
NG2C: N-Generational GC for Big Data Memory Management

Rodrigo Bruno, Paulo Ferreira
INESC-ID / Instituto Superior Técnico, University of Lisbon

{rodrigo.bruno,paulo.ferreira}@inesc-id.pt

The widely accepted empirical rule that states that most ob-
jects die young is currently used for designing Garbage Col-
lection (GC) algorithms which run on most platforms. How-
ever, this rule is not suited for a wide class of Big Data sys-
tems. First, systems designed for storage (eg. Cassandra
and Tachyon) maintain frequently accessed data in memory
(caches), and the objects representing such data tend to be
reachable (live) for a long time (from the GC point of view).
Second, systems that allocate memory very fast will trigger
minor collections within a short interval, making recently al-
located objects (that live for a short period of time) to be pro-
moted to the old generation (instead of being collected in a
minor collection). Examples of such systems are distributed
processing systems (eg. Spark, Hadoop) that can have dozens
or even hundreds of parallel tasks being processed in a single
process.

This mismatch between the objects’ real life-cycle timings
and the GC assumptions has serious consequences for mem-
ory management in Big Data applications since such applica-
tions work with large amounts of data in memory: i) minor
collection pauses increase as the amount of objects to pro-
mote increase, and ii) as more objects get promoted into the
old generation, the risk of incurring into a full collection in-
creases as well. This results in increased application over-
head, including significant application pause times, which can
be harmful for Service Level Agreements (SLAs).

With NG2C we want to be able to control how the GC han-
dles the data inside a Big Data application in order to: i) min-
imize the number of objects that get promoted into the old
generation (thus reducing the pause times associated to mi-
nor collections) by avoiding doing that for objects that will
effectively die later, and ii) selectively collect objects in the
old generation (to avoid reaching limit scenarios when a full
collection is necessary) given that they were erroneously pro-
moted to old according to their true life-cycle timings.

This goal cannot be attained easily by tweaking the heap or
GC parameters; it needs a more fundamental approach. For
example, simply increasing the size of the young generation
might result in a bigger time interval between minor collec-
tions and thus result in less live objects to promote; however,
increasing the young generation size is dangerous because it
can easily lead to high pause times if the number of live ob-
jects to promote is also high (for example due to a workload
shift). This gets even worse if we increase the number of par-
allel working tasks in the local process since memory gets
allocated faster.

There are several solutions for dealing with high volumes
of data while avoiding the GC overhead. These typically em-

ploy off-heap memory (i.e. allocate memory for the applica-
tion outside the GC-managed heap). While this is an inter-
esting approach to allocate and keep data out of the range of
the GC, it has several important drawbacks: i) off-heap data
needs to be serialized to be saved in off-heap memory and
deserialized before being used by the application (this obvi-
ously has some performance overhead); ii) off-heap memory
must be explicitly collected by the programmer (which is er-
ror prone and completely ignores the advantages of running
inside a memory managed environment).

Our solution is based on the idea that developers know and
understand the objects’ life-cycle much better than the GC.
This comes from the fact that, in most Big Data applications,
there are clearly defined stages which limit the reachability of
objects. For example, a memory cache flush or the end of a
computation task clearly limits the life time of all the objects
created for these specific stages. By taking advantage of this
knowledge, it is possible to improve the cooperation between
the developer and the GC, resulting in better GC decisions,
leading to less performance overhead.

Therefore, in NG2C, we propose to extend the current GC
design of two generations (young and old) to an arbitrary
number of generations, each holding objects with similar life
times. The programmer is able to create new generations and
to allocate objects directly in each generation. When most
of the objects inside a generation are expected to be dead,
the programmer asks the GC to collect a specific generation.
With this solution, we avoid costly minor collections since
objects are allocated directly in a specific generation (accord-
ing to theirs expected life-cycle) and also avoid full collec-
tions since each generation can be collected separately.

Following the previous example, when using a cache, the
programmer would allocate all objects associated to a specific
cache in a particular generation and only when the cache is
flushed, the programmer asks the GC to collect that specific
generation (which will contain mostly dead objects). Sim-
ilarly, for the other example (processing tasks), all objects
related to a task or group of tasks would be allocated in a
specific generation which would be collected when the task is
finished.

NG2C is being implemented in the OpenJDK 8 Hotspot
Java Virtual Machine. We also extended the JDK to include
methods for creating and deleting memory generations. Pre-
liminary results are encouraging as we are able to achieve
both goals: i) avoid (erroneous) object promotion, and ii)
avoid (lengthy) full collections. The next step is to modify ex-
isting Big Data applications to take advantage of NG2C and
measure the obtained performance.


