Enhancing Efficiency of Hybrid
Transactional Memory via Dynamic
Data Partitioning Schemes

Pedro Raminhas, Shady Issa, Paolo Romano
pedro.raminhas@tecnico.ulisboa.pt

INESC-ID/Instituto Superior Técnico, University of Lisbon

mailto:pedro.raminhas@tecnico.ulisboa.pt

Motivation

* Multicore processors are a mainstream

technology
* HPC
« Laptops
* Smartphones

* Hard to develop code that takes
advantage of multicore processors

Code

Coarse-Grained
Locking

Code

_3
{

Code

Fine-Grained

Locking

2

Motivation

* Multicore processors are a mainstrear

technology
* HPC
» Laptops Code _—
* Smartphones q 2
Code _CO_d_e_ -
* Hard to develop code that takes q q
advantage of multicore processors Colel oo
—
Coarse-Grained Fine-Grained

Locking Locking

Background of TM

* Transactional Memory [ISCA’ 93] promises:
 Ease of use

* performance equal or better than fine-
grained locking

» Extension of multi-processors’ cache
coherence protocols

« Speculative run => apply the concept of
transactions from databases to parallel code

* The underlying system guarantees isolation
and atomicity

Balance[client]++;

Background of TM

* Transactional Memory [ISCA’ 93] promises:

Threads
 Ease of use

\ A A 4

* performance equal or better than fine-

, , Tx_begin()
grained locking . _g

Balance[client]++;

Atomic

» Extension of multi-processors’ cache
coherence protocols Tx end()

« Speculative run => apply the concept of
transactions from databases to parallel code

* The underlying system guarantees isolation
and atomicity

Software Transactional Memory (STM)

- Implements TM abstraction via a software Threads
{ibrary #1 lvdvaTM LIB
No restriction on transactions’ read and write- rctide > -

set sizes
Good Scalability at high thread counts

X High instrumentation costs due to software-
based tracking of reads/writes

Tx_begin()

STM_WRITE(Balancelclient]++);

Atomic

%xieéd()

Hardware ITransactional Memory

* Best effort nature:

- Based on extension of the cache coherence mechanisms Threads

- Recently introduced both in high-end (e.g. IBM Power8)

and commodity (Intel Haswell) CPUs \AA/
Tx_begin()

No software instrumentation over reads and writes
Faster than STM for read and write-sets that fit in
hardware

Balance[client]++;

Atomic

XNo progress guarantees:

-Transactions can abort even when running solo due to,
e.g., exceeding cache capacities, context switches, timer
interrupts...

Fallback mechanism

» After a few attempts using HTM, the

khreads

transaction is executed using a software vV Yy
o . . . “/
synchronization mechanism: Ty ,@‘()
-
. o
Single global lock E| Balancelclient]++;
Progress guarantee <
X No parallelism (abort concurrent HW Tx_end()

transactions)

Hybrid Transactional Memory

 Fallback to STM => Hybrid Transactional
Memory (Hybrid TM)

preserve concurrency when activating the
fallback path

X Coordinating HTM and STM is not trivial

Atomic

Threads

vVvy

Tx_begin()
Balance[client]++;

Tx_end ()

#include STMQLIB

Problem

 State of the art Hybrid TM is not competitive with HTM and STM
[PACT’ 14]

Exceed HTM capacity by requiring HTM to store the
information of addresses accessed by STM [SPAA’11]

Spurious aborts of non-conflicting HTM transactions
whenever an update STM transaction commits

[ASPLOS’11]

10

DMP In a nutshell

* Dynamic Memory Partitioning (DMP) relies on memory protection
OS mechanism to enforce correctness between HTM and STM

Conventional HyTM design : DMP
« High overhead in absence of - Assume low frequency of contention
conflict: o between HTM and STM
1. Expensive instrumentation « High efficiency in absence of contention
of HTM path, or : between HTM & STM:
2. Reliance on non-scalable : 1. STM agnostic: can use scalable
STM E OREC-based schemes
e Relatively low cost incurred 2. No instrumentation of HTM
upon contention -+ Relatively higher overhead in absence of

conflict

Key-property

* Several reference benchmarks present partitionability in their
memory accesses [SPAA’ 08], i.e. transactions that access one
partition are unlikely to access other partitions.

Use multiple concurrency
STM . control mechanisms/STMs

STM

12

Key-property

 DMP-TM is desighed to take advantage of this property and
minimize contention between HTM and STM

« Each partition fits the characteristics of HTM and STM,
respectively

How??

13

DMP In a nutshell

« Using Operating system’s memory protection
mechanism

* |s possible to revoke the access to certain
pages to either HTM or STM

« Depending on the access performed (read or
write)

» Conflicts are detected at page level by
catching a
Segmentation Fault (SIGSEGV) signal

Page X

/

Access
Violation

SIGSEGV!

STM

HTM

14

DMP - Architecture

Auto-tuner

{ Scheduler }

access violations
v

Signal acquire Memory
handler access manager
rights

15

DMP - HTM

Auto-tuner

e No instrumentation (reduces
probability of exceeding cache
capacity)

{ Scheduler }

access violations
v

Signal acquire Memory
handler access manager
rights

16

DMP - STM

Auto-tuner

e TinySTM [PPoPP ’08]

e Very robust across
heterogeneous workloads

[Scheduler }

e Scalable Orec-based STM access violations
v
] . i acquire
e Added instrumentation to [hz'ﬁgfe'r } 3ccess { r'\:aer:gog }
synchronise with HTM rights 5

17

DMP - Memory Manager

Auto-tuner

{ Scheduler }

access violations
v

Signal acquire Memory
handler access manager
rights

18

DMP - Memory Manager

Physical Storage

Responsible for mapping the heap twice
mmap() system call 2 | 3 |4]| |N

%‘ ‘ Mapping twice each
s‘ physical page

Virtual Address Space

Page | Page | Page | Page Page Page | Page | Page | Page Page
1 2 3 4 N 1 2 3 4 N
fixed offset
""""" HTMHeap 'STMHeap

19

DMP - Read operations

Physical Storage

Page | Page | Page | Page Page
1 2 3 4 N

mprotect() system call to

%0& change protection of page

Virtual Address Space

Change of page Transactional
protection to read by STM
#Read

20

DMP - Write Operations

Physical Storage

Page | Page | Page | Page Page
1 2 3 4 = | N mprotect() system call to

change protection of page

Virtual Address Space

5 RW 5
: 1 . . !
'fixed offset
""""" HTMHeapTSTMHeapf
Change of page
protection to Transactional write
#None by STM

21

DMP - Unix Handler

Signal Handler

Auto-tuner

« HTM receives a SIGSEGV
signal whenever it tries to
access a page which will
cause a conflict

[Scheduler }

access violations

e Handler is responsible for i .
[Signal }acqu're [Memory }

either wait until the handler achss _’ manager
completion of STM or rights
change page protection

22

Problems - STM reads inconsistent values

1.Read variable on

Page X
Page X | € STM

23

Problems - STM reads inconsistent values

2.Update variable

on
Page X
HTM ————>

Page X

1.Read variable on

Page X
¢— STM

24

Problems - STM reads inconsistent values

2.Update variable

on
Page X
HTM ————>

Page X

1.Read variable on

Page X
¢— STM

25

Problems - STM reads inconsistent values

2.Update variable
on 1.Read variable on
Page X Page X
HTM ——— | pagex | €——— STM

\

4.Restore Page protection and
Update variable
On Page X

5. Commits!

26

Problems - STM reads inconsistent values

2.Update variable

on
Page X
HTM ————>

\

Page X

4.Restore Page protection and

Update variable
On Page X

5. Commits!

1.Read variable on

Page X
¢— STM

—

6.Read variable on
Page X

27

Problems - STM reads inconsistent values

« Solution: Use per-page variable transition count:

2.Update variable

on
Page X
HTM ——> | pagex

\

4.Restore Page protection and
Update variable
On Page X

Transition count [page X] ++

5. Commits!

1.Read variable on
Page X

¢ STM

—

6.detects change
of transition

count upon each

read ==> abort!

28

Problems - Unnecessary ping-pongs

2.Update variable

on
Page X
HTM ————>

Page X

1.Write variable on

Page X
¢— STM

29

Problems - Unnecessary ping-pongs

2.Update variable
on 1.Write variable on
Page X Page X
HTM = | pagex | ——— STM

4.Restore Page protection and
Update variable
On Page X

Problems - Unnecessary ping-pongs

2.Update variable

on 1.Write variable on
Page X Page X
HTM ——>| pagex | €——— STM
G

5.Revoke protection to STM and
Write variable on
Page X

4.Restore Page protection and
Update variable
On Page X

31

Problems - Unnecessary ping-pongs

2.Update variable

on
Page X
HTM ————>

Page X

6 |>‘>°“s

1.Write variable on

Page X
¢— STM

S

5.Revoke protection to STM and
Write variable on
Page X

32

°roblems - Unnecessary ping-pongs

« Solution: Use per-page variable writer count:
Handler only restores when no STM writers active on the page

2.Update variable

on
Page X
HTM ————>

Page X

6.M°°

1.Write variable on

Page X
¢— STM

S

5.Revoke protection to STM and
Write variable on
Page X

33

DMP - Scheduler

Auto-tuner

<
<

Scheduler

[|
y)

access violations
v

Signal acquire Memory
handler access manager
rights

34

DMP - Scheduler

Scheduler automatically
classifies transactions:

e HTM friendly (< 5% of
Capacity aborts)

« HTM non-friendly (Capacity
aborts)

35

DMP - Auto-tuner

Automatically detect non- Auto-tuner

partitionable workloads:

- If we spend more than 20% of
the time issuing sys calls:

Scheduler }

[
.

- Fallback to one of the access violations

backends Signal acquire Memory
handler Areess manager

rights

36

Evaluation

* Microbenchmarks

» Best-case Scenario: Completely disjoint set of pages, both
incurring heterogenous workloads

* Worst-case Scenario: Only one page

« STAMP
« Genome
* Intruder

« TPC-C

37

Evaluation

» Baselines
 DMP
 DMP w/Auto-Tune module
* HyNOrec
* HyTinySTM
e HyTL2
« HTM-SGL

* NOrec STM
* TinySTM

HyTM

Evaluation

* |IBM Powers8

10 cores

« 8 Threads per core

Evaluation - Disjoint Microbenchmark

80 threads
_§ 10 -~ dmp ¢ htm-sgl
(. -4 dmp-tune = hynorec
>
C TinyST -v- norec -~ tinystm
+ ©- hytinystm -© hytl2
£ 1
=
Q.
-
D
0.1
Q
n !

: 10 100
% Long Transactions (1,2,5,10,15,50,90,100)

Evaluation - Non-disjoint Microbenchmark

80 threads
§, 10 -~ dmp ¢ htm-sgl
Auto-Tune allows Cg -4 dmp-tune = hynorec
to avoid overheads C v~ norec -~ tinystm
in unfavourable A - hytinystm -© hytl2
workloads - 1
=
Q.
-
k5
D 0.1 0.06 x Throughput of
% TinySTM
! T _ = Due to ping-pong thus
1 10 100 fallback to TinySTM

% Long Transactions (1,2,5,10,15,50,90,100) 1

Evaluation - STAMP

-~ dmp > htm-sgl -v- norec —- tinystm
-4 dmp-tune = hynorec - hytinystm -© hytl2

Genome Intruder
q 35
130
— 25
Y/~ NX] 20

¥15
¢
0

AA

—NWARUTTDON0OO =

Throughput (1 0° Tx/s)

2 4 8 16 32 064
Number of threads

2 4 8 16 32 64

Evaluation - TPC-C

-~ dmp > htm-sgl -v- norec —- tinystm
-4 dmp-tune = hynorec - hytinystm -© hytl2

High partitionability Low partitionability

»12 4.5

> 4 -
10 sl S aa

o 8 3t

= sl 251

o 2 Uses auto-
< 4 5; tuner
(@)

3 5 1

o _ $0.5 = 0.125x less
|'E Q¢ — = (= than

2 4 8 16 32 64 Tiny>TH

Number of threads "

Summary

* DMP design optimized for workloads with infrequent conflicts
between transactions executing in HW and SW

* DMP uses OS memory protection mechanism to devise
partitions where back-ends can execute without interference.

» Up to ~20x speedups compared to state of the art HTM, STM
and HyTM

TECNICO (%)
LISBOA nesc d

Thank you

https://github.com/pedroraminhas/DMP-TM
http://www.gsd.inesc-id.pt/~praminhas/
pedro.raminhas@tecnico.ulisboa.pt

45

https://github.com/pedroraminhas/DMP-TM
http://www.gsd.inesc-id.pt/~praminhas/
mailto:pedro.raminhas@tecnico.ulisboa.pt

