
SPL: An access control language for security policies with complex constraints

Carlos Ribeiro, Andr´e Zúquete, Paulo Ferreira and Paulo Guedes

IST / INESC Portugal
E-mail: fCarlos.Ribeiro,Andre.Zuquete,Paulo.Ferreira,Paulo.Guedesg@inesc.pt

Abstract

Most organizations use several security policies to con-
trol different systems and data, comprising in this way a
global complex policy. These security policies are often
scattered over different environments, each one with its
own security model, making them difficult to administer
and understand. Moreover, some applications (e.g. work-
flow), often need to cross several of these security domains
and satisfy each one of their policies, which is very diffi-
cult to accomplish when these policies are scattered over
the organization, in conflict with each other and frequently
expressed in different models.

This work presents a security policy language that al-
lows organizations to express and keep their global se-
curity policies in one single description. Although flexible
enough to express simultaneously several types of complex
security policies, this language can be easily implemented
by an event monitor.

The proposed language can express the concepts of per-
mission and prohibition, and some restricted forms of
obligation. We show how to express and implement obli-
gation using the transaction concept, and how to use obli-
gation to express information flow policies together with
other complex security policies. We also address the prob-
lem of conflicting policies and show how to efficiently
enforce the security policies expressed by the language
with a security event monitor, including history-based and
obligation-based security policies.

1. Introduction

Over the years, several access control policies have been
proposed in the literature. Although these policies cover
many different situations and data types, they are often
considered in isolation, which is not suitable for organi-
zations with complex structures and several data types,
which requires the simultaneous use of different access
control policies. Moreover, policies are scattered over
different environments, which makes understanding and

managing of global policies of organizations much more
difficult.

The cooperation between MAC (Mandatory Access
Control) and DAC (Discretionary Access Control) poli-
cies to achieve DAC flexibility and MAC resistance to
Trojan Horse attacks, is one of the earliest examples of
cooperation between policies. However, there are many
other useful forms of cooperation between policies with
different objectives.

For instance, an organization may wish to give to each
employee the control over the documents they produce
but, for payment orders, the organization may want to
deny the right to approve them to those who have written
the payment orders. This can be accomplished by a DAC
policy combined with a simple separation of duty policy.

Another organization may wish to have a very loose pol-
icy on most of its departments, in which only a few actions
are forbidden, but in one of them have a very strict policy
in which only a few actions are allowed. This is a combi-
nation of an open policy with a closed one.

Unfortunately, it is not possible to predict which com-
binations are going to be useful on every situation or even
the policies that are going to be needed.

Lately there has been a considerable interest in environ-
ments that support multiple and complex access control
policies, [3, 4, 11, 12, 19, 22, 24, 27, 39]. Our work fol-
lows that path and tries to progress in terms of expressive-
ness and functionality.

This paper defines a security policy language (SPL),
which is flexible enough to express simultaneously sev-
eral types of complex authorization policies, and never-
theless is constructed with simple elements that can easily
be implemented by a security event monitor.

The main goal of SPL is the definition and enforcement
of authorization policies. Although recently has been
given considerable interest to the joint definition of both
authorization and authentication policies within the con-
cept oftrust management [7, 8] we believe there are con-
siderable gains in keeping both policies apart. Not only
because of the simplicity of dealing with each problem
in turn but also because the granularity of authentication

needs is usually coarser than the one of authorization, i.e.
a user request is often composed of several actions and
while each action needs to be authorized, usually only the
user request needs to be authenticated.

One of the problems of putting together several policies
on the same environment is the conflict that arises from
contradictory decisions produced by the different policies.
SPL solves this problem by forcing security managers to
take priority decisions on every policy composition.

Most multi-policy environments support several forms
of discretionary and mandatory access control policies si-
multaneously. Some support roles and history-based poli-
cies like the Chinese wall policy and several other forms
of separation of duty. However, to our knowledge, none
allows the combination of general information flow poli-
cies with other policies. In this paper, we present an infor-
mation flow policy expressed in SPL, which can not only
coexist with other policies but makes use of them. This
is achieved through a different type of rule that comprises
the obligation concept.

The obligation concept is a very powerful concept to
express security policies however it is very difficult to en-
force within a security monitor. We show that by using
the transaction concept, an access control service based in
SPL may enforce some forms of obligation.

We also show how to efficiently implement both obliga-
tion and history-based policies, by building an SPL com-
piler which is able to optimize the information necessary
to implement those policies.

The remainder of the paper is organized as follows. Sec-
tion 2 presents SPL structure and basic blocks (rules, en-
tities, sets and policies). Section 3 shows how to express
three special types of constraints: history, obligation and
invariant constraints. Section 4 shows some policy exam-
ples, including an information flow policy. Section 5 dis-
cusses implementation notes and shows performance re-
sults. Section 6 discusses related work. Finally, in section
7 we conclude the paper.

2. SPL Structure & Basic Blocks

SPL is a policy-oriented constraint-based language. It
is composed of four basic blocks: entities, sets, rules and
policies. The fundamental block of the language is the
rule. Rules express constraints in terms of relations be-
tween entities and sets. Policies are complex constraints
that result from the composition of rules and sets into log-
ical units. Policies can also be composed into more com-
plex policies until it forms a global and single policy.

Policies are a key concept of SPL, they provide the
structure needed to build complex access control models
(e.g. RBAC, DAC, TRBAC). In fact SPL goes beyond the
simple enumeration of rules. It allows for the association
of rules and sets into policies comprising the logical units

of the desired model (see section 4.3).
SPL is therefore model independent but not model less,

it allows for the definition of complex RBAC models with
parameterized roles [20, 26] and complex role constraints.
It also allows for the definition of several forms of multi-
level security [1] and relaxed forms of information flow
security.

In this section we present in detail each of the basic
blocks comprising SPL and show how they are used in
writing SPL security policies.

2.1. Entities

SPL entities are typed objects with an explicit interface
by which their properties can be queried. Entities can be
internal or external to the security service. Queries on the
interface of external entities are translated into method or
function calls on the objects or services of those entities.
Ideally, these queries should not have secondary effects.
In practice, this can only be assured by the security service
if each of those methods and functions has been verified
and annotated as stateless.

Querying external entities is not usually considered safe
in security services, due to the covert channels that may
result. For instance, an unclassified user can become
aware of classified data by executing an action whose ac-
ceptability depends on that data and verifying if the ac-
tion fails or not. Nevertheless, this technique is essen-
tial to achieve the flexibility and expressiveness necessary
to some systems and applications [16]. To minimize the
risk, a SPL policy should be verified before being imple-
mented, to assure that every operation which depends on
properties of external entities is allowed only if the query
of those properties is allowed. However, it should be noted
that this does not prevent implicit flow [13], or time chan-
nels.

Some of the entities manipulated by SPL are internal
to SPL, like sets and policies, but most are external, like
users, files, and events. The properties of each external en-
tity depends heavily on the platform that implements those
entities. For example, a user may have just the properties
name and home-host, or he can have those and a clearance
level, a signature ID and many others. This means that
SPL does not restrict the properties of entities to a fixed
set, instead it takes advantage of every property available
to increase the power of policies.

On many SPL target platforms, the SPL entity set may
form a polymorphic hierarchy, where each entity is a spe-
cialization of some other entity. In Figure 1, it is shown
the entity type hierarchy used in the examples of the next
sections. On the root of this hierarchy is the “object” en-
tity type. The remaining entity types are defined by spe-
cialization of this base type.

type object f
string name; // The name of the object
user owner; // The owner of the object
string type; // A string identifying the type
object set groups;// The sets containing the object
string homeHost; // The host where the user

g // is defined

type user extends object f
rule set userPolicy; // User private policies

g
type operation extends object f
number ID; // operation Id

g
type event extends object f
user author; // The author of the event
object target; // The target of the event
operation action; // The performed action
object set parameter;// The set of parameters
number time; // The time instant
object task; // The task to which the event

g // belongs to

Figure 1. Example of an entity type hierarchy
definition.

2.2. Sets

Entities can be classified into sets. Sets are essential in
any policy considering that they provide the necessary ab-
straction to achieve compactness, generalization and scal-
ability. Without sets, each rule had to be repeated for each
entity to which the rule applies.

external string localhost; // An external entity
external user set AllUsers; // All the users

// in the system
external object set AllObjects; // All the objects
external operation set AllActions; // All the actions
external event set AllEvents; // All the events,

// past and future

Figure 2. Examples of external entities and
sets.

Sets, like any other entity, may be internal or exter-
nal. Some external sets are very useful to the definition
of policies. For instance the sets of all users and all ob-
jects known to the system (Figure 2).

SPL supports two types of sets: groups and categories.
Categories are sets defined by classification of entities ac-
cording to their properties e.g. all users logged in machine
A, and groups are sets defined by explicit insertion and re-
moval of their elements. Insertion and removal of mem-
bers into a group can only be done by external events since
SPL should not perform operations on external or internal
entities that result in changes of state. Both categories and
groups are declared as sets, but are instantiated differently.

Categories are defined by restricting the elements of
other sets to the ones with particular properties. This is
done by the SPL restriction operator (myset@f logical-

// Example of use of the restriction operator
// A category of all users that are defined locally
user set localUsers =

AllUsers@f.homeHost = localhost g;

// A group defined as empty
user set ActiveGroup = fg;

Figure 3.Example of a category and a group.

expression g), which is a polymorphic operator that can
be used on any type of set or rule (Figure 3)(see also sec-
tion 2.3, for restriction on rules). The restriction operator
has two operands, one is the set that it wants to restrict,
and the other is a logical expression that must be satisfied
by the elements in the set in order to belong to the re-
stricted set. The logical expression uses properties of the
elements in the set to define which members are selected.
These properties are written with a dot before the name.

SPL defines five more set operators: the index opera-
tor (myset[nth]), which applied to a set returns the nth
element of the set; the membership operator (element IN
myset); the cardinal operator (#myset) that returns the
number of elements in a set; the join operator (myset1 +
myset2); and the meet operator (myset1 �myset2).

2.3. Constraint rules

SPL is a constraint-based language. Constraint lan-
guages are widely used to express systems, plans [38] or
access control policies [4].

The language is composed of individual rules, which
are logical expressions that can take three values: “allow”,
“deny”, and “notapply”. Their goal is to decide on the ac-
ceptability of each event under the control of the access
control service that implements the language. To make
this decision, rules have an implicit parameter that repre-
sents the event upon which the rule is deciding. Because
this event is usually the current event, it is referred as “ce”.

A rule can be simple or composed. A simple rule is
comprised of two logical binary expressions, one to estab-
lish the domain of applicability and another to decide on
the acceptability of the event.

[label :] domain-expression :: decide-expression

Figure 4.Syntax of a simple SPL rule.

The SPL syntax for a simple rule (Figure 4) has two
parts: an optional label; and two logic expressions sepa-
rated by a special marker (’::’), representing the domain-
expression and the decide-expression respectively.

The domain and decide expressions are simple binary
expressions with the logic operators ’&’, ’ j’ and ’�’,

respectively for the conjunction, disjunction and nega-
tion, the equality/inequality operators ’=’, ’! =’, ’<’, ’>’,
’>=’, ’=<’, and the special values “true” and “false”.

The domain-decide construction should not be confused
with a simple binary implication. If a binary implica-
tion was used, every rule would be implicitly open, i.e.
it would allow every event not in the domain, which is
contrary to SPL design principle of being a model inde-
pendent language.

// Every event on an object owned by the
// author of the event is allowed
OwnerRule: ce.target.owner = ce.author :: true;

// Payment order approvals cannot be done
// by the owner of payment order
DutySep: ce.target.type = "paymentOrder" &

ce.action.name = "approve"
:: ce.author != ce.target.owner;

Figure 5.Simple rule examples.

Figure 5, shows two simple rules, labeled ’OwnerRule’
and ’DutySep’ respectively. The first one states that events
acting on a target object owned by the author of the event
(ce.target.owner = ce.author) is always allowed (decide-
expression always true). The second rule states that pay-
ment order approvals are only allowed if the author is not
the owner of the payment order.

The domain-decide type of construction described
above is simple, yet it is more powerful than the permis-
sion and prohibition construction [23], in which each rule
is exclusively a permission or a prohibition. A permis-
sion/prohibition rule just identifies the events that are al-
lowed/denied from others. It cannot identify simultane-
ously the events that are allowed, the events that are de-
nied, and the events that are not allowed or denied. More-
over, a permission or a prohibition can be expressed quite
simply with the domain-decide construction by making
the decide-expression true or false, respectively, for every
event where the domain-expression is true.

� � � AND � � OR� NOT�

Allow Allow Allow Allow Deny
Deny Allow Deny Allow Allow

NotApply � � � NotApply
Allow Deny Deny Allow
Deny Deny Deny Deny
� NotApply � �

Table 1. Tri-value algebra operations definition:
AND, OR and NOT. � stands for a variable
which can assume any value.

A rule can be composed of other rules through a spe-
cific tri-value algebra with three logic operators: conjunc-

tion (’AND’); disjunction (’OR’); and negation (’NOT’).
These operators behave as their binary homonyms if the
“notapply” value is not used (with the “allow” and “deny”
being equal to “true” and “false”, respectively). The pri-
mary characteristic of this logic is that the “notapply”
value is the neutral element of every operation (Table 1).

// Implicit deny rule.
deny: true :: false;

// Simple rule conjunction, with default deny value
OwnerRule AND DutySep OR deny;

// DutySep has a higher priority then OwnerRule
DutySep OR (DutySep AND OwnerRule);

Figure 6. Composing rules with a tri-value alge-
bra.

This tri-value logic allows some interesting constructs
for access control expressiveness. For instance, a de-
fault value can be expressed by a special rule in which
the domain-expression is always true and the decide-
expression is true or false depending on the default value
being “allow” or “deny”(Figure 6). Another interesting
construction presented in Figure 6, shows how to express
priorities between rules. The result of the composition is
the result of the “DutySep” rule, except when this rule is
not applicable, in which case the result is equal to the re-
sult of “OwnerRule”.

// Universal quantifier syntax
FORALL var IN set f rule skeleton(var) g

// Existential quantifier syntax
EXIST var IN set f rule skeleton(var) g

Figure 7. Universal and existential quantifiers
syntax.

In order to increase the flexibility of composition, SPL
defines universal and existential quantifiers, as the tri-
value conjunction and disjunction of all the rules resulting
from the replacement of the enumeration variable in the
rule skeleton, by each value in the set (Figure 7).

// Apply all rules in the userPolicy set restricted
// to targets of the same owner
FORALL r IN u.userPolicy f
r @ f .target.owner = u g
g

Figure 8. Example of the restriction operand
applied to rules.

Rules do not have to be written at the same time by the
same author, in fact they are usually written dynamically

by several authors. Often it is necessary to restrict the do-
main of applicability of a rule previously written, by the
same author or by a different one, without removing it
completely. For instance, a rule may state that the private
rules of users can only apply to target objects belonging
to them. In SPL this is achieved by applying the polymor-
phic restriction operand (presented in section 2.1) to rules
and policies, in order to restrict their domain of applica-
bility (Figure 8). It should be noted that, in this case, the
elements in the set being restricted are events.

If r(D(event); A(event)) represents a rule or a policy
with a domain expressionD(event) and an applicability
expressionA(event), andR(event) is a logical expres-
sion on events then the restriction

r@R � r
0(D(event)&R(event); A(event)):

2.4. Policies

A SPL policy is a group of rules and sets that govern a
particular domain of events. Each policy has one “Query
Rule” (QR)(identified by a question mark before the name
of the rule), that relates all the rules specified in the pol-
icy. This rule uses the algebra defined earlier to specify
which rules should be enforced and how. The domain of
applicability of a policy is the domain of applicability of
the QR.

In a SPL policy some of the sets can be parameters that
are passed to the policy whenever it is instantiated (or,
more correctly, activated). This allows for the construc-
tion of several abstract policies, which may be activated
several times with different parameters. For instance, it is
possible to have a generic DAC policy, a generic separa-
tion of duty policy, or a simple generic ACL policy (Figure
9).

policy ACL(
user set AllowUsers, // Users that are allowed to

// perform restricted actions
object set ProtObjects, // The protected objects
interface RestrictActions) // The restricted actions
f

?Psimple:
ce.action IN RestrictActions & // if event action

// is restricted
ce.target IN ProtObjects // and target object

// is protected then
::ce.author IN AllowUsers// the event is allowed

// if the author is allowed
g

Figure 9. Generic policy implementing an ACL
tuple.

When instantiated, a policy acts as a rule and can
be included into another policy by composing it with
other rules through the tri-value algebra. As in several

object-oriented languages, instantiation is performed by
the “new” keyword. Figure 10, shows a security policy
(’InvoiceManag’) that activates an ACL policy and dele-
gates into it the decision on event acceptability.

policy InvoiceManag
f
// Clerks would usually be a role
// but for simplicity here it is a group
user set clerks ;

// Invoices are all object of type invoice
object set invoices =

AllObjects@f .doctype = "invoice" g;

// In this simple policy clerks can
// perform every action on invoices
DoInvoices: new ACL(clerks, invoices, AllActions);

?usingACL: DoInvoices;
g

Figure 10. A simple example of policy instanti-
ation.

The ability to compose policies into more complex poli-
cies, using the tri-value algebra, is one of the important
features of SPL, because it allows for the development of
libraries of common security policies. These security poli-
cies can then be used as building blocks for more complex
security policies, thus simplifying the specification of se-
curity policies of complex organizations.

The natural SPL policy sharing mechanism is delega-
tion, but SPL also supports policy inheritance to simplify
some sharing situations. For example, defining a policy
similar to another policy with just one rule slightly dif-
ferent is much more difficult with delegation than with
inheritance. In the example presented in Figure 11 it is
defined a policy that extends the “InvoiceManag” policy
by restricting the domain of the rule “DoInvoices” to the
events with write actions.

Policy RestrictInvoiceManag extends InvoiceManag
f
// Now only write actions are allowed
DoInvoices:

super.DoInvoices@f.action.name = "write"g;

// The query rule is inherit from the super
g

Figure 11.Example of policy inheritance.

SPL policies are active only if instantiated and inserted
into another policy, except for the master policy which is
activated implicitly by the security service. The result is
a hierarchical tree of active policies with the master pol-
icy on top. This structure has several advantages over a
flat one [4, 23, 39]. First, it clearly identifies which rules
are related with each other, simplifying the global under-
standing of the policy. Second, it allows the dynamic ac-

tivation and deactivation of policies, by inserting and re-
moving them from other policies. Third, it partially solves
the problem of conflicting policies.

2.5. Conflict Solving

SPL supports non-monotonic policies in the sense that
it is able to express both positive and negative constraints
at the same time. The ability to express non-monotonic
policies has long been recognized as very important for
the expressibility of security policies [24, 25]. Notably
the C2 level of TCSEC standard [14] includes this explicit
requirement.

The increased expressibility added by non-
monotonicity does not come without cost, it leads to
potential conflicts between contradictory rules. Usually
these conflicts are solved by the introduction of implicit
priority algorithms that choose which rule overrides the
other. Some of these algorithms are very simple (e.g.
negative rules overrides positive ones) others are more
complex and use not only the rules type but also the
authority of the rules issuers (i.e. rules issued by a higher
authority manager override others), the specificity of the
rules (often more specific rules should override more
general ones), and the issuing time of the rules (more
recently rules override older ones) [2, 25]. This approach
is very intuitive and natural but it has some drawbacks. It
is not unusual for a high authoritative manager to issue
a rule which may be overridden by a low authoritative
manager, or to express a mandatory general rule which
should not be overridden.

Another strategy is to stratify the security rules and in-
clude a special layer of rules to decide which rules should
override the others [3, 23]. SPL follows this strategy but
instead of creating a special layer of rules to solve con-
flicts, SPL forces the manager to combine polices into a
unique structure which is by definition free of conflicts. In
SPL, every active security policy must be in the referred
hierarchical delegation tree of policies. Therefore, if two
active policies give conflicting results to the same event
(one denying it, and the other allowing it), then some-
where up the hierarchical tree they must be combined in
one tri-value expression that inherently solves the conflict.
If the two policies are combined using a tri-value “AND”
then the event is denied. If they are combined using a tri-
value “OR” the event is allowed.

However, this solution cannot be applied to every type
of security policy inconsistency, because (i) some types of
inconsistencies are not conflicts and (ii) some should not
be solved by an automated process. For instance, the se-
curity conflicts produced by design errors should not be
implicitly solved because that would masquerade the de-
sign error. In [31] we describe a tool which is able to
detect several types of inconsistencies in SPL and can be

easily expanded to check for inconsistencies between the
secuirty policy and other specifications.

3. Special Constraints
The language described in the previous section can be

used to express several types of constraints, including
complex constraints that require special implementation
considerations. In this section we show how to express
and implement with an event monitor, three special types
of constraints: history based constraints, obligation con-
strains and invariant constraints.

3.1. History constraints

Several security policies require events to be recorded,
in order to implement constraints with dependencies on
the past. Among them, the Chinese wall policy [10] is one
of the best known. But many other forms of separation of
duty [34] and information flow policies [28] also require
event recording.

The importance of history-based polices has been rec-
ognized by several authors [15, 32, 40], however to our
knowledge none is able to simultaneous express concisely
and implement efficiently history-based policies.

In SPL history-based policies are expressed by simple
quantification rules over the abstractPastEvents set.
Each of these rules declares and quantifies one event vari-
able, used to classify each type of past event monitored by
the security monitor. Thus in SPL, to monitor a sequence
of events it is necessary to cascade several (one for each
type of event) quantification rules over thePastEvents
set. Figure 12 shows a history-based policy which denies
any event with an action different from “read” on a target
which has been “verified” and “approved” in sequence.

policy HistorySequence
f
?HistorySequence:
FORALL e1 IN PastEvents f
FORALL e2 IN PastEvents f
ce.target = e1.target &
ce.target = e2.target &
e1.time < e2.time &
e1.action.name = "verify" &
e2.action.name = "approve"
:: ce.action.name = "read"
g;
g
g

Figure 12. A history-based policy with se-
quence events.

This approach makes it very simple to express history-
based policies based on simple sequences of events, but
slightly harder to express history-based policies based on
state machines. To express this type of polices it is nec-
essary to define one event variable for each event leaving

each state and write constraints expressing the temporal
dependencies between those events. Nevertheless we be-
lieve that most history-base policies are of the first type,
thus any state machine based approach would be unneces-
sarily complex.

3.2. Obligation constraints

SPL is able to express the concepts of permission, pro-
hibition and obligation. While the first two are usually
supported by access control services, the last one is not.
One exception is [12], which defines a modal logic, based
on deontic logic to express security policies. However, al-
though it presents a clear definition of obligation it does
not propose a solution to implement it by an access con-
trol service.

3.2.1. Enforceable obligations

To act upon rules, an access control service must know
when there is an attempt to violate them and what to then.
On most access control services the violations attempts of
rules based on the prohibition concept are detected when
an event requesting an action occurs, and in that case, the
action requested is denied. With rules based on obligation
the time at which a violations attempt occurs (violation
attempt time) and the action to perform (default action)
when that happens are not so easy to define. First, because
a generic obligation (Statement 1) does not need to have a
deadline and second because there is no generic action to
perform in case of violation attempt.

PrincipleO must do Action O (1)

SPL does not allow generic obligations. Instead it sup-
ports, with some restrictions, another useful form of obli-
gation that comprises a trigger action (Statement 2).

PrincipleO must do Action O
if PrincipleT has done Action T

(2)

This form of obligation has a much more simple defini-
tion for default action then the generic obligation. While
with the generic type of obligation a system is in an un-
stable state until the obligation is fulfilled, with the trig-
gered obligation a system has two stable states, one before
the trigger action and one after the obligation is fulfilled.
Thus, when the trigger action is executed but the corre-
spondent obligation is not fulfilled the natural default ac-
tion for the system with this type of obligation is to return
to the stable state before the trigger action.

However defining a default action does not by itself
solve the problem. Using simple logic it is possible to
rewrite statement 2 into statement 31,

1O(T � :T (:O

PrincipleT cannot do Action T
if PrincipleO will not do Action O

(3)

which specifies a constraint with a dependency on a fu-
ture action. Schneider [36] states that it is not possible
to enforce a security policy in which the acceptability of
an execution depends on possible future executions, with
a monitor like construction. Informally his argument is
quite simple. Given the sequences of executions�

0 and� ,
in which � is the prefix of some execution of� 0, it is not
possible to allow� on the basis that one of its extensions
�
0 is allowed by the security policy, because the system

could stop before� 0.
The key issue is the notion of execution. To Schneider

an execution is simultaneously the unit by which the secu-
rity policy governs the execution of a system and the only
atomic unit present in the system. We believe that there
are advantages in separating thesetwo concepts. In fact, it
is not unusual for atomic requests to be composed of sev-
eral actions which are themselves subjected to the security
policy. Here atomic means in the sense of the transaction
ACID properties: either all happens or none happens. In-
side these atomic requests it is possible to define security
policies with dependencies in future actions, because it is
not possible for a system to stop execution before all se-
quence is completed.

Therefore security policies with dependencies in the fu-
ture are enforceable but only if they are confined to the
bounds of an atomic execution. Thus, in order for a trig-
gered obligation policy to be enforceable it is necessary
that the violation time be less or equal to the upper bound
of an atomic execution.

Albeit restricted to the bounds of atomic executions, this
type of constraint (triggered obligation) is useful in many
situations. For instance, the user is obligated to register
after it starts using the software, or the information flow
policy presented in section 4.5. In fact, in most situations
it is possible to find a trigger action for an obligation, how-
ever it is not always possible to perform both the trigger
action and the obligatory action inside an atomic execu-
tion, because some actions cannot be undone, e.g. send-
ing a document to a printer or showing some text on the
screen.

These actions are calledreal actions on transaction
management systems [21] and are already known to re-
quire special treatment by those systems in order to
achieve atomicity. Usually the system delays the execu-
tion of such actions until all the other actions are executed,
but if the action cannot be reordered the system is not able
to ensure atomicity. The problem is slightly more complex
than in usual transaction management systems because the
set of actions identified asreal actions must include ac-
tions that change human knowledge state (e.g. showing

some text on the screen), which are not often considered.

3.2.2. Expressing obligations

Expressing an obligation constraint in SPL is as simple
as expressing a history-based constraint. As was showed
in the previous section (x3.2.1) the kind of obligations
enforced by SPL can be expressed as constraints with a
dependency in the future. Therefore by symmetry with
the constraints with dependencies in the past, the natu-
ral way to express an obligation constraint in SPL is us-
ing quantification rules over a special abstract setFu-
tureEvents. As in the symmetric situation, each of
those rules declares and quantifies one event variable, used
to classify each type of future event monitored. In Figure
13 it is shown an obligation based policy which states that
if someoneexecutes thegoodies application he/she
must eventually (in the near future) register itself as a user.
Another example is present in Figure 20 in which obliga-
tion is used to express a relaxed form of information flow
policy.

policy Register
f
?Register:
EXIST fe IN FutureEvents f
ce.action.name = "execute" &
ce.target = "goodies" ::
ce.author = fe.author &
fe.action.name = "register" &
fe.target.name = "RegisterServer"
fe.parameters[0] = "goodies"
g;
g

Figure 13.An obligation-based policy.

3.3. Invariant constraints

An invariant rule is a very useful type of rule, which
specifies that a condition on some object properties should
hold before and after every event. These rules are a special
type of a more general group of rules that are expressed in
terms of results of actions, instead of actions themselves.

SPL is an event-oriented language, in the sense that the
goal of each rule is to decide if an event should be allowed
or denied, thus invariant rules cannot be expressed directly
in SPL, because their goal is not an event in itself but the
result of that event. A system with a rule that allows every
event, if a condition holds and denies it otherwise, could
end up in a deadlock, because the event which caused the
condition to be broken was already allowed when the situ-
ation is detected. However if the rule states that an event is
allowed, if for all the following events the condition holds,
and is denied otherwise, the system denies the event that
would have broken the condition, preventing it.

A rule expressed as stated, has a similar construction of
statement 3, thus it can be expressed and implemented as
an “obligation to comply with the invariant condition”.

4. Examples

In this section, we present some security policy exam-
ples expressed in SPL to show how SPL copes with dif-
ferent types of security policy paradigms.

4.1. DAC

Although there are many different policies in the DAC
category they all share a common base that comprises the
essential of DAC. This common base can be implemented
by a SPL policy, which can later be used to build several
DAC policies.

policy DAC
f
// Owner can do everything to their objects
authorRule: ce.target.owner = ce.author :: true;

// User policies are applied restricted to their
// own objects
userPolicyRule:
FORALL u IN AllUsers f
FORALL r IN u.userPolicy f
r @ f ce.target.owner = u g

gg;

// The policy denies any event not allowed by any
// of the rules
?DAC: authorRule OR userPolicyRule OR deny;
g

Figure 14.An example of a general DAC policy.

A DAC policy has two constraints (Figure 14). The first
constraint states that the owner of an object can perform
every action on it. The second, states that every user pol-
icy should be restricted to the targets owned by the owner
of the policy. The QR rule states that if any of these con-
straints allows an event to happen the event is allowed,
otherwise it is forbidden.

SPL can express several types of separation of duty
policies. One of the simpler may be implemented with
the rule “DutySep” presented in figure 5. This rule states
that payment orders cannot be approved by the same users
who wrote them.

The combination of the “sepDuty” rule with the DAC
policy presented in Figure 15, implements the policy
stated in the introduction, where an organization gives to
each employee the control over the documents they pro-
duce, with the exception of payment orders that cannot be
approved by the some user that wrote them.

4.2. ChineseWall

The Chinese wall policy is a monotonic security policy,
designed for open systems. Briefly the policy states that

policy DAC SepDuty
f
// A DAC instantiation
myDAC: new DAC;

// Payment order approvals cannot be done
// by the owner of payment order
DutySep: ce.target.type = "paymentOrder" &

ce.action.name = "approve"
::ce.author != ce.target.owner;

// Events are allowed only if both
// rules do not deny it
?DAC SepDuty: myDAC AND DutySep;
g

Figure 15. Combination of a DAC policy with a
separation of duty policy.

objects are classified into classes of conflicting interests,
and a user can access every object, but only one from each
class of interest.

There are many ways to write the Chinese wall policy
in SPL terms. One of the simpler is presented in Figure
16, in which only one class of interest is defined. The
policy defines one set and one rule. The set contains all the
objects with the same conflict of interests. The rule states
that the current event is denied if the target of the event
is in the “interest class” and exists a past event performed
by the same user on a different target that belongs to that
“interest class”.

policy ChineseWall
f
object set InterestClass;

?ChineseWall:
FORALL e IN PastEvents f
ce.target IN InterestClass &
e.target IN InterestClass &
ce.author = e.author &
ce.target != e.target &
:: false
g;
g

Figure 16. A specification for the Chinese wall
policy.

Usually an organization implementing a Chinese wall
policy has several classes of conflicting interests. The
above policy has just one class, but can be instantiated
several times, one for each class of interest.

The decide-expression of the rule has a constant value,
which is consistent with the monotonicity of the Chinese
wall definition. This definition specifies the events that
must be denied but leaves for complementary policies the
decision upon the ones that are accepted.

4.3. Roles

Although they do not always agree on the definition of
role [23] most security systems and services support some
form of role-based access control (RBAC).

Roles can be very complex entities, comprising con-
straints on role membership, constraints on role activa-
tion, and constraints on role use [18, 35, 37]. To allow
all these constraints and eventually others, SPL roles are
themselves policies that can be defined as required and
used in other policies whenever necessary.

Roles can be composed of several sets and constraints.
However, the simpler form of role has only two sets, one
with the users that are allowed to play the role and another
with the users who are playing the role. Obviously only
the users in the first set should be allowed to be inserted in
the second set (Figure 17).

policy simpleRole (user set Authorized,
user set Active)

f
// Events inserting a user into
// the Active set are allowed only if
// that user is in the Authorized set
?simpleRole: ce.action.name = "insert" &

ce.target = Active
:: ce.parameter[1] IN Authorized ;

g

Figure 17. The figure represents a simple role
policy.

In this model only the users who are in the active set
should have the necessary authorizations to play the role.
These authorizations are not included in the role type defi-
nition, because they are different for each specific role, but
they are included in the definition of each specific role.

policy Clerk
f
// All users of localhost are members of RoleUsers
user set RoleUsers = AllUsers@f .host = localhost g;

// Invoices are all objects of type invoice
object set Invoices =

AllObjects@f .doctype = "invoice"g;

// The set of users playing the role starts empty.
user set ActiveGroup = fg;

// Members of RoleUsers may play the Clerk role
ClerkRule: new simpleRole(RoleUsers,ActiveGroup);

// All members of ActiveGroup may access Invoices
InvoiceRule:

new ACL(ActiveGroup, Invoices, AllActions);

?Clerk: ClerkRule AND InvoiceRule;
g

Figure 18. Example of a specific policy instan-
tiation.

In Figure 18, we show a specific role definition pol-
icy, which states that users of “localhost” may assume the
“Clerk” role and that every “Clerk” may access invoices.
The policy has two rules. One rule (“ClerkRule”) is an
instantiation of the “simpleRole” policy and defines the
components of the role. The other (“InvoiceRule”) is an
instantiation of the ACL policy and defines the specific
authorizations of the role. The link between the two rules
is the “ActiveGroup” set, which is simultaneously the set
of users playing the role and the set of users allowed to
perform actions on invoices.

4.4. Closed and Open policies

Security policies can be open or closed. Closed poli-
cies deny everything that is not specifically allowed, and
open policies allow everything that is not specifically de-
nied. Closed policies are generally considered safer but
open policies are considered more suitable for loose envi-
ronments, like the ones used in cooperative work [16].

// An open policy
?Clerk: ClerkRule AND InvoiceRule AND allow

// A close policy
?Clerk: ClerkRule AND InvoiceRule OR deny

Figure 19. Different QR to transform the Clerk
policy into a closed or an open policy.

The “Clerk” policy defined in figure 18 is neither closed
nor open. To be one or the other the domain of applica-
bility must be universal. Hence to make the “Clerk” an
open or closed policy all is needed is to modify the QR to
allow or deny the events not belonging to the domain of
the original policy (Figure 19).

4.5. Information flow policy

Although SPL is a constraint-based language it is pos-
sible to express some relaxed forms of information flow
policies with it.

As original explained in [13] and formal proved by
[36] information flow policies cannot be fully enforced by
event monitors, because event monitors do not know about
other allowed sequences of executions of the same appli-
cation and thus they cannot know about implicit flows.
Implicit flows result from the knowledge on the sequences
of executions allowed by an application. If some applica-
tion requires that variableY takes the valuea whenever
variableX is greater thenb then there is a flow of infor-
mation fromX to Y although there is no explicit storage
path for information on variableX to variableY .

However, in some situations [16] the information leak
resulting from implicit flow does not poses a serious secu-

rity risk, whether because the information on variables de-
termining the sequence of execution is public or because
it is not possible to infer the sequence of executions from
the results of that sequence. For these situations it is pos-
sible to define information flow policies enforceable by
security monitors, because the regulation of explicit in-
formation flow from storage to storage can be performed
with just the knowledge of past executions.

Nevertheless, SPL cannot enforce or even express such
restricted form of information flow policy based only
on information from past executions, because SPL is an
event-oriented language and every history information is
kept on events it would be necessary to express a policy
that recursively verifies each source of every information
flow event in the storage-path of the information which are
going to be written by the current event. Expressing such
a policy in SPL it is not possible both because SPL does
not allow recursive policies and because it would incur on
a high performance penalty.

To express such information flow policies, SPL uses the
obligation concept to force the application to summarized
the information flow into the existing SPL rules. The pol-
icy in figure 20 states that each object which receives in-
formation from another object, should be subjected to the
same set of rules as the originator object. This is achieved
by an obligation rule that forces the receiving object to
belong to the same groups of the originator object.

policy InfoFlow ()
f

interface ReadFlowActions;
interface WriteFlowActions;
object set ProtObjects;

?InfoFlow:
FORALL pe IN PastEvents f
FORALL g IN pe.target.groups f
EXISTS fe IN FutureEvents f
ce.action IN WriteFlowActions &

pe.target IN ProtObjects &
pe.action IN ReadFlowActions &

ce.task = pe.task &

:: ce.target IN g
g g g;

g

Figure 20.An information flow policy.

The?infoFlow rule of figure 20 traces indirect infor-
mation flow between read and write events performed by
the same task. The rule states that if the action of the cur-
rent event is a write action and the current task has read
a protected object (i.e. one of the events that has read a
protected object were done in the context of the task of
the current event), then there is a time in the future (i.e.
a future event exists) in which all the sets containing the

protected object also contain the target object. This rule
assures that every rule that applies to a protected object
which was read by that task also applies to the receiving
object, including the rule itself, i.e. the receiving object
becomes a protected object too.

It should be noted that it is the application obligation
to ensure that all the sets are updated properly. The ap-
plication can perform this task either by itself or by using
a security library created for that purpose. The security
monitor duty is to ensure that that obligation is fulfilled.
The security monitor cannot update itself the sets because
it cannot perform operations which result in state changes.

Unlike other models where information flow policies
are defined, the SPL model allows non-monotonic poli-
cies. This property may produce an uncommon result on
some information flow policies. When there is a permis-
sion rule that supersedes a prohibition rule, an object to
which the access was restricted may become unrestricted
just because it received information from an unrestricted
object. Although uncommon, the result is correct because
denying may not always be the safer action. For example,
an organization may state that the president should be able
to access every document containing organization’s clas-
sified data, but he does not need to be able to access em-
ployer’s private data. Then if an employer includes clas-
sified data into a private document, that document should
become accessible to the president.

5. Implementation and Results

One of the problems of expressive security frameworks
like SPL, is the low efficiency of their implementations.
While usual frameworks built upon access control lists, la-
bels or unix permission bits were designed to be efficient,
SPL was designed to be expressive.

In this section we show that using a mixture of compila-
tion and query techniques it is possible to achieve accept-
able performance results, even for policies with thousands
of rules. We have designed and implemented a compiler
for SPL (which generates standard java), which is able to
detect special SPL constructions and generate the most ef-
ficient code to implement them.

Given the resemblance of SPL structure with java struc-
ture most of the compiler actions are simple translations:
each SPL policy is directly translated into a java class;
each rule is translated into a tri-value function without pa-
rameters (with the exception of the query rule which has
one parameter – the current event); each entity is trans-
lated into a java interface; and each set variable is trans-
lated into a java variable of typeSplSet, which defines
an interface to access several kinds of sets (external sets,
subsets of external sets, internal sets).

As defined inx2.3, rules can be simple rules comprised
of a domain-expression and a decide-expression or they

can be a composition of other rules. Thus functions im-
plementing rules can be from simple if-clauses with two
logical expressions (one for the domain- and another for
the decide-expression) to complex combinations of other
functions (e.g. simple combination using tri-value opera-
tors; quantification of rules over sets; quantification over
history events; quantification over future events).

Wherever a policy instance is used in place of a rule the
compiler executes an automatic cast operation, consisting
in making explicit the call to the query rule of the pol-
icy. Thus the overall structure of the generated code can
be seen as a tree of tri-value functions calling other func-
tions, in which the root is the function resulting from the
translation of the query rule of the master policy and the
leaves are the functions resulting from simple rules.

Although most SPL constructs can be efficiently imple-
mented in java by direct translation, some constructs and
structural problems require a deeper analysis. In the re-
maining of this section we address those problems, and
show some performance measures that validate the solu-
tions.

5.1. Scalability

One of SPL major design problems is scalability. While
in common ACL based systems, only the access control
entries (ACE) belonging to the ACL of each target object
are evaluated on each access, in SPL potentially every rule
has to be evaluated for every access. This is a problem on
systems with thousands of rules, users and objects.

SPL is a logical-based language, thus it is possible to
apply some evaluation optimizations. In a conjunction of
rules (tri-value conjunction as defined inx2.3) if one rule
evaluates to “deny” then it is not necessary to evaluate the
remaining rules (similar for disjunction of rules and “al-
low” values). Unfortunately these optimizations are not
very useful, because disjunction of rules are rare and the
optimization applicable to conjunctions can only optimize
the deniable of events.

Another more useful optimization can be applied to the
restriction operation (expression(event)@rule). The “re-
striction operation” restricts the domain of applicability of
a rule to the set of events satisfying a logical expression.
Thus if that expression evaluates to “false” it is not nec-
essary to evaluate the rule. This optimization is very use-
ful on those situations where rules are explicitly organized
in domains of applicability (e.g. rules that apply only to
targets produced by one branch of an organization). How-
ever it is not enough to prevent the unnecessary evaluation
of not applicable rules inside the same domain. Wherever
the restriction operation is not used, to reach the conclu-
sion that one branch of the evaluation tree is not applica-
ble to a particular event it is necessary to evaluate each
domain expression of every leaf rule in that branch.

One solution would be to build a virtual restriction op-
eration in which the restriction expression would be the
logical disjunction of each domain expression2 of every
leaf rule in the branch. Although very efficient in detect-
ing not applicable branches this solution penalizes appli-
cable branches with redundant evaluation of domain ex-
pressions in each node of the evaluation tree.

The solution used in SPL is based on the assumption
that most expressed rules are target-limited, in the sense
that they are applied to only a limited set of targets. SPL
is able to express rules not target-limited (e.g. all ac-
tions performed by some user), nevertheless we believe
that most security policies expressed in SPL will be target-
limited. This assumption is based on the observation that
most current security policies are target-limited, e.g. all
ACL based policies, chinese wall policies, DAC policies.
RBAC is not target-limited but is used in conjunction with
rules which are target-limited.

Based on this assumption we have designed a simple
target-based index for rules, which allows for quick cuts
on branches of the rule evaluation tree. The system cre-
ates an index for each target. Each index is maintained on
the correspondent target as a label and keeps the informa-
tion of every rule that may be applicable to an event with
that target. The representation of that information on the
current prototype is kept on a bit stream with one bit for
each rule in the system. However given the sparse nature
of the information (we expect that only a few rules are ap-
plicable to each target as in current ACL based systems) it
is possible to develop more compact structures.

On the tests done so far this index technique has proved
to be efficient, showing on average a speed-up of one order
of magnitude (see 5.4).

5.2. History-based policies

A monitor-like security service has to decide for each
event whether it should allow the event to happen or not.
The decision must be taken at the time the event is re-
quested with the information available at that time. Thus
is order to implement history-based polices any monitor-
like security service has to record information about past
events.

Some security services record events implicitly in their
own data structures [28] (mostly using labels) others
record them explicitly into an event log [4], which can
later be queried for specific events. The later solution is
more flexible than the former but if the event log becomes
too big, the memory space required to keep that log may
be unlimited and the time required to execute each query
could have a significant impact on the performance of the
system.

2Obviously a reduced canonical form.

In this section we show that it is possible to implement
efficiently the log solution, both in terms of memory-space
and performance. The main achievement is obtained by a
compiling algorithm that optimizes the amount of infor-
mation to be saved and the way that information should
be queried. We show that although this algorithm does not
obtain the best results for all history-based policies, the re-
sults obtained for most common policies are equivalent to
those obtained by label-based implementations [33].

The goal of this algorithm is three-folded. First, the
security manager should selectively log just the events re-
quired by the history-based policies specified, e.g. if a
policy needs to know if a document was signed, there is
no need to record events that are not “sign events”. Sec-
ond, the security manager should selectively log just the
fields of the events required by the history policies speci-
fied, e.g. policy wants to decide based on whether or not
the author of the current event has signed a document, it is
not necessary to record the “parameters” field of signature
events. Third, security manager should use the best pos-
sible query for each history-based policy (equality terms
can be searched inO(1) and are preferred to inequality
terms) and the best information structure to support that
query (a hash table is preferred for an equality search but
for an inequality search a balanced tree might be better).

Instead of building a log for every history-based poli-
cies the compiler builds a specific and fined tuned log for
each history-based policy. This solution has several ad-
vantages. First it divides the problem reducing the num-
ber of events required to be searched. Second it allows
for a better adaptation of the base structure to each query,
because each log can be kept by a different structure. And
third it simplifies insertion and removal of policies. The
problem of this solution is the potential for maintaining re-
dundant information in several logs. However, given that
the information kept by each log is the minimum infor-
mation necessary to that policy, the level of redundancy
expected is similar to the level of redundancy of label-
based implementations, where the labels used by different
policies may also be redundant. Nevertheless, this prob-
lem can be further reduced by sharing logs with the same
signature (same events to log, same fields of those events
to log, same base structure) between policies3.

Figure 21 shows a simplified version of the code gener-
ated by the compilation of a history-based rule. The ex-
pressionMyRule(e, ce) represents a generic rule that
may be composed of other rules.

The algorithm has four phases. The first phase is just the
removal of the invariant conditionals from the loop. In this
phase the compiler tries to build a logical expression (re-
ferred as “invariantConditionals” in Figure 21) with terms
from the domain expression ofMyRulewhich are manda-

3This feature is not implemented in the current prototype.

MyPolicy: FORALL e IN PastEvents MyRule(e, ce)

(a)

triVal MyPolicy(event ce) {
if(!invariantConditionals(ce)) return notapply
while(MySpecialLog.hasMoreElements(ce))
x = stripped_MyRule(MySpecialLog.next(ce));
if(x == deny) return deny;
if(x == allow) return markallow;

}
if(!markallow) return notapply

}

class MySpecialLog {
HashTable Log;
void insert(event e) {
if(PastDependentTermsOfRule(e))

log.insert(new RequiredFieldsOf(e))
}
boolean hasMoreElements(event ce) {
return log.find(new indexFieldsOf(ce);

}
RequiredFieldsOf nextElement(ce) {
return log.next(new indexFieldsOf(ce));

}
}

(b)

Figure 21. Translation of history rules. (a) is the
SPL representation of a generic history-based
rule. (b) is a simplified version of the java code
resulted from compilation

tory for the applicability of the rule and are not dependent
of variablee. This expression is then used to perform
a preliminary test of applicability of the rule the current
event.

The second phase also builds a logical expression with
terms from the domain expression ofMyRule, but with
terms dependent on variablee and not dependent on cur-
rent event. The goal of this expression (“PastDependent-
TermsOfMyRule”) is to filter the events that need to go
into the log.

The third and fourth phases build respectively one class
object with the fields of variablee used inMyRule (re-
ferred as “RequiredFieldsOf”) and another class objects
with the fields ofe which compared with logical expres-
sions dependent on the current event. The former is used
to record only the information on past events which are
useful to the security policy. The later is used to search
the log for events with those fields equal to the ones in the
object4.

The main drawback of this algorithm is that history-
based policies cannot decide on events prior to their acti-

4The current compiler prototype can only implement logs with hash
tables, thus it does not handle effectively policies where at least one field
of e is not equally compared with a logical expression dependent on the
current event.

vatio, i.e. the system only records events for each history-
based policy after the policy exists.

To illustrate the algorithm results we will show how a
SPL policy expressing the Chinese wall policy (Figure 16)
is enforced by a monitor generated by the SPL compiler.

The first and second phase of the algorithm tries to iden-
tify logical expressions built form terms of the domain ex-
pression which are mandatory true for the applicability of
the policy. In this policy (Figure 16) the domain expres-
sion is composed by a conjunction of simple terms. Thus
any term can be used independently for the construction
of those expressions. The problem is more complex when
the domain expression is composed of both conjunctions
and disjunctions, in which case may not always be possi-
ble to completely unfold the logical expression5.

For the Chinese wall policy the “invariantCondi-
tionals” logical expression is composed of just one
termce.target IN InterestClass, thus accord-
ing with figure 21 the policy returns “notapply” if the tar-
get of current event is not in the class of interest, which
is conformable with the expected behavior. The “Past-
DependentTermsOfRule” logical expression is also com-
posed by only one terme.target IN Interest-
Class, thus only the events over objects in the interest
class are logged.

The “RequiredFieldsOf” object for this Chinese wall
policy is composed by the “author” and “target” fields of
the “event” class object, and the “indexFieldsOf” object
is composed of just the “author” field. Thus the log just
keeps information about the target and the author of each
recorded event and it is queried by events with a specific
author.

Because the log does not have to keep repetitions, and
the specific nature of the Chinese wall policy disallows the
existence of more than one element with the same author,
the maximum length of the log is the number of different
users in the system. Usually the length of the log is much
less then the number of users, because not every user ac-
cess a target in the “interest class”. However, if the length
of the table supporting the log is equal to the number of
users, then the query can be performed by direct address-
ing the user field, followed by a comparison of the target
field.

This is much similar to the classic label implementa-
tion [33] where each user has one label for each interest
class, which containsnil if the user did not access any
target in the “interest class” or the identification of the tar-
get accessed. However, the described implementation re-
sults from the “compilation” of a language which is able

5This is usually the case when several rules are combined with tri-
logical operations, because the overall domain-expression is the disjunc-
tion of the domain-expression of each rule and the domain-expression of
each basic rule is usually a conjunction of terms

to express simultaneously several other policies, includ-
ing other history dependent policies, while the classic la-
bel implementation is hardcoded in the user management
structures.

This technique can be applied to other history-based
policies which are usually implemented with labels. The
reason why these policies can be implemented efficiently
by a SPL compiler lies on its ability to keep their relevant
history information in small pieces of data (the labels), di-
rectly addressed by one entity (users, objects, etc.). There-
fore, a SPL compiler which is able to detect exactly which
history information is relevant to the policy and is able to
index the resulting table by the most appropriate entity (or
entity property) can achieve similar efficiency results as
label-based implementations.

5.3. Obligation-based policies

As explained inx3.2 the obligation-based security poli-
cies enforceable by event monitors are only the ones that
can be completely resolved inside an atomic execution.
The monitor generated by the SPL compiler does not pro-
vide code to make those sequences of actions to behave
atomically, instead it relies on applications to define those
sequences of actions and on a transaction monitor to im-
plement it. Thus the problem of enforcing obligation-
based security policies is reduced to allowing or not the
event that instruct the transaction monitor tocommit a
transaction, whether or not all the obligations were ful-
filled at the time of that event.

A security policy that allows or denies an event (the
commit event) depending on whether or not some events
were executed (the obligations) is a history-based policy.
Thus the enforcement of an obligation-based policy con-
trolling a particular type of event can be done by a history-
based policy controlling the event that commits the trans-
action on which the original event was executed.

The transformation from the obligation-based policy to
the history-based policy can be achieved in two steps. The
first step called “aging” consists of replacing references
to events by older references. References to the current
event are replaced by references to a past event called
“trigger-event”. References to past event are replaced by
references to a past event but with an additional constraint
specifying that this event occurs before the trigger-event.
References to future events are replaced by references to
past events with the additional constraint of occurring af-
ter the trigger-event. The second step consists of insert-
ing in this policy an explicit reference to the event that
requests the transaction-commit. This event becomes the
current event of new policy and is related with the trigger-
event by means of the transaction id in which the trigger-
event was performed.

Figure 22 shows the history-based version of the

policy HistoryInfoFlow ()
f
interface ReadFlowActions;
interface WriteFlowActions;
object set ProtObjects;

?InfoFlow:
FORALL te IN PastEvents f
FORALL pe IN PastEvents f
FORALL g IN pe.target.groups f
EXISTS fe IN PastEvents f
ce.action.name = "commit" & // New

fe.time > te.time & // New

te.transaction = ce.parameter[0] & // New
te.action IN WriteFlowActions &

pe.time < te.time & // New
pe.target IN ProtObjects &
pe.action IN ReadFlowActions &
pe.task = te.task &
:: te.target IN g

g g g;
g

Figure 22. The transformation of the informa-
tion flow policy of figure 20 into a history-based
policy.

obligation-based policy shown in figure 20. In the current
prototype this transformation is mixed with the translation
to java, thus the SPL representation of history-based ver-
sions of obligation-based policies never take place.

5.4. Results

Access control monitors are used in several environ-
ments. Although they are used as services which are sel-
dom queried by other services [29]. they are also used
at the center of systems being queried by every element
in the system for almost every action, thus their perfor-
mance has an important impact on the overall performance
of the system. All measurements presented in this section
were taken on a personal computer with a Pentium II at
333MHz running the Sun Java 1.2.2 virtual machine over
Windows NT 4.0.

The performance of an access control monitor is mea-
sured by the time it takes to respond to a query. How-
ever more important than knowing the absolute value of
time taken by the monitor to solve a query, which varies
with the platform and the intermediate compiler used, is
the dynamic behavior of the monitor with policy and log
scalability, i.e. “How is the query delay affected by the
number of queries answered on history-based policies ?”
or “How does the query delay evolves with the size of the
policy ?”.

To answer the first question we have developed a test
based on the Chinese Wall policy. In this test we measured
the time to solve a query for the acceptability of events
produced by 100 different users by a monitor enforcing

a Chinese Wall policy with 10 interest classes, with 10
objects per class. The time for each query was taken each
100 events to verify the effect of event logging over the
query performance.

The events were chosen such that their targets would
always be in one class of interest and that the expected
answer to the query would always be positive (“allow”).
This is the most common behavior (in normal systems
most actions are allowed) and unfortunately it is also the
worst case for this and most policies expressed in SPL.
This behavior is shared by every policy which uses con-
junctions as their predominant composition construction.
In this situation the Chinese Wall policy is composed by
a conjunction of 10 policies showed in Figure 16, one for
each interest class. If one of those ten policies denies an
event then there is no need to evaluate the remaining poli-
cies. However, for events which are allowed all the poli-
cies are evaluated.

0

10

20

30

40

50

60

70

1000 2500 4000 5500 7000 8500 10000

Number of events

M
ic
ro
s
e
c
o
n
d
s

Figure 23. Chinese Wall dependency with the
number of events queried

The results presented in Figure 23 show that the time
taken to solve a query to the Chinese Wall policy does not
depend on the number of events queried, thus proving that
the solution used to minimize the impact of logging on the
overall performance of the monitor is effective.

The time needed to solve a query to the Chinese Wall
policy is also not affected by the number of users or the
number of objects in each class of interest. But it is sever-
ally affected by the number of classes of interest (Figure
24). This result is a direct consequence of the number of
rules used to build the Chinese Wall policy with different
numbers of classes of interest. The Chinese Wall defined
in Figure 16 requires the definition of one rule for each
class of interest, thus for Chinese Wall policies with more
classes of interest the monitor needs to evaluate more rules
for each query.

The index solution presented inx5.1 can minimize the

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80 90 100

Number of Classes

M
ic
r
o
s
e
c
o
n
d
s

without index with index improved index

Figure 24. Chinese Wall scalability with the
number of classes of interest.

problem as shown by Figure 24. However it is not enough
for policies like the Chinese Wall or any other policy with
one single large conjunction of rules. On these policies the
index effectiveness is small because the branches in the
evaluation tree of those policies are small. Thus the cuts
which the index is able to perform are necessarily small.
These type of policies require better indexes. For instance,
indexes with several layers of indexes over indexes. This
solution is not implemenetd in the current prototype but
its effect can be measured because it whould be similar to
rearrange the policies in order to have a deeper evaluation
tree. For instance, the big conjuntion of rules of the Chi-
nese Wall policy can be rearranged into a conjuntion of
conjuntions using the associative property of conjuntions.
The results of Figure 24 shows the effectiveness of such
approach.

Non Indexed
indexed normal optimized

�s (�s) (�s)

ChineseWall 10 56 1.5 (37) 1.3 (43)
ChineseWall 100 1992 3.3 (597) 31.6 (63)
Global 303 7.6 (40) -

Table 2. Speedup results, with respect to non
indexed queries, for queries with normal index
and with index over rearranged policies.

Table 2 shows some examples of index effectiveness.
Two Chinese Wall policies with 10 and 100 classes of in-
terest, were tested without index, with index and with in-
dex over rearranged forms of the policies. Although the
index speedup is not very sensible for the Chinese Wall
policy with 10 classes of interest it becomes important
for the Chinese Wall with 100 classes of interest. The

other example shown in Table 2 is the “Global” policy de-
scribed in appendix A, which is a policy with 41206 rules
divided into 100 domains over 5 continents. Albeit simple
for a real policy of an organization this policy is complex
enough to represent the target policies of SPL. The policy
was tested for 5000 users and 12000 targets, exhibiting a
40�s delay for each query, which is an acceptable value
for the size of the policy and the underlying platform used.

6. Related Work

Much work has been done on multi-policy environ-
ments primarily to solve the conflict raised by having
different policies governing the same subject. Some of
this work tries to solve the problem using specific system
mechanisms [11, 19], but most define unified frameworks
in which different policies can be expressed [3, 4, 12, 22,
24, 27, 39].

Minsky and Ungureanu [27] define a formalism and an
environment to specify and enforce security policies in
distributed systems. Their environment assumes a mes-
sage monitor that intercepts every message sent or re-
ceived, and runs security policies. A security policy is
composed of a set of clauses. Each one defining the ac-
tions that the monitor should take on intercepting each
message. The authors show that the formalism is power-
ful enough to express complex policies, but it is not clear
how they deal with conflicting policies.

Woo and Lam [39] show how default logic can be used
to express authorization rules. Roughly, each rule is com-
posed by three binary formulas (g, f, f’): formula g de-
fines the actions allowed by the rule; formula f defines the
actions that must be allowed by other rules in order for
this rule to be active; and formula f’ defines the actions
that must not be allowed by other rules. This construction
is very powerful for relating rules with each other, pro-
ducing very expressive policies. Nevertheless, we believe
that the algebra for security rules proposed by us is able
to express most security policies using simpler and more
compact rules.

Adage [4] authorization rules are very similar to our
own. They both have a domain of applicability function
and a decision function. However, Adage does not spec-
ify an algebra for rules and polices, which makes them
much more difficult to compose into complex policies and
to express default behavior. Furthermore, their work does
not provide a conflict resolution mechanism or an efficient
implementation of history-based policies [40].

Conflict resolution approaches defined by Bertino et al
[3] and Jajodia et al [23] have some similarities. In [3],
rules are classified into two categories: strong and weak.

6Only 1690 rules can be directly counted from SPL specification.
The remaining rules are inserted into the “userPolicy” group of each
user.

The strong rules may override weak rules, but not other
strong rules. This means that conflicts may still arise be-
tween strong rules and have to be solved by other means.

Jajodia et al [23] define a logical language with ten
predicate symbols. Three of those are authorization predi-
cates (dercando, cando, do), used to define the allowed ac-
tions. Although not explicit these predicates define three
levels of authorization with dercando as the weakest and
do as the strongest. However the problem remains, be-
cause conflicts may still arise between “do” rules [24].

Another approach to conflict resolution, presented in [2]
and [25] uses elements like rule authorship authority, rule
specificity and rule recency to prioritize rules. Although
simple and natural this approach may lead to undesired
behavior. It is not uncommon for high authority manager
to issue a rule which may be overridden by a low authority
manager, or to express a mandatory general rule which
should not be overridden.

In [9, 8] Blaze at al proposed a different concept called
“Trust Management”. Their work starts by identifying
that in the services that receive signed requests, the princi-
pal issuing a request is the key that signs the request. Thus
if the policy maintained by the authorization service is or-
ganized in terms of keys instead of names (user names,
role names, service name, etc.) it is not necessary to per-
form the extra step of checking the authenticity of the re-
quest.

They propose a tool, thePolicyMaker trust manage-
ment system, which is able to express in a single common
language authorization policies, certificates and trust rela-
tionships, thus integrating whole these concepts.

The trust policy engine replies to a request based on the
local policy and trust assertions and on the certificates pro-
vided by the requester. The engine checks if the request
is authorized by the local policy assertions, or if there is
a path of trust assertions from a local assertion to a key
signing a policy certificate that allows the request. This
solution clearly scales better than a global static policy.

KeyNote [6]and SPKI [17] are two other examples
of systems comprising the notion of trust management.
KeyNote derives from PolicyMaker and shares the same
principals. However, KeyNote was designed to simplify
the integration of the service with the client applications.
Thus KeyNote has a built-in credential verification sys-
tem and a simple notation to express authorization pred-
icates. SPKI (Simple Public Key Infrastructure) on the
other hand, results from the extension of the certificates
kept by a Public Key Infrastructure to allow authoriza-
tion certificates. Although, slightly more restrictive than
KeyNote, SPKI shares the same fundamental features of
KeyNote and PolicyMaker. SPKI also (i) uses Keys as
principals, (ii) allows trust to be delegated from one key
to another (iii) allows policies to be inserted dynamically

in the form of certificate.
Although with similar results each of these trust-

management systems have a different compliance check-
ing engine. The one from PolicyMaker is the most gen-
eral, in the sense that it can use arbitrary functions to ex-
press assertions, provided that they are monotonic. On the
other hand the compliance checking engine from SPKI al-
lows a limited type of assertions but it allows negative as-
sertions.

In [5] Blaze at al. shows that checking the compliance
for the general problem is NP-hard and gives several alter-
natives with different levels of expressiveness and usabil-
ity. However, the best balance between expressiveness and
usability is still an open issue. We believe that the SPL’s
compliance checking engine is a fair alternative, because
although it is harder to dynamically insert policies (poli-
cies can only be added at specific points) it has a good
performance, and does not compromise in any way ex-
pressiveness.

Most of these environments can state both positive and
negative authorization rules. In [12] it is showed that obli-
gation can also be a very powerful concept to express se-
curity policies, however it is not clear how can it be im-
plemented.

Although expressive enough to handle most of the usual
policies, including the ones with history dependence, like
the Chinese wall and several other separation of duty poli-
cies, none of the above environments supports obligation
constraints or information flow policies as SPL does.

7. Conclusion

We have defined an access control language that sup-
ports simultaneously multiple complex policies, and has a
higher expressive power than other multi-policy environ-
ments. The language uses its hierarchical based, policy-
oriented structure to solve conflicts between simultane-
ously active policies.

The language was designed to be easily enforced by a
security monitor. We have shown how index techniques
can be applied to the policy structure to implement ef-
ficiently most security policies. Special care was taken
on the enforcement of history-based constraints. We have
shown that by generating specific and special tuned logs
for each history-based policy it is possible to implement
SPL history-based policies as efficiently as handcoded
label-based implementations.

The language goes beyond the permission/prohibition
concepts of security and shows how to express and im-
plement the obligation concept. It uses this concept to
express a relaxed form of information flow policy, thereby
showing that some forms of information flow policies can
be expressed in SPL and that they can coexist with other
policies.

This work is just a first step towards a security frame-
work, which also includes the specification and enforce-
ment of authentication policies, tools to verify the consis-
tency of both specification and tools to verify the cross
consistency of both specifications with other systems in
the organization. Namely we have already defined a tool
that verifies the cross consistency of an authorization pol-
icy described in SPL and a workflow specification [30].

References

[1] D. Bell and L. LaPadula. Secure computer systems: Math-
ematical foundations. Technical Report MTR-2547, Vol 1,
MITRE Corp., Bedford, MA, Nov. 1973.

[2] E. Bertino, F. Buccafurri, E. Ferrari, and P. Rullo. A log-
ical framework for reasoning on data access control poli-
cies. InProceeding of the 12th IEEE Computer Security
Workshop. IEEE Computer Society Press, July 1999.

[3] E. Bertino, S. Jajodia, and P. Samarati. Supporting multi-
ple access control policies in database systems. InIEEE
Symposium on Security and Privacy, pages 94–109, Oak-
land, CA, 1996. IEEE Computer Society Press.

[4] W. R. Bevier and W. D. Young. A constraint language for
adage. Technical report, Computational Logic, Inc., Apr.
1997.

[5] Blaze, Feigenbaum, and Strauss. Compliance checking in
the policymaker trust management system. InFC: Inter-
national Conference on Financial Cryptography. LNCS,
Springer-Verlag, 1998.

[6] M. Blaze, J. Feigenbaum, and J. Ionnidis. The KeyNote
trust-management system version. Technical report, Inter-
net RFC 2704, September 1999.

[7] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust management for public-key infrastructures.Lecture
Notes in Computer Science, 1550:59–63, 1999.

[8] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. InProceedings of the IEEE Symposium on
Research in Security and Privacy, Research in Security
and Privacy, Oakland, CA, May 1996. IEEE Computer So-
ciety,Technical Committee on Security and Privacy, IEEE
Computer Society Press.

[9] M. Blaze, J. Pigenbaum, and A. D. Keromytis. Key note:
Trust management for public-key infrastructures.Lecture
Notes in Computer Science, 1550:59–??, 1999.

[10] D. F. Brewer and M. J. Nash. The chinese wall secu-
rity policy. In SympSecPr, Research in Security and Pri-
vacy, pages 206–214, Oakland, CA, May 1989. IEEE,
IEEECSP.

[11] M. Carney and B. Loe. A comparison of methods for
implementing adaptive security policies. InProceedings
of the 7th USENIX Security Symposium (SECURITY-98),
pages 1–14, Berkeley, Jan. 26–29, 1998. Usenix Associa-
tion.

[12] F. Cuppens and C. Saurel. Specifying a security policy: A
case study. InIEEE Computer Society Computer Security
Foundations Workshop (CSFW9), pages 123–135, 1996.

[13] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 20, July 1977.

[14] DoD. Dod trusted computer system evaluation criteria.
Technical Report 5200.28-STD, DoD, Dec.26 1985.

[15] G. Edjlali, A. Acharya, and V. Chaudhary. History-based
access control for mobile code. In5th ACM Conference
on Computer and Communications Security, pages 38–48,
San Francisco, California, Nov. 1998. ACM Press.

[16] W. K. Edwards. Policies and roles in collaborative ap-
plications. InProceedings of the ACM 1996 Conference
on Computer Supported Work, pages 11–20, New York,
Nov. 16–20, 1996. ACM Press.

[17] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M.
Thomas, and T. Ylonen. SPKI certificate theory. Internet
RFC 2693, Sept. 1999.

[18] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A role-based
access control model and reference implementation within
a corporate intranet.ACM Transactions on Information
and System Security, 2(1):34–64, Feb. 1999.

[19] T. Fraser and L. Badger. Ensuring continuity during dy-
namic security policy reconfiguration in dte. InProceed-
ings of the 1998 IEEE Conference on Security and Privacy
(SSP ’98), pages 15–26. IEEE, May 1998.

[20] L. Giuri and P. Iglio. Role templates for content-based ac-
cess control. InProceedings of the 2nd ACM Workshop on
Role-Based Access Control (RBAC-97), pages 153–159,
New York, Nov. 6–7 1997. ACM Press.

[21] J. Gray and A. Reuter. Transaction Processing: con-
cepts and techniques. Data Management Systems. Morgan
Kaufmann Publishers, Inc., San Mateo (CA), USA, 1993.

[22] J. A. Hoagland, R. Pandley, and K. N. Levitt. Security
policy specification using a graphical approach. Techni-
cal report, Department of Computer Science, University
of California Davis, July 1998.

[23] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logi-
cal language for expressing authorizations. InSympSecPr,
Research in Security and Privacy, Oakland, CA, May
1997. IEEECSP.

[24] S. Jajodia, P. Samarati, V. S. Subrahmanian, and
E. Bertino. A unified framework for enforcing multiple
access control policies.SIGMOD Record (ACM Special
Interest Group on Management of Data), 26(2):474–485,
June 1997.

[25] N. Li, J. Feigenbaum, and B. N. Grosof. A logic-based
knowledge representation for authorization with delega-
tion. In Proceeding of the 12th IEEE Computer Security
Workshop. IEEE Computer Society Press, July 1999.

[26] E. C. Lupu and M. Sloman. Reconciling role-based man-
agement and role-based access control. InProceedings
of the 2nd ACM Workshop on Role-Based Access Control
(RBAC-97), pages 135–142, New York, Nov. 6–7 1997.
ACM Press.

[27] N. H. Minsky and V. Ungureanu. Unified support for
heterogeneous security policies in distributed systems.
In Proceedings of the 7th USENIX Security Symposium
(SECURITY-98), pages 131–142, Berkeley, Jan. 26–29,
1998. Usenix Association.

[28] M. J. Nash and K. R. Poland. Some conundrums concern-
ing separation of duty. InProceedings of the 1990 IEEE
Conference on Security and Privacy (SSP ’90), pages 201–
209. IEEE, May 1990.

[29] H. packard Publication Services. HP praesidium / autho-
rization server white paper. Published in Internet, 1998.

[30] C. Ribeiro and P. Guedes. Verifying workflow processes
against organization security policies. InProceedings of
the 8th IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises,
pages 190–191, Standford, California, June16-18 1999.
IEEE Computer Society, IEEE Computer Society.

[31] C. Ribeiro, A. Zúquete, P. Ferreira, and P. Guedes. Secu-
rity policy consistency. Technical Report RT/03/00, IN-
ESC, 2000.

[32] R. Sandhu. Separation of duties in computarized infor-
mation systems. InProceedings of the IFIP WG11.3
Workshop on Database Security, Halifax, UK, Sept.18–21
1990.

[33] R. S. Sandhu. Lattice-based access control models.IEEE
Computer, 26(11):9, Nov. 1993.

[34] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control: A multi-dimensional
view. In 10th Annual Computer Security Applications
Conference, pages 54–62, 1994.

[35] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models.Computer,
29(2):38–47, Feb. 1996.

[36] F. B. Schneider. Enforceable security policies.The ACM
Transactions on Information and System Security, 3(1),
February 2000.

[37] Simon and Zurko. Separation of duty in role-based envi-
ronments. InPCSFW: Proceedings of The 10th Computer
Security Foundations Workshop. IEEE Computer Society
Press, 1997.

[38] A. Tate. Representing plans as a set of constraints - the
<I-N-OVA>model. In B. Drabble, editor,Proceedings of
the 3rd International Conference on Artificial Intelligence
Planning Systems (AIPS-96), pages 221–228. AAAI Press,
1996.

[39] T. Y. C. Woo and S. S. Lam. Authorization in distributed
systems: A formal approach. InProceedings of the 1992
IEEE Computer Society Symposium on Security and Pri-
vacy (SSP ’92), pages 33–51. IEEE, May 1992.

[40] M. E. Zurko, R. Simon, and T. Sanfilipo. A user-centered,
modular authorization service built on an rbac foundation.
In Proceeding of the 12th IEEE Computer Security Work-
shop. IEEE Computer Society Press, July 1999.

A. Appendix
package Global;
import SplInterfaces;

alias object set collection;
alias user set team;

policy Group {
team UserGroup;
?Group: ce.action.name = "read" &

ce.target.owner IN UserGroup &
ce.author IN UserGroup :: true;

}

policy AclDomain {
collection DomainTargets;
owner: ce.author = ce.target.owner :: true;

given:
FORALL r IN ce.target.owner.userPolicy {r};

group0: new Group;
group1: new Group;
group2: new Group;
group3: new Group;
group4: new Group;
group5: new Group;
group6: new Group;
group7: new Group;
group8: new Group;
group9: new Group;
groups: group0 OR group1 OR group2 OR

group3 OR group4 OR group5 OR
group6 OR group7 OR group8 OR group9;

total: {groups OR owner} AND given OR deny;
?AclDomain: total@{ .target IN DomainTargets };

}

policy ACE(object target, operation action,
user author, boolean result) {

?ACE: ce.target = target & ce.action = action &
ce.author = author :: result;

}

policy ChineseClass
{

collection InterestClass;
?ChineseClass:
NOT EXIST e IN PastEvents {

ce.target IN InterestClass &
e.target IN InterestClass &
e.author = ce.author &
e.target != ce.target :: true

};
}

policy Role {
team Authorized;
team Active;
?Role: ce.action.name = "insert" &

ce.target = Active ::
ce.parameter[0] IN Authorized;

}

policy ChineseRBAC {
collection DomainTargets;
broker: new Role;
inspector: new Role;
china0: new ChineseClass;
china1: new ChineseClass;
china2: new ChineseClass;
china3: new ChineseClass;
china4: new ChineseClass;

china5: new ChineseClass;
china6: new ChineseClass;
china7: new ChineseClass;
china8: new ChineseClass;
china9: new ChineseClass;
ChineseWall: china0 AND china1 AND china2 AND

china3 AND china4 AND china5 AND
china6 AND china7 AND china8 AND china9;

LocalChina: ChineseWall@{.author IN broker.Active};
Inpection: ce.author IN inspector.Active ::

ce.action.name = "read";
total: {LocalChina AND Inpection} OR deny;
?ChineseRBAC: total@{.target IN DomainTargets };

}
policy Continent {

acl0: new AclDomain;
acl1: new AclDomain;
acl2: new AclDomain;
acl3: new AclDomain;
acl4: new AclDomain;
acl5: new AclDomain;
acl6: new AclDomain;
acl7: new AclDomain;
acl8: new AclDomain;
acl9: new AclDomain;
acls: acl0 AND acl1 AND acl2 AND

acl3 AND acl4 AND acl5 AND
acl6 AND acl7 AND acl8 AND acl9;

rbac0: new ChineseRBAC;
rbac1: new ChineseRBAC;
rbac2: new ChineseRBAC;
rbac3: new ChineseRBAC;
rbac4: new ChineseRBAC;
rbac5: new ChineseRBAC;
rbac6: new ChineseRBAC;
rbac7: new ChineseRBAC;
rbac8: new ChineseRBAC;
rbac9: new ChineseRBAC;
rbacs: rbac0 AND rbac1 AND rbac2 AND

rbac3 AND rbac4 AND rbac5 AND
rbac6 AND rbac7 AND rbac8 AND rbac5;

?Continent: acls AND rbacs;
}

policy Global {
europe: new Continent;
america: new Continent;
asia: new Continent;
africa: new Continent;
oceania: new Continent;
?Global: europe AND america AND

asia AND africa AND oceania;
}

