to transmit the final outputs results in a
faster transfer from client nodes to the data server, a lower
and shared bandwidth consumption from the client’s per-
spective, and an increased fault tolerance (since a client node
failure will not abort the file transfer).

2.2.4 Multiple MapReduce Cycles
Using the data distribution techniques just described, where

the central server and all client nodes have a BitTorrent client
and use the BitTorrent Tracker to find peers with data, it is
very easy to use SCADAMAR for running applications that
depend on multiple MapReduce cycles. The difference be-
tween our solution and previous ones (namely SCOLARS) is
that output data need not to go to the central server before
it is delivered to new mappers (i.e., data can flow directly
from reducers to mappers from one cycle to the other).

From mappers’s perspective, when a workunit is received,
the BitTorrent tracker is asked for nodes with the required
data. It does not differentiate between the single cycle sce-

nario (where mappers download from the central server) or
the multiple cycle scenario (where mappers download from
reducers of the previous cycle). Regarding the central server’s
perspective, the scheduler only needs to know that some map
tasks depend on the output of some reduce tasks.

2.3 Availability of Intermediate Data
Previous studies [10] show that the availability of interme-

diate data is a very sensitive issue for programming models
like MapReduce. Note that, when using embarrassingly par-
allel applications, there is no intermediate data and therefore
this problem does not apply.

The problem is that, for performance reasons, typical MapRe-
duce implementations (targeted to clusters) do not replicate
intermediate results. However, when applied (MapReduce)
to Internet wide computing, where node churn is very high,
such lack of replication leads to a loss of intermediate data.
It was shown that loosing a single chunk of intermediate data
incurs into a 30% delay of the overall MapReduce execution
time. To cope with this problem, SCADAMAR presents two
methods:

1. replicate map tasks aggressively when nodes designated
to execute a particular map task take too long to an-
swer the central server probes. By imposing a shorter
interval time to report to the central server, we make
sure that we keep at least a few replicas of the inter-
mediate output. As soon as a mapper is suspected to
be failing, a new map task will be delivered to replicate
the failed one;

2. replicate intermediate date when there are intermedi-
ate outputs that have already been validated (by the
central server) and some of the mappers that reported
these results take too long to answer to the central
server probes. Therefore, nodes might be used to repli-
cate intermediate data to compensate other mappers
that die while waiting for the reduce phase to start.
These tasks would simply download hash files and use
them to start downloading intermediate data. Once the
reduce phase starts, these new nodes can also partici-
pate in the intermediate data distribution phase, just
like the mappers that performed the map tasks.

Replicating only the intermediate output is much faster
than replicating a map task since: i) the computation does
not have to be performed; ii) intermediate data is normally
smaller than input data. These two methods are applied
before the reduce stage starts.

It is important to notice that if a map task is not validated,
it is not be safe to replicate the intermediate output. If there
is some intermediate output available (but not validated),
replicating it would possibly replicate erroneous data which
would get to wrongly validated data.

During the reduce stage, reducer nodes that take too long
to answer the central server probes will also be replaced by
other nodes until the computation is finished.

2.4 Implementation
SCADAMAR is implemented on top of BOINC. We did not

change BOINC’s core implementation since it would be im-
possible to have a single BOINC server hosting MapReduce
and non MapReduce projects at the same time. In fact, SCA-
DAMAR is implemented via alternative implementations of
some project specific daemons, namely the daemon responsi-

Benchmark BOINC SCOLARS SCADAMAR
grep 1500 sec 1425 sec 610 sec

Word Count 2121 sec 1590 sec 578 sec
Terasort 3482 sec 2100 sec 686 sec

Table 1: Benchmark Execution Times

ble for creating tasks and the one responsible for validating
tasks.

To be and remain compatible with current BOINC clients,
our project is implemented as a regular BOINC application.
Therefore, all client nodes will be able to join a MapReduce
computation without upgrading their client software. If it
would not be a regular application, clients would have to
upgrade their client software in order to fully explore SCA-
DAMAR’ capabilities namely, use BitTorrent to share files.
Previous solutions (e.g. SCOLARS) do not use this approach
and modify the BOINC client. Therefore, it cannot be used
without forcing users to upgrade their client software.

SCADAMAR’s client side application is meant to be used
as a framework, i.e., developers would simple call SCADA-
MAR’s code to register the map and reduce functions. All
other issues related to managing map and reduce tasks ex-
ecution, downloading and uploading data is handled by our
implementation.

Notwithstanding, application developers might analyse and
adapt the application code to specific application needs (e.g.
if one needs to implement a special way to read/write in-
put/output data). Other optimizations like intermediate data
partitioning or combining intermediate results might be eas-
ily implemented as well.

3. EVALUATION
We now proceed with an extensive evaluation of our sys-

tem. We compare SCADAMAR with SCOLARS (a BOINC
compatible MapReduce computing platform), and BOINC,
one of the most successful VC platforms, and therefore, a
good reference for performance and scalability comparison.
We use several representative benchmark applications and
different environment setups that verify the performance and
scalability of SCADAMAR.

To conduct out experiments, we used 60 university lab
nodes, all very similar both in hardware and software. To
create a more realistic environment, all tasks run with the
lowest possible priority and had their upload bandwidth lim-
ited to 10Mbps (except for the experiment in Table 3). All
MapReduce workflows used 16 map tasks and 4 reduce tasks
replicated three times each.

3.1 Application Benchmarking
We start our evaluation with some typical MapReduce ap-

plication benchmarks. It is important to understand that
these benchmarks are IO intensive and not CPU intensive
(as all Internet wide applications should be). We decided to
use them to stress even more the data distribution perfor-
mance. An input file of 512MB was used. By Table 1, it
is possible to conclude that SCADAMAR outperforms both
BOINC and SCOLARS by a vast margin.

For the next experiments, whenever it is not said in con-
trary, we are using the word count benchmark to produce
results.

3.2 Varying the Input File Size and the Upload
Bandwidth

File Size BOINC SCOLARS SCADAMAR
256 MB 1150 sec 840 sec 340 sec
512 MB 2121 sec 1590 sec 578 sec
1024 MB 4127 sec 3100 sec 1020 sec
2048 MB 8951 sec 6240 sec 1960 sec

Table 2: Performance Varying the Input File Size

Bandwidth BOINC SCOLARS SCADAMAR
5 Mbps 3974 sec 3022 sec 983 sec
10 Mbps 2121 sec 1590 sec 578 sec
25 Mbps 761 sec 553 sec 321 sec
50 Mbps 451 sec 304 sec 241 sec
100 Mbps 281 sec 165 sec 209 sec

Table 3: Performance Varying the Upload Band-
width

In this next experiments, we change the input file size and
the upload bandwidth to see how the platforms react. Ac-
cording to Tables 2 and 3, SCADAMAR is the system with
better performance, the one that degrades the performance
in a smoother way when the input file size increases and when
the upload bandwidth decreases.

It is also interesting to note that for high upload band-
widths, some BitTorrent overhead starts notice. As the used
file only has 512MB, for high bandwidths, the latency of con-
tacting multiple nodes and the tracker and the time lost wait-
ing in queues starts to notice.

3.3 Iterative MapReduce Applications
For this experiment we use another MapReduce applica-

tion, one that benefits from multiple cycles: page rank. Re-
sults are shown in Table 4. SCADAMAR is clearly the best
platform for applications with multiple cycles as it is approx-
imately 10 times faster than BOINC and 5 times faster than
SCOLARS.

It is important to note that the big performance discrep-
ancy between BOINC and SCOLARS is caused by the way
both systems handle intermediate data. As page rank’s inter-
mediate data is almost 50% bigger than input data, BOINC
looses much time moving data to and from the data server.

3.4 Varying the Map Replication Factor
We now turn our attention to the intermediate data avail-

ability problem. With this experiment, we show an inter-
esting fact that is confirmed by our results: SCADAMAR,
that uses BitTorrent, does not have performance degradation
when the map task replication factor is increased. Results
from Table 5 confirm it.

The cause for this resides in the BitTorrent protocol. Since
each group of replicas share the same file, the server can, in
theory, send only one copy of each chunk of the file for each

Phase BOINC SCOLARS SCADAMAR
Map 1 1937 sec 1879 sec 613 sec

Reduce 1 2807 sec 600 sec 148 sec
Map 2 1940 sec 1900 sec 142 sec

Reduce 2 2801 sec 603 sec 148 sec
Total 9485 sec 4982 sec 1051 sec

Table 4: Performance for Two Page Ranking Cycles

Repl. Factor BOINC SCOLARS SCADAMAR
2 1575 sec 1225 sec 600 sec
3 2121 sec 1766 sec 591 sec
4 2600 sec 2220 sec 590 sec
5 3128 sec 2771 sec 621 sec
6 3576 sec 3228 sec 600 sec

Table 5: Varying the Map Task Replication Factor

Session Time 1 vol/min 10 vol/min 100 vol/min
1 hour INF 2710 sec 2282 sec
2 hour 3922 sec 2527 sec 2114 sec
3 hour 3880 sec 2398 sec 2104 sec
4 hour 3754 sec 2354 sec 2104 sec
5 hour 3754 sec 2354 sec 2104 sec

Table 6: Real World Simulations

replica. All the replicas can then exchange chunks until all of
them have all the chunks. By design, the BitTorrent protocol
converges to this scenario.

3.5 Real World Environment
In this last experiment we test our solution on a simulated

realistic environment, i.e., with nodes coming and going in
the middle of a MapReduce job. To that end, we used dif-
ferent churn rates by manipulating the average node session
time and the new node rate.

Results from Table 6 shows that the time needed to com-
plete a job is reduced by: i) increasing the node session time
and ii) increasing the new node rate. The interesting result
is found when the session time is 1 hour and there is one new
node per minute. Our results show that there are not enough
nodes and nodes fail too often to complete the job. For those
reasons, most of our runs never ended.

From this experiment, we conclude that, as intermediate
data is kept on volatile nodes, one should make sure that the
job completion time is, at most, equal to the average node
session time. Therefore, when running MapReduce on top of
computation pools, one should use many small jobs (possibly
with multiple cycles) instead of few large jobs.

4. RELATED WORK
In this section we analyse and discuss the systems that we

found to be close to SCADAMAR. From all the existent In-
ternet wide computing platforms, most of them are focused
and optimized to run Bag-of-Tasks (embarrassingly parallel)
applications and thus, cannot support MapReduce applica-
tions. Nevertheless, as MapReduce’s popularity increased,
some platforms decided to use available resources over the
Internet to run MapReduce jobs. Therefore, solutions such
as SCOLARS [5], MOON [11], Tang [15] and Marozzo [7]
already support MapReduce applications.

MOON (MapReduce On Opportunistic Environments) is
an extension of Hadoop (an open source implementation of
MapReduce). MOON ports MapReduce to opportunistic
environments mainly by: i) modifying both data and task
scheduling (to support two types of nodes, stable and volatile
nodes), and ii) performing intermediate data replication. How-
ever, although MOON was designed to run MapReduce tasks
on volatile nodes, it still relies on a large set of dedicated
nodes (mainly for hosting dedicated data servers). This as-
sumption does not hold in a pure volatile computing setting

(where one could not garantee the availability of such dedi-
cated resources).

The solution presented by Tang [15] is a MapReduce im-
plementation focused on desktop grids. It was built on top
of a data management framework, Bitdew [9]. Even though
BitDew supports BitTorrent, the authors do not mentioned
it. Moreover, there is no performance evaluation with other
applications than word count and no performance evaluation
in realistic environments.

Marozzo [7] presents a solution to exploit the MapReduce
model in dynamic environments. The major drawbacks of
this solution are: i) data is distributed point-to-point (which
fails to fully utilize the node’s bandwidth), and ii) there is
no intermediate output replication.

SCOLARS (Scalable Complex Large Scale Volunteer Com-
puting) is a modified version of BOINC that supports MapRe-
duce applications and presents two contributions: i) inter-
client transfers (for intermediate data only), and ii) hash
based task validation (where only a hash of the intermedi-
ate output is validated on the central server). However, it
presents the same issues as the previous solution: only point-
to-point transfers, and no intermediate data replication.

In conclusion, all the analysed solutions present problems
that invalidate them as candidate solutions for the problem
we are addressing. Additionally, no solution showed that it
was able to fully utilize the node’s upload bandwidth, and no
solution showed that it was possible to run multiple MapRe-
duce cycles, while avoiding a bottleneck on the data server.

5. CONCLUSIONS
SCADAMAR is a new, MapReduce enabled, computing

platform. It presents a new data distribution technique for
input, intermediate and final output using the BitTorrent
protocol. Using BitTorrent, SCADAMAR is able to use
node’s upload bandwidth to help distributing data. More-
over, it presents an improved map task and data replication
scheduler and is able to efficiently run MapReduce applica-
tions with multiple cycles.

From the experiments, we conclude that SCADAMAR is
able to perform much better (performance and scalability
wise) than current platforms. Hence, with our work, it is
possible to improve MapReduce applications’ execution time
on large computation pools such as the Internet.

6. REFERENCES
[1] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman.

Superweb: towards a global web-based parallel
computing infrastructure. In Parallel Processing
Symposium, 1997. Proceedings., 11th International,
pages 100–106, 1997.

[2] D. Anderson. Boinc: a system for public-resource
computing and storage. In Grid Computing, 2004.
Proceedings. Fifth IEEE/ACM International Workshop
on, pages 4–10, 2004.

[3] A. Baratloo, M. Karaul, Z. Kedem, and P. Wijckoff.
Charlotte: Metacomputing on the web. Future
Generation Computer Systems, 15(5-6):559 – 570, 1999.

[4] A. Chakravarti, G. Baumgartner, and M. Lauria. The
organic grid: self-organizing computation on a
peer-to-peer network. Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on,
35(3):373–384, 2005.

[5] F. Costa, L. Veiga, and P. Ferreira. Internet-scale

support for map-reduce processing. Journal of Internet
Services and Applications, 4(1):1–17, 2013.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[7] D. T. Fabrizio Marozzo and P. Trunfio. Adapting
mapreduce for dynamic environments using a
peer-to-peer model, 2008.

[8] G. Fedak, C. Germain, V. Neri, and F. Cappello.
Xtremweb: a generic global computing system. In
Cluster Computing and the Grid, 2001. Proceedings.
First IEEE/ACM International Symposium on, pages
582–587, 2001.

[9] G. Fedak, H. He, and F. Cappello. Bitdew: A data
management and distribution service with
multi-protocol file transfer and metadata abstraction.
Journal of Network and Computer Applications,
32(5):961 – 975, 2009. Next Generation Content
Networks.

[10] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. Making
cloud intermediate data fault-tolerant. In Proceedings
of the 1st ACM symposium on Cloud computing, pages
181–192. ACM, 2010.

[11] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner,
and Z. Zhang. Moon: Mapreduce on opportunistic
environments. In Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing, HPDC ’10, pages 95–106, New
York, NY, USA, 2010. ACM.

[12] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao.
Cluster computing on the fly: P2p scheduling of idle
cycles in the internet. In Peer-to-Peer Systems III,
pages 227–236. Springer, 2005.

[13] L. F. Sarmenta and S. Hirano. Bayanihan: building
and studying web-based volunteer computing systems
using java. Future Generation Computer Systems,
15(5-6):675 – 686, 1999.

[14] M. Silberstein, A. Sharov, D. Geiger, and A. Schuster.
Gridbot: execution of bags of tasks in multiple grids.
In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09,
pages 11:1–11:12, New York, NY, USA, 2009. ACM.

[15] B. Tang, M. Moca, S. Chevalier, H. He, and G. Fedak.
Towards mapreduce for desktop grid computing. In
P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), 2010 International Conference on, pages
193–200, 2010.

[16] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: the condor experience.
Concurrency and Computation: Practice and
Experience, 17(2-4):323–356, 2005.

[17] T. White. Hadoop: the definitive guide. O’Reilly, 2012.

