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Abstract. Many Big Data analytics and IoT scenarios rely on fast and
non-relational storage (NoSQL) to help processing massive amounts of
data. In addition, managed runtimes (e.g. JVM) are now widely used
to support the execution of these NoSQL storage solutions, particularly
when dealing with Big Data key-value store-driven applications. The
benefits of such runtimes can however be limited by automatic memory
management, i.e., Garbage Collection (GC), which does not consider ob-
ject locality, resulting in objects that point to each other being dispersed
in memory. In the long run this may break the service-level of applica-
tions due to extra page faults and degradation of locality on system-level
memory caches. We propose, LAG1 (short for Locality-Aware G1), an
extension of modern heap layouts to promote locality between groups
of related objects. This is done with no previous application profiling
and in a way that is transparent to the programmer, without requiring
changes to existing code. The heap layout and algorithmic extensions are
implemented on top of the Garbage First (G1) garbage collector (the new
by-default collector) of the HotSpot JVM. Using the YCSB benchmark-
ing tool to benchmark HBase, a well-known and widely used Big Data
application, we show negligible overhead in frequent operations such as
the allocation of new objects, and significant improvements when access-
ing data, supported by higher hits in system-level memory structures.

Keywords: Cloud Infrastructure, Java Virtual Machine, Garbage Col-
lection, Locality-Aware, Big data

1 Introduction

Managed languages (such as Java) are gaining space as the choice to implement
Big Data processing and storage frameworks [19, 14, 10, 15], as they facilitate ap-
plication development, This is mostly due to its automated memory management
capabilities, flexible object-oriented design and quick development cycle. These
languages, and Java in particular, run on top of a runtime system (the Java Vir-
tual Machine, JVM, is one such case) that manages code execution and memory



management. Memory management is governed by the Garbage Collector (GC),
a component that controls how objects are allocated and collected. Despite the
considerable development benefits of automatic memory management, the GC
can lead to serious performance problems in Big Data applications.

In particular, some of these performance problems are caused by the fact
that the GC does not respect application’s working set locality. In fact, while
the application is running, the GC will move application objects throughout
memory, possibly separating objects that belong to the same dataset and that,
therefore, should be close to each other. This is a consequence of throughput
oriented management mechanisms implemented by the GC that, however, hinder
co-locality of related objects and the way objects are represented and placed in
memory [6, 5, 9].

Space locality is known to have a relevant impact in performance [16, 29, 10].
For example, Wilson et. al. [29] exploited the hierarchical decomposition of data
structure trees to reorganize the tracing algorithm, instead of strict depth-first
or breadth-first tracing. Dynamic profiling was also studied by Chen [6], so that
information on frequency of access is gathered and used in the placement of those
objects. Huang [11], on the other hand, showed different strategies for online
object reordering during GC, in order to improve program locality. Also, Ilham’s
work [12] shows increased locality in system-level memory structures, such as the
L1D4 cache and the dTLB5, when ordering schemes for children object placement
are accounted for, i. e., Depth-First (DF), Breath-First (BF) and Hot Depth-
First (HDF). However, these works either apply a similar approach to all objects,
which makes it difficult to tailor for storage-specify data-structures, or are hard
to scale to very large heaps given the impact of per-object profiling in execution
time. Furthermore they were not evaluated with modern parallel GC algorithms.

To reduce the impact of GC in the context of Big Data applications, others
have made extensive modifications to the way certain objects are created and
managed in special propose memory spaces, either requiring compiler and GC
modifications, or application-specific data structures [5, 17].

In this work, we are focused on large-scale key-value databases such as
HBase [1], Cassandra [14], and Oracle KVS [3]. These databases tend to hold
massive amounts of objects (key-value pairs) in memory, which end up being
scattered in memory due to poor GC techniques, that completely disregard ob-
ject locality. As the application graph grows, the number of misses and faults in
memory increase with clear negative impact on applications performance.

We propose a novel approach by enhancing GC with locality awareness. In
other words, we propose LAG1 , a modified GC which goal is to keep highly
related groups of objects (i.e., objects that have many references between each
other, for example, a data structure) close to each other in memory, leading to
improved locality. Thus, LAG1 takes takes into account object references when
moving objects in memory. LAG1 is implemented by modifying a state-of-art
GC algorithm, the Garbage First (G1), the new by-default GC for the OpenJDK

4 The first level of the CPU data cache
5 The data Translation-Lookaside-Buffer



JVM. LAG1 does not require the use of new data structures, or even changes
to existing code, thus making the solution easier to adopt in current and new
systems.

In sum, the main contributions of this paper are:

i. A tracing algorithm, designed for automatically managed heaps, to identify
highly related groups of objects.

ii. A garbage collector extension that copies highly related groups of objects
to specific memory segments.

The rest of the paper is organized as follows. Section 2 presents the main
building blocks of modern garbage collectors, and the factors that hinder local-
ity in NoSQL Big Data storages. Section 3 presents the architecture of LAG1 ,
a novel extension, for an existing GC, to co-locate object graphs in memory.
Section 4 shows the modifications made to G1, a modern parallel GC, on top
of which we built LAG1 , and heap organisation to avoid the previous problems
without modifications to the application. Section 5 presents the evaluation of
LAG1 showing its benefits, the small overheads of this solution and the benefits
at application level. Section 7 draws final conclusions.

2 Background

Many of today’s most used NoSQL databases are written in high-level lan-
guages [19], such as Java and C#. By doing so, developers rely on services
supported by these managed runtimes, in particular, automatic memory man-
agement, GC. However, GC introduces several performance issues. As already
mentioned, the lack of object locality compromises application performance; in
this paper, this is exposed in the context of NoSQL databases, and a solution
(LAG1 ) is proposed.

This section is used to further motivate for the problem and to provide suf-
ficient background for the next sections, which describe the proposed solution.

2.1 NoSQL Databases and Object Locality

Currently, NoSQL databases are a popular tool to store massive amounts of data.
Examples of these storage systems include HBase [1], Cassandra [14] and Oracle
KVS [3]. These are distributed, column-oriented NoSQL databases, whose data
model is a distributed key/value map where the key is an identifier for the row
and the value is a highly structured object.

NoSQL databases use large caches to hold hot accessed data. However, it is
a challenge for the GC to efficiently manage such large in-memory data struc-
tures. In fact, when running the YCSB benchmark framework [7] with a dataset
of 12 GB, we noticed an excessive use of page swapping resulting from poor GC
decisions that cause long application pauses (the result of this is shown in Sec-
tion 5). Previous works, such as Bu et al. with their bloat-aware design [5] have
also alerted to this problem; we believe that going a step further to co-locate



related objects achieves even better locality on system-level memory structures
to benefit the overall execution time.

As time goes by and operations are performed on top of a NoSQL database,
the GC needs to reclaim unreachable objects in order to free space for new ap-
plication objects. By doing so, the GC copies objects in memory in order to
free segments of memory. Since the GC does not account for object locality,
it copies groups of highly connected objects (i.e., objects with many references
between each other, for example, a data structure) into distant memory loca-
tions. This degrades application performance as cache locality does not hold in
these scenarios. As datasets become larger, the amount of memory consumed
by a NoSQL database grows, leading to an increased distance between highly
connected objects.

2.2 Garbage Collection Algorithms and Heap Layouts

Garbage Collection (GC) is a well-known and widely used technique to automat-
ically manage memory, i.e., programmers do not need to free objects after using
them [13]. The GC operates over a large memory space called heap. All applica-
tion objects reside in the heap, and is the job of the GC to provide memory for
new application objects and to collect memory used by unreachable application
objects.

Modern garbage collectors are generational, meaning that they follow the
assumption that most objects die young [26]. Thus, most popular GC imple-
mentations divide the heap into two generations, one that holds newly allocated
objects (the young generation) and one to hold objects that survived for at least
a number of GC cycles (the old generation).

The young generation is further divided into three spaces: eden, to and from.
The eden is used to fulfill object allocation requests while the to and from are
used to hold objects that survived at least one GC cycle and that will be even-
tually copied to the old generation.

G1 [8], the baseline of our work, is one such generational GC with a region-
based heap. A heap of this kind is split in small fixed-sized regions, instead of
strictly dividing the heap as in Figure 1 (a). This is illustrated in Figure 1 (b),
where several regions can be seen, each with its purpose. Thus, regions with an
O are old regions (abstractly they belong to the old generation); regions with an
S are survivor regions; and regions with a Y are young regions, both abstractly
belonging to the young generation. G1 also keeps a per-region remembered-set.
For each region, this set describes inter-region references between objects. Its use
is important during garbage collection to know if there are objects from survivor
or old regions that reference objects in young regions (thus allowing to collect
only young regions).

Recent GC implementations, including G1, provide two main types of GC
cycles: minor and full. A minor collection is designed to collect the young genera-
tion and to copy/promote survivor objects into the old generation. Since objects
that survive only one minor collection might not be automatically promoted into
the old generation (this is a GC configurable option), survivor spaces are used
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to hold these objects until they are old enough to be promoted. A full collection,
as the name suggests, collects the whole heap (both young and old generations).

3 Gang Promotion in Heap Management

This section presents LAG1 , a GC extension to co-locate dependent objects in
order to improve the locality in system-level memory structures. With LAG1
we introduce the concept of gang promotion to achieve this result. Also, we
introduce a new memory region definition, which manages an unique segment of
memory, called container-region.

The concept of gang promotion consists in copying live objects (in contrast
with dead objects, i.e., unused objects in the heap) in a manner where the sub-
graph of a family of objects does not intersect another sub-graph of a family of
objects. We define a family as a group of objects belonging to the same sub-
graph (for example, a data structure such as a linked list). The result is a single
segment of memory for each family of objects. These segments of memory are
container-regions.

For gang promotion to work, several challenges need to be addressed. These
challenges are the following: i) how to identify sub-graphs of highly-related ob-
jects, and ii) how to efficiently promote sub-graphs of highly related objects,
without causing overhead on the existing promotion mechanism, to a specific
memory region. The following sections explain how we tackled these challenges
in the two participating sub-systems for object management: the runtime (Sec-
tion 3.1), the system that executes the application code and allocates new ob-
jects; and the garbage collector (Section 3.2), the system that collects objects
no longer in use by the application.



Fig. 2: Bookkeeping head of an object sub-graph at instrumented allocation site

3.1 Identifying Relevant Object-Graphs

One of the challenges in gang promotion is to identify sub-graphs of highly-
related objects to co-locate, non-intrusively to the runtime sub-system. Naively,
bookkeeping every allocation call and, at a safepoint6, filter the sub-graph of
allocated objects could suffice. But for a very large number of object sub-graphs,
such as in a Big Data environment, that would largely consume system resources.

We have taken the approach of instrumenting only relevant allocation sites.
Relevant allocation sites are those that allocate objects of a type deemed to be
the head of a highly-related object sub-graph. This goes along with the fact that
the head of an object sub-graph is usually the first object to be allocated in the
system (another terminology is to refer the head of the sub-graph as the root of
a structured tree). Therefore, identifying the root is enough for LAG1 to move
the whole tree to a special memory region in a later stage. In order for LAG1 to
identify the root, the user of the program must specify what is the type of the
object that is the root. The set of types for the root objects is called LAG1-RS .
The heuristics behind the identification of the root’s type, and thus what can be
included in the LAG1-RS , is left for the user to decide.

To avoid conflicts among mutator threads, LAG1 saves identified roots on a
thread-local array shown in Figure 2. This figure shows what the instrumented
allocation site does; it queries if the class of the object being instantiated is a
LAG1-RS class and, if so, it inserts the object in the thread-local array. The
term LAG1-RS (abbreviated form of LAG1 Root Set) is the set of sub-graph
roots across all mutator threads. This step is important for the GC stage, i.e.,
when the live object-graph is moved to a survivor space.

3.2 Gang GC on a Large Heap

To correctly promote object sub-graphs identified through the mechanism pre-
sented in Section 3.1, two more challenges need to be addressed: i) avoid unreach-

6 The mechanism used in HotSpot to create Stop-the-World pauses. Garbage collection
cycles run inside a safepoint, during which all application threads are stopped.



able sub-graphs referenced by LAG1-RS ; and ii) integrate sub-graph promotion
in LAG1 with the existing promotion mechanism in G1. We address these two
challenges in the paragraphs below.

Avoid Unreachable Sub-Graphs Saving allocated heads of sub-graphs in
thread-local arrays can have adverse effects, if these references are used as roots
for tracing the remaining sub-graph at GC time. This is so because the refer-
ences may belong to objects used as temporary storage (use cases for this are
VM warm-ups, cloning data, etc.) and can become unreachable by the tracing
algorithm. LAG1 uses the LAG1-RS to create container-regions, instead of us-
ing it for tracing live objects. There is no memory region associated with newly
created container-regions, therefore obliging that the sub-graph must be reach-
able by the root-set (threads’ stacks, globals and statics) in order to have heap
space effectively assigned.

Another important aspect of LAG1 is associating the identifier of the created
container-region with each object in the LAG1-RS . With this technique, LAG1
does not lose the associative relationship between the head of a sub-graph and
the container-region that will hold the objects. It also provides a way for LAG1
to propagate this identifier to this root’s followers or children (i.e., the objects
belonging to the root’s sub-graph).

Promotion of LAG1 sub-graph The first phase of a GC cycle is to trace
from the root-set, i.e., the threads’ stack frames, the global variables and the
static variables in the system. The order of the operations is non-important
since garbage collectors are designed to be throughput-oriented during collection
phases. This policy does not conform with LAG1 policy that every object should
be located near its siblings. To avoid this, LAG1 inserts a checkpoint phase
before letting the rest of the tracing algorithm do its work. The checkpoint
phase consists on propagating the container region identifier that the LAG1-RS
created to its followers. This will associate any follower of a certain object in
the LAG1-RS with the identifier for the same container-region of the parent,
recursively. In LAG1 , this phase is called pre-marking . LAG1 also provides a
work-stealing model for parallel garbage collectors during the pre-marking phase
to speed-up computation. Although pre-marking may add additional overhead
to the GC, experiments show that heads of object sub-graphs are allocated
rarely during the application. Thus, the overhead is negligible for a long running
application.

After the pre-marking phase, the second phase of the GC, which consists
on the tracing and promotion of root-set followers, can proceed normally with
no constraints. LAG1 no longer intervenes on the GC phases until it sees a live
object associated with a container-region and targeted for promotion to a tenured
space. For these objects, it targets its destination space to the container-region
instead of the default old region. Since container-regions are on the same space
as the old regions, LAG1 complies with the object age while still providing a
target space next to its siblings of “tenured” age in a transparent manner.



Figure 3 shows a rundown of the operations executed as part of gang pro-
motion. In Figure 3 (a), a GC Thread is shown accessing the thread-local array
of a mutator thread, which previously saved obj1 and obj2. The thread then
fetches the obj1 reference, creates a new container-region with an unique iden-
tifier and propagates this identifier to the siblings of obj1. Figure 3 (b), on the
other hand, shows the promotion step. It illustrates a regular object obj0 being
promoted, with no need to check if it has any container-id association (in the
pre-marking phase, LAG1-RS objects and its siblings were associated with their
container-region). But, since obj1 has an association with a container-region
it goes through a different condition. Therefore, obj1 is copied to the memory
region of its container-region if it is old enough.

(a) pre-marking phase

(b) Promotion of pre-marked LAG1 object

Fig. 3: A rundown of the operations executed for gang promotion



4 Deployment of gang promotion on Hotspot JVM

LAG1 is implemented on OpenJDK 8 HotSpot JVM. The OpenJDK HotSpot
JVM [2] is the state-of-the-art Java virtual machine used in most Java deploy-
ments. It is a highly portable and highly optimized virtual execution environ-
ment for Java-bytecode based languages (Java, Scala, Clojure, etc.). The new
by-default garbage collector is the Garbage First (G1) GC [8], a low-pause col-
lector, with a soft real-time pause guarantee, while still achieving high through-
put. G1 is the baseline garbage collector of this work’s prototype, thus we take
advantage of some of its features such as: the generational heap space and its
region-based division of the heap, meaning that the heap space is split into small
fixed-sized regions.

In this section we describe our modifications to the Java runtime sub-system
of HotSpot JVM (Section 4.1) and how we modified G1 to implement LAG1
(Section 4.2).

4.1 Java Runtime Instrumentation

In our prototype, we tackled the problem of identifying relevant object sub-
graphs (Section 3.1) in the Java runtime. The Java runtime sub-system of HotSpot
is divided into three components: i) the assembly interpreter, ii) a lightly opti-
mizing bytecode compiler (C1), iii) a highly optimizing bytecode compiler (C2).
C1 is better suited for client-machine applications, thus we disregarded its ap-
plication. We only considered the assembly interpreter and C2, the latter for
methods with high invocation count.

Instrumentation for LAG1 was tackled on the allocation site of the root of a
relevant object sub-graph (e.g., a data structure). Relevant object types are left
for the user to decide, using a command line option. For example, if the relevant
object sub-graph is a LinkedList structure, the user should specify the full
qualified class name (i.e., java.util.LinkedList). Since class loading is prior
to object allocation for any given type, we first register the user-specified class to
be LAG1-RS by placing a bit on the virtual machine class-representation. Thus,
during allocation, all we do is a fast check for the bit on the class to be installed
on the object. If it is present, then we add the object address to a thread-local
indexed array. This requires only three operations at assembly-level, a compare
(for the presence of the bit in the class), a load (to load the object address in
the thread-local array) and an increment (to increment the thread-local array
index).

4.2 LAG1 — Locality-aware extension of G1

To implement container-regions, LAG1 takes advantage of the regionalized ar-
chitecture of the heap that G1 already provides. Since old regions (G1 heap
regions belonging to the old generation) are already present in G1, container-
regions are specialized old regions. The reason for this decision is that LAG1



handles large object sub-graphs, preferably long-lived, thus it would be imprac-
ticable to use the young generation regions.

During minor GC (a GC that collects only the young regions), before the
tracing of the reachable live object graph is initiated, LAG1 checks if there are
saved references in the LAG1-RS . If there are references, the pre-marking phase
is initiated. The pre-marking phase comprises both creating container-regions
for LAG1-RS objects and propagating the container-region identifier to its fol-
lowers. This identifier is simply an integer to index the container-region array.
Additionally, pre-marking also includes tagging relevant objects. The identifier
integer and tag bit are installed on unused bits in the header, such as illustrated
in Figure 4, where it shows the pre-marking of an object header. In Figure 4
some lower-level details are shown, regarding the header of a Java object, with
the important bits in the tag-bit (an unused bit in the HotSpot JVM, which we
use to mark a LAG1-RS object and its sub-graph) and in the container-region
identifier.

0x000001

Container Region ID

Identity-Hash 1

Tag Bit

Age

Biased-lock Lock

0816243240485664
bits

Fig. 4: The pre-marking phase tagging an object with a container region identifier

While implementing LAG1 , we took into consideration that may exist LAG1-
RS objects already promoted in a previous GC. This means that may exist new
objects (allocated since the last GC), children of a LAG1-RS object already
promoted in an earlier stage. To mark these newly allocated objects with the
container-region identifier, we intercepted the remembered-set operations of G1
(also called old-to-young on other garbage collectors [9]) and added one more
instruction to install the identifier of the referent (the parent in an older gener-
ation) on the follower in the young generation. Therefore, there is no possibility
of losing the follower to another space by not being pre-marked in time, because
the remembered-set operations are always executed before the promotion of the
followers. Another favorable aspect of this approach is that it no longer requires
a checkpoint barrier before regular tracing, such as explained in Section 3.2.

The last stage for LAG1 is to promote (i.e., copy) objects according to the
container-region identifier. Since G1 already checks the object’s age to decide if
it should promote to a survivor region or to an old region, LAG1 only adds an
additional check. The check consists on looking at the object header and see if
it has a container region identifier installed. It is a fast bit mask operation, so
no overhead is inflicted.



5 Evaluation

To evaluate LAG1 , we considered the fact that hot object sizes in Java are as
big as L17 and L28 cache line sizes, and thus very few of them fit in those
caches. Therefore, our experiments consisted in observing the virtual mem-
ory performance, more specifically the dTLB (CPU-level) and the page-table
(Kernel-level) system structures. Also, we evaluated our modifications to the
OpenJDK 8 HotSpot JVM, in the form of the application throughput. The next
sections present the setup we used (Section 5.1), the program locality achieved
with our solution (Section 5.2), and the high-level behaviour of the application
(Section 5.3).

5.1 Evaluation Setup

Experimental runs were executed on a 4-core machine with 8 logical cores, 3
levels of cache with a 8MB L3 and 16GB of memory, running a 64-bit Linux
4.4.0 kernel. To test the locality effects in system-level memory structures, such
as the dTLB and page-table, we resorted to performance monitoring counters in
the Linux tools package9. The target of our experiments was HBase [1], a widely
used large-scale data store for Big Data processing, using YCSB [7] as a client
application. YCSB is a highly configurable cloud benchmarking tool, widely
used to benchmark large-scale data stores. The following paragraphs present the
configurations we used on YCSB to benchmark HBase running our modified
JVM.

YCSB can be configured with a large number of parameters, including: num-
ber of operations, number of records to load on the data store, the ratio of opera-
tions for each action (insert, update, read, scan) and the size of each record. The
size of each record was fixed to 1KB for all experiments. Also, the number of op-
erations to perform on the data was also fixed to 1∗105. On the other hand, the
number of records to load and the ratio of operations was varied. Since the JVM
was configured to have a maximum size of 12GB for the Java heap, the number
of records (load) used was: i) 6GB, ii) 8GB, iii) 10GB and iv) 12GB. For this
evaluation, the configuration for YCSB consisted of two workloads with memory
loading characteristics: i) a read-intensive (RI) workload and ii) a scan-intensive
(SI) workload. The detailed characteristics of each workload is described below.

Workload RI 70% of reads, 25% of scans and 5% of updates

Workload SI 25% of reads, 70% of scans and 5% of updates

7 L1 is the 1st level of CPU cache: 32KB in size and 64B per line in modern models
8 L2 is the 2nd level of CPU cache: 256KB in size and 64B per line in modern models
9 http://linux.die.net/man/1/perf
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Fig. 5: Locality on system-level memory structures

5.2 Program Locality in System

In this section we show the improvements that our solution has in system-level
memory structures. The focus is given to the dTLB and the page-table, because
Big Data Java applications (which handle large sub-graphs of objects) will not
see a big improvement in CPU caches given their size.

Key-value stores, such as HBase [1], usually use multi-level map where, given
a table name, a row name and a field name, a value can be inserted, read or
updated [19]:

map <table-name, map<row-key, sortedmap<field-key, data>>> (1)

With LAG1 we expect that the field-keys and the actual data, represented in
Equation (1), be closer in memory. Figure 5 shows the results obtained, for each
pair <size of data-set>-<workload type>, where the bars for Base refer to
the baseline JVM and LAG1 our modified JVM. We begin our analysis with
the observation that, the first step in virtual-memory address translation will
start with: a dTLB load, then a page-table query (if the dTLB load misses) and
then, if the requested address is not in the page-table, a page-fault is issued.
Figure 5 (a) shows that the dTLB misses per second is stable for workloads that
do not cause pressure in the heap, i.e., 6GB and 8GB of dataset size. Therefore,
variations in the page-table, shown in Figure 5 (b), are mostly related to external
factors (e.g., OS virtual-memory policies, GC, etc.).

However, as the size of the dataset — workloads of 10GB and 12GB of
dataset size — gets closer to the Java heap size (12GB), we begin to see the
dTLB is stressing. That means the dTLB cache no longer has the capability
of saving that many translated virtual-memory addresses to physical addresses,
thus this mechanism no longer becomes important. The responsibility is passed



to the page-table, where the OS will do a page-walk10. At this point, we see
that with LAG1 the page-table hit-ratio, shown in Figure 5 (b), is increased
in comparison with the baseline JVM. This is more evident in read-intensive
(RI) than scan-intensive (SI) workloads, because scan-intensive workloads read
multiple values sequentially. And, as referred previously, Java objects may be
large in size, when compared with system-level memory structures, thus spanning
multiple page entries (and consequently, multiple dTLB entries). The test with
12GB of dataset size and a scan-intensive workload (12g-workloadsi) is the only
that does not follow the pattern, but that is because it already has low dTLB-
misses as shown in Figure 5 (a).

5.3 Application Behaviour

In this section, we present the results for the application throughput when run-
ning HBase with LAG1 . The results are from the timeseries output of YCSB,
which ran 100 000 (100k) operations on an HBase instance with a load of 6GB,
8GB, 10GB and 12GB records. We first ran a warm-up phase over the entries,
therefore all results are the best obtained across 3 tests, in the percentile shown.
The workloads were the same as in Section 5.1.

Figures 6 and 7 show the comparison of throughput between LAG1 and
the baseline JVM. It can be observed that, although LAG1 added complexity
to the baseline JVM, for all tests it did not influence throughput significantly
(and in some cases, nothing at all). We believe that this is a positive result,
because improvements in program locality outweigh the added complexity, and
that future research could benefit from focusing on program locality aspects.

6 Related work

Research in automatic memory management has proven that there is no unique
solution that fits all classes of applications. The best choice of GC is, in many
cases, application and input-dependent [25, 24]. This has spanned a vast col-
lection of algorithms, in many cases combinations of older ones, which can be
stacked with application-specific profiles [23].

Parallel, stop-the-world algorithms have been making a successful entry in
the field of big-data applications, since they can efficiently collect a whole heap
within shorter pauses and do not require constant synchronization with the mu-
tator, as it is the case with concurrent collection [9]. However, Java-supported
Big Data applications in general, and storage in particular, stress the GC with
lack of locality in large heaps and bloat of objects. This is mainly tackled using
three kinds of approaches [17, 5, 15]: i) avoiding per-object headers and impos-
ing new memory organizations at the framework-level, ii) speeding-up garbage
collection by identifying objects that are created and destroyed together and,

10 A page-walk consists on querying page-table entries, to see if the address the CPU
is trying to load is present in physical memory
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Fig. 6: Throughput on HBase with Workload RI for a variety of datasets

iii) coordinating the stop-the-world moment in inter-dependent JVM instances.
Because most works focus on reducing overheads by dramatically changing the
layout of objects and out-of-heap specially crafted structures, these solutions
need changes both to the compiler and the GC system or rely on complex static
analysis which is hard to prove correct and complete.

Facade [17] is a compiler and augmented runtime that reduces the number
of objects in the heap by separating data (fields) from control (methods) and
putting data in an off-heap structure without the need to maintain the bloat-
causing header. Hyracks [5] is a graph processing framework that also uses a
scheme where small objects are collapsed into special-purpose data structures.
Because this is done at the framework-level, and not at the JVM-level, it is
difficult to reuse the approach. Overhead can also be caused by GC operations
running uncoordinated inter-dependent JVM instances [15]. When each of these
instances needs to collect unreachable objects, if it does so regardless of each
other; this can lead to significant pause times.

On the other hand, previous work about object ordering schemes [16, 6, 11]
have shown that taking advantage of placement strategies, can increase locality
in system-level memory structures and achieve better performance, especially
when using guided techniques for optimal object placement. However, current
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Fig. 7: Throughput on HBase with Workload SI for a variety of datasets

approaches rely either on static analysis of fine-tuned dynamic profiling to avoid
an excessive overhead. Instead, LAG1 only relies on the user to specify the class
of objects that hold the data, since it is already a low overhead solution.

NG2C [4] is a new GC algorithm that combines pretenuring with user-defined
dynamic generations. It allocates objects with similar lifetime profiles in the
same generation; by allocating such objects close to each other, i.e. in the same
generation, it avoids object promotion (copying between generations) and heap
fragmentation (which leads to heap compactions) both responsible for most of
the duration of HotSpot GC pause times. Compared to LAG1 , NG2C takes
another approach to the issue of object locality, which may result in objects
that point to each other being dispersed in memory. In the long run, contrary
to LAG1 , this may lead to extra page faults and degradation of locality on
system-level memory caches.

7 Conclusion

Several Big Data frameworks and storages are executed on a managed runtimes,
taking advantage of parallel garbage collection and Just-In-Time (JIT) compila-
tion. However, modern parallel memory management and throughput-oriented



techniques can hinder locality. Our approach was to promote objects’ co-locality
which minimizes the number of memory pages used, taking more advantage of
system-level data and translation caches. This was done with an extension to the
Garbage First (G1) GC promotion mechanism and algorithmic modifications to
the runtime system, which we named LAG1 .

The results provide positive conclusions on the use of LAG1 on state-of-
the-art JVM, the OpenJDK 8 HotSpot. First, we showed that the promotion
efforts to co-locate highly-related object sub-graphs favourably increase page-
table hits with real world executions. This is evident in large datasets with
demanding workloads for the available memory, a common practice today. Sec-
ond, we demonstrated that program locality outweighs added complexity on the
runtime system with locality-aware policies. This was demonstrated with stable
throughput across a variety of workloads and dataset sizes.

In the future, we would like to assess how the improvements provided by
LAG1 can also enhance performance transversally to other work on Java VM-
based mechanisms and middleware, whose operation is also heavily dependent
on object graph locality and on performing graph transversals, e.g., object repli-
cation [27, 28], checkpoint and replay, [21, 20], and dynamic software update [18].

Finally, although RAM memory is cheaper nowadays, the dataset sizes are
growing faster than the available memory in cloud systems. Vendors cannot al-
ways comply with the agreed SLAs, because of the chaotic layout of objects in
memory, when the latter is under pressure. It is our belief that given our results,
future research could be more focused on program locality aspects. On the other
hand, we are also focused on future work, including the evaluation with more
specialized hardware, such as NUMA architectures, on larger datasets.
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15. Maas, M., Asanović, K., Harris, T., Kubiatowicz, J.: Taurus: A holistic language
runtime system for coordinating distributed managed-language applications. In:
Proceedings of the Twenty-First International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. pp. 457–471. ASPLOS
’16, ACM, New York, NY, USA (2016)

16. Moon, D.A.: Garbage collection in a large lisp system. In: Proceedings of the 1984
ACM Symposium on LISP and Functional Programming. pp. 235–246. ACM, New
York, NY, USA (1984)

17. Nguyen, K., Wang, K., Bu, Y., Fang, L., Hu, J., Xu, G.H.: FACADE: A compiler
and runtime for (almost) object-bounded big data applications. In: ASPLOS. pp.
675–690. ACM (2015)

18. Pina, L., Veiga, L., Hicks, M.W.: Rubah: DSU for java on a stock JVM. In: Black,
A.P., Millstein, T.D. (eds.) Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications, OOPSLA
2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014. pp. 103–119.
ACM (2014), http://doi.acm.org/10.1145/2660193.2660220

19. Redmond, E., Wilson, J.R.: Seven Databases in Seven Weeks: A Guide to Modern
Databases and the NoSQL Movement. Pragmatic Bookshelf (2012)

20. Silva, J.M., Simão, J., Veiga, L.: Ditto - deterministic execution replayability-
as-a-service for java vm on multiprocessors. In: Eyers, D.M., Schwan, K. (eds.)



Middleware. Lecture Notes in Computer Science, vol. 8275, pp. 405–424. Springer
(2013)

21. Simão, J., Garrochinho, T., Veiga, L.: A checkpointing-enabled and resource-aware
java virtual machine for efficient and robust e-science applications in grid environ-
ments. Concurrency and Computation: Practice and Experience 24(13), 1421–1442
(2012), https://doi.org/10.1002/cpe.1879

22. Simão, J., Veiga, L.: Adaptability driven by quality of execution in high level virtual
machines for shared cloud environments. Comput. Syst. Sci. Eng. 28(6) (2013)

23. Singer, J., Brown, G., Watson, I., Cavazos, J.: Intelligent selection of application-
specific garbage collectors. In: Proceedings of the 6th international symposium on
Memory management. pp. 91–102. ACM (2007)

24. Soman, S., Krintz, C.: Application-specific garbage collection. J. Syst. Softw. 80,
1037–1056 (July 2007), http://dx.doi.org/10.1016/j.jss.2006.12.566

25. Tay, Y.C., Zong, X., He, X.: An equation-based heap sizing rule. Performance
Evaluation 70(11), 948–964 (Nov 2013)

26. Ungar, D.: Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. ACM Sigplan Notices 19(5), 157–167 (1984)

27. Veiga, L., Ferreira, P.: Incremental replication for mobility support in OBIWAN.
In: ICDCS. pp. 249–256 (2002), https://doi.org/10.1109/ICDCS.2002.1022262

28. Veiga, L., Ferreira, P.: Poliper: policies for mobile and pervasive environ-
ments. In: Kon, F., Costa, F.M., Wang, N., Cerqueira, R. (eds.) Proceed-
ings of the 3rd Workshop on Adaptive and Reflective Middleware, ARM
2003, Toronto, Ontario, Canada, October 19, 2004. pp. 238–243. ACM (2004),
http://doi.acm.org/10.1145/1028613.1028623

29. Wilson, P.R., Lam, M.S., Moher, T.G.: Effective static-graph reorganization to
improve locality in garbage-collected systems. SIGPLAN Not. 26(6), 177–191 (May
1991)


