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Abstract—Transactional Memory (TM) is an emerging
paradigm that promises to significantly ease the development
of parallel programs. Hybrid TM (HyTM) is probably the most
promising implementation of the TM abstraction, which seeks
to combine the high efficiency of hardware implementations
(HTM) with the robustness and flexibility of software-based
ones (STM). Unfortunately, though, existing Hybrid TM systems
are known to suffer from high overheads to guarantee correct
synchronization between concurrent transactions executing in
hardware and software.

This article introduces DMP-TM (Dynamic Memory
Partitioning-TM), a novel HyTM algorithm that exploits, to the
best of our knowledge for the first time in the literature, the
idea of leveraging operating system-level memory protection
mechanisms to detect conflicts between HTM and STM
transactions. This innovative design allows for employing highly
scalable STM implementations, while avoiding instrumentation
on the HTM path.

This allows DMP-TM to achieve up to ∼ 20× speedups
compared to state of the art Hybrid TM solutions in uncontended
workloads. Further, thanks to the use of simple and lightweight
self-tuning mechanisms, DMP-TM achieves robust performance
even in unfavourable workload that exhibits high contention
between the STM and HTM path.

I. INTRODUCTION

Multicore processors have become ubiquitous in today’s

computing systems, and the foreseeable future trends point

towards increasingly large and complex parallel architectures.

Developing applications capable of full untapping the potential

of modern parallel architectures, though, is far from being a

trivial task. The problem of regulating concurrent access to

shared state, in a scalable and provably correct way, is a key

source of complexity that developers of parallel programs need

to face. The traditional approach to this problem is to rely

on ad-hoc designed lock-based synchronization schemes. Un-

fortunately, though, the usage of lock-based synchronization,

especially at a fine-grain level, is prone to subtle concurrency

bugs and leads to developing non-composable [1] programs

that are notoriously complex to debug and reason about [2].

Transactional Memory (TM) [3] answers the urge to simplify

parallel programming by borrowing the familiar abstraction

of transactions from the database domain: programmers only

need to identify which code blocks should be executed atom-

ically, delegating to the implementation of the TM run-time

the problem of how to ensure atomicity.

The plethora of alternative systems that have been proposed

in the TM literature, e.g., [4]–[7], can be coarsely classified

depending on whether they rely on hardware implementations

(HTM), on software ones (STM), or on combinations thereof,

where the latter are often referred to as Hybrid TM (HyTM).

HTM and STM have complementary pros and cons. STM,

due to its software nature, can accommodate transactions

that access a virtually arbitrary large number of memory

regions. Further, state of the art STM systems encapsulates

sophisticated concurrency control schemes, which allow for a

high degree of concurrency and have been shown to achieve

high scalability. However, the STM’s need for instrumenting

in software read and write memory accesses represents a

major source of overhead, which can impose a severe toll on

performance [8].

Existing HTM implementations, conversely, leverage on the

pre-existing cache coherency protocol to track conflicts among

transactions and ensure atomicity. By avoiding the overhead of

software instrumentations, HTM can achieve high efficiency.

However, the cache-centric nature of current HTM implemen-

tations imposes also severe limitations. In particular, existing

HTM systems provide no guarantees on the ability to commit

transactions, even if these run solo for a variety of reasons,

e.g., exceeding cache capacity or being subject to a context

switch. Due to these limitations, HTMs require an alternative

fall-back path, typically a single global lock that is activated

in case a transaction fails too many times in hardware.

HyTMs seek to obtain the best of STM and HTM by

allowing HTM transactions to use some STM implementation

on their fallback path. Unfortunately, despite the number of

proposals in this area [7], [9]–[11], existing HyTM imple-

mentations still suffer from large synchronization overheads to

ensure correctness when HTM and STM run concurrently [12].

For example, HyTMs that fallback to the LSA’s STM [13]

require HTM to manipulate per-location metadata (often re-

ferred to as Ownership Records, or ORecs) used by STMs.

This extends significantly the memory footprint of HTM

transactions, making them prone to capacity aborts. The only

HyTM solution we are aware of that avoids instrumenting read

and write memory accesses is HyNORec [4], which uses the

NORec STM on its fallback path. However, NORec is opti-

mized for low thread counts and is less scalable than ORec-

based approaches [8], thus being a suboptimal fallback path

for large-scale parallel systems. Further, HyNOrec induces

spurious aborts of HTM transactions in presence of concurrent

commits of non-conflicting STM transactions.
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This work addresses the shortcomings of existing HyTMs by

presenting DMP-TM (Dynamic Memory Partitioning), the first

HyTM system that can rely on highly scalable ORec-based

STM implementations, while avoiding any instrumentation

cost on the HTM path.

The key novel idea exploited in DMP-TM is to rely on

operating system (OS) level memory protection mechanisms

to detect conflicts between HTM and STM transactions. DMP-

TM maps the heap of a TM application twice in the process

virtual address space, one view being accessed by the HTM

path and one by the STM back-end. It then relies on OS

memory protection mechanisms to selectively prevent pages

of one heap from being accessed by the opposite back-end.

This design brings two important benefits, but also non-

trivial challenges. A first key advantage is that DMP-TM is

agnostic to the actual STM implementation being used: this

allows DMP-TM to be used in conjunction with highly scal-

able and efficient ORec-based STM systems, while avoiding

the harsh instrumentation overheads imposed to the HTM path

by existing HyTM systems. Another major benefit stemming

from this design is that DMP-TM allows HTM and STM

transactions that access disjoint memory pages to commit

concurrently, sparing them from spurious aborts that would

instead arise with state of the art HyTM systems [7].

The key challenge related to DMP-TM’s design is that it

relies on system calls to enforce memory partitions, which

have a non-negligible cost. Indeed, DMP-TM investigates an

interesting trade-off, which to the best of our knowledge, has

not been currently explored in the literature: leveraging the

data partitionability present in applications in order to reduce

the runtime overheads of detecting conflicts among STM and

HTM transactions, at the cost of a performance penalty in case

conflicts between STM and HTM transactions do materialize.

The partitionability of memory access patterns of TM ap-

plications is a property already observed in some reference

benchmarks by previous works [14] and also confirmed by

our experiments. When TM applications do exhibit such a

property, DMP-TM allows both HTM and STM transactions

to execute avoiding mutual interference, thus minimizing the

synchronization of STM transactions and completely removing

the need of synchronization overheads for the HTM side. With

workloads that generate excessive contention between HTM

and STM transactions, the cost of migrating page protections

from a heap to the other may outweigh the performance gains

stemming from the avoidance of expensive synchronization

mechanisms in non-contended runs.

In order to maximize the gains achievable in favourable

workloads, while ensuring robust performance also with un-

favourable ones, DMP-TM integrates two key self-tuning

mechanisms that detect, in a transparent and automatic way:

i) which back-end (STM or HTM) to employ for the different

transactional blocks of a TM application; ii) whether the

degree of partitionability of the accesses generated by the STM

and HTM back-ends is too low, being thus preferable to use

exclusively the most efficient of the two back-ends.

We evaluated DMP-TM via an extensive study based on

both synthetic and realistic benchmarks, i.e., STAMP [15] and

a porting of TPC-C [16] to the TM domain, and compared

its performance with HTM, 2 STM and 3 HyTM systems.

The results of our study show that, in favourable workloads,

DMP-TM achieves up to 8.1×/20× speedups vs the best

STM/HyTM implementation and up to 37× vs HTM. DMP-

TM achieves significant performance gains even when faced

with realistic applications: DMP-TM outperforms all the con-

sidered baselines in 2 out of the 3 benchmarks of the STAMP

suite that are favourable for HyTM systems, achieving up to

2× speedups versus the best alternative. Analogous speedups

are obtained even with TPC-C. Overall, our study shows

that DMP-TM can achieve significant performance gains with

realistic workloads that do not exhibit perfectly partitionable

access patterns, providing experimental evidence in support of

the practical viability of the proposed solution.

II. RELATED WORK

As this work targets HyTM, it has relations with the body

of literature that focused on enhancing the efficiency of HTM

systems using software mechanisms.

A first branch of works aimed to enhance the efficiency

of HTM systems that use as fall-back path a single global

lock (SGL). Afek et. al [17] proposed using an auxiliary lock

to avoid the avalanche effect, where cascading aborts happen

when the SGL is acquired. Calciu et. al [18] investigated the

idea of lazy subscription of the global lock to reduce conflicts

between HTM transactions and the fallback path. TUNER [19]

leverages online tuning mechanisms to decide when to acquire

the pessimistic fallback lock. SEER [20] relies on probabilistic

techniques to identify and schedule conflicting transactions

executing in hardware. POWER8-TM [21] aims to increase the

effective capacity of hardware transactions via Rollback-only
Transactions, namely atomic, but non-serializable, transactions

available on IBM’s POWER8 processor [22].

DMP-TM has clearly strong relations with the research in

the area of HyTM systems, which, like DMP-TM, aim to

support the concurrent execution of both HTM and STM

transactions. One such example is HyNOrec [7]. HyNOrec

relies on a simple instrumentation mechanism on HTM side

that only requires to increase the sequence lock used by

NOrec. Although the instrumentation required by HyNOrec

is relatively lightweight, it exposes HTM transactions to

spurious aborts with non-conflicting STM transactions. Re-

duced HyNOrec [23] extended HyNOrec with a transactional

chopping mechanism to further enhance its efficiency. These

solutions are limited to employing NOrec, which is optimized

for low thread counts [4]. Conversely, DMP-TM is STM

agnostic and thus can be integrated with ORec-based STMs

that were shown to achieve much higher scalability levels [6],

[8]. Further, DMP-TM does not require instrumenting the

HTM path and does not suffer from spurious aborts.

Existing HyTM algorithms that support more scalable ORec-

based implementations do exist. Unfortunately, though, they

either suffer from spurious aborts (e.g., HyTL2 [23]), analo-

gous to HyNOrec, or require instrumenting the read, write and
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Fig. 1: Architecture of DMP-TM system

commit operations of HTM transactions (e.g., Invyswell [24]

and Hybrid-LSA [25]), incurring significant overheads —

which we will quantify via the study in Section V.

The Hybrid Cohorts [10] HyTM spares both HTM and STM

transactions from extra instrumentations by only allowing

HTM to commit when there are no active STM transactions.

An analogous idea was explored by PhTM [9], which aims

to reduce synchronization overheads between STM and HTM

by executing them in alternate phases. Unlike DMP-TM, these

solutions prohibit concurrency between HTM and STM.

The idea of exploiting memory protection mechanisms in

the context of TM was previously used [26] to ensure correct

synchronization between a STM system and non-transactional

code, i.e., ensure strong atomicity [1]. DMP-TM builds on

analogous base building blocks (hardware-/OS-based memory

protection mechanisms) but applies them in a different context

(HyTM) and to solve a different problem: enable concurrent,

yet safe, execution between HTM and STM transactions.

Finally, DMP-TM is related with prior works that investigate

the partitionability of workloads not only for TM applica-

tions [14], but also in relational [27] and NoSQL [28] domains.

Particularly relevant for DMP-TM is the work by Riegel et

al. [14], which has first shown that, even in irregular TM

applications like the ones included in the STAMP suite, it is

possible to encounter disjoint data partitions that can benefit

from the adoption of distinct (software-based) synchronization

schemes. It should be noted, though, that DMP-TM considers

different synchronization mechanisms than the ones targeted

by Riegel et al., and, hence, a different definition of ”partition-

ability”. Also, unlike the solution proposed by Riegel at al.,

DMP-TM is designed to operate (and can achieve significant

performance gains) also in presence of workloads that are not

perfectly partitionable.

III. DMP-TM: ARCHITECTURE AND OVERVIEW

Figure 1 depicts DMP-TM’s architecture, which is composed

by four main components: (i) Memory Manager, (ii) Scheduler,

(iii) Signal Handler and (iv) Auto-Tuner. It should be noted

that these are 4 logical components, which, as we will detail

in the next section, are physically implemented in a scalable

and decentralized fashion in DMP-TM to enhance efficiency.

The Memory Manager is responsible for regulating the

accesses by the HTM and STM paths to the shared trans-

actional heap. This entails: mapping the transactional heap

in the process address space twice (via the mmap() system

call), granting and revoking access grants of the two paths

Fig. 2: Mapping of the address space in the HTM Heap and in the STM Heap

to the shared heaps (via the mprotect() system call), as well

as caching in user space the state of the per-page memory

protections (an optimization that spares from executing system

calls in absence of contention between HTM and STM).

The Scheduler classifies transactional blocks as either HTM-

friendly or non-HTM-friendly, and accordingly establishes the

execution paths to be used to support their execution.

The Signal Handler is activated when HTM transactions ac-

cess a memory page that was last accessed in an incompatible

mode by a STM transaction, triggering an access violation. In

such a case, the Memory Manager is consulted to determine

when it is safe to restore the needed protection for HTM.

Finally, the Auto-Tuner determines when it is beneficial

to turn off one of the back-ends, as the excessively high

frequency of system calls’ activations outweighs the gains

achievable by using concurrently the HTM and STM paths.

As already mentioned, DMP-TM is designed to be STM

agnostic, i.e., it can enable concurrent execution of HTM with

any STM algorithm. The flexibility enabled by this feature of

DMP-TM is particularly relevant given that various works have

shown the lack of a no-one-size-fits-all solution when it comes

to STM implementations [29]. In fact, DMP-TM’s current

prototype integrates TinySTM, which was selected due to its

high scalability and to the efficiency of its implementation [8].

However, it would be straightforward to develop variants of

DMP-TM using alternative STM implementations.

As for the HTM implementation, DMP-TM assumes a

conventional/plain interface for transaction demarcation. The

only assumption that DMP-TM makes on the underlying

HTM system is that, upon a page access violation, the HTM

implementation aborts the transaction and makes available

to the signal handler the information on the address that

triggered the exception. This is an information that HTM

implementations by Intel do not currently disclose, but that

is instead provided by IBM POWER8’s HTM (and by other

IBM implementations, to the best of our knowledge).

A. Memory Manager: double heap approach

DMP-TM manipulates the process’ virtual space in such a

way that the heap is mapped twice (see figure 2) — one

heap being used by STM transactions (STM heap) and the

other by HTM transactions (HTM heap). Although both heaps

point to the same data, with this arrangement, it is feasible

to control the access rights of specific regions in one of the

heaps, without affecting the other heap. It is worth noting here

that this solution does not restrict a transaction type to be
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executed by a specific thread, i.e., any thread can execute any

transaction, either using HTM or STM, at any moment of time.

DMP-TM automatically maps the access to shared data to the

correct heap according to the back-end being used to execute

a given transaction.

Upon its initialization, DMP-TM creates a shared memory

zone using the directive shm open(). Then, using the Unix

system call mmap() the shared memory zone is mapped twice

to the HTM heap and STM heap. To control access rights,

DMP-TM uses the mprotect() system call, which operates at

the granularity of a single page. This system call changes

the protection of memory pages contained in a given range

of addresses. In order to allow an efficient way to calculate

the page to be revoked in the opposite heap, both heaps are

placed at a constant offset. Thus, calculating the address in

the opposite heap is achieved by simply adding or subtracting

a fixed offset. This implies basically two changes in the way

applications should be developed to be used with DMP-TM:

1) Dynamic memory should only allocate memory from

the shared memory region. To this end, we developed

a simple, custom implementation of malloc that allo-

cates memory exclusively from the range of addresses

associated with the shared region. Analogously to other

memory allocators, e.g., [30], DMP-TM’s custom malloc

implementation splits the range of virtual addresses in

n equally sized, disjoint, page aligned splits, where n is

the number of threads. This allows each thread to serve

malloc/free requests from its ”private” split, avoiding any

synchronization overheads with other threads.

2) Two code paths need to be produced, one for STM and

one for HTM transactions, each targeting the correspond-

ing heap. Given that the translation between the two

address spaces is simple (just a plain translation), the

generation of the code paths could be fully automated by

a compiler — although the current prototype of DMP-TM

does not provide compiler support for this task.

B. Memory Manager: enforcing dynamic partitions

DMP-TM spares HTM transactions from having to check

or notify the STM path about possible conflicts, placing any

required instrumentation on the STM path. Throughout the ex-

ecution of an STM transaction, before any shared data access,

DMP-TM checks if that data lies on a page accessible, in an

incompatible mode, by HTM and, if needed, it accordingly

removes the access permissions from the corresponding page

in the HTM heap. The result of this design is that whenever

a HTM transaction accesses a page for which it does not own

adequate access rights, the OS (which, in its turn, exploits

virtual memory hardware supports) triggers an access violation

by raising a SIGSEGV signal. This causes the immediate abort

of any HTM transaction that has already accessed that page,

or that will access that page in the future. This signal is treated

by the Signal Handler module, which is in charge of restoring

access rights for HTM transactions.

In order to regulate access to the HTM and STM heaps,

DMP-TM stores the following per page metadata:

• Status field, which tracks the access rights of a page in

the HTM heap. Pages can be in one of three states:

(i) Read/Write: HTM can update data on this page,

(ii) Read: HTM can only read data from this page and

(iii) None: HTM can not access this page in any form.

This allows the STM to retrieve in an efficient way, i.e.,

without issuing system calls, the access permissions of

the pages in the HTM heap.

• Transition count, which stores how many times the write

access permissions to a page have been restored by the

Signal Handler. This counter is monitored by STM trans-

actions to detect if the write permissions to a previously

read page have, in the meanwhile, been granted back to

HTM. If this is the case, some HTM transaction may

have overwritten a value previously read by the STM

transaction, which is, thus, restarted.

• Writers Count, which tracks the number of active STM

transactions that wrote to a page. This counter is atomi-

cally incremented by an STM transaction upon its first

write to a page and atomically decremented upon its

commit or abort. This variable is used to prevent restoring

access rights to a page in the HTM heap, while there are

active STM transactions that wrote to it, thus, preventing

HTM transactions from observing inconsistent states.

• Lock bit, which acts as a mutex that is acquired whenever

the protection and state of a page have to be altered,

preventing transactions from concurrently altering the

state and protection (via mprotect()) of the same page.

C. Transaction Scheduler and Auto-Tuner

As discussed earlier, the Scheduler module has the re-

sponsibility of determining the back-end (HTM or STM) to

be used by each transaction. We utilize a simple heuristic

to accomplish this task. The Scheduler tracks the number

of aborts due to the exceeding of the cache capacity by

HTM transactions. If the ratio (capacity aborts/number of
commits+capacity aborts) is greater than 90%, this transaction

type is labelled as STM.

In workloads with high degrees of contention between the

HTM and STM back-ends, DMP-TM is likely to incur high

costs due to the cost of handling access violations and issuing

system calls to restore the access rights on the HTM heap.

In order to detect when these costs outweigh the gains of

executing HTM without instrumentation concurrently with

STM, the Auto-Tuner module of DMP-TM employs a bailout
mechanism based on the following heuristic: If DMP-TM is

spending more than 20% of time issuing system calls, it resorts

to using either of the back-ends. The decision of upon which

back-end to fallback to is taken by sampling the throughput

of both back-ends and choosing the back-end with higher

throughput.

IV. ALGORITHM

Algorithm 1 shows the pseudocode for the STM path and the

Signal Handler’s logic. To simplify presentation, we present

pseudocode for the core functionality that allows STM and
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Algorithm 1 Pseudocode for STM and Signal Handler

1: Shared variables:
2: status[N ]← {0, 0, . . . , 0} � per page status field,
3: tc[N ]← {0, 0, . . . , 0} � per page transition count,
4: wc[N ]← {0, 0, . . . , 0} � per page writers count and
5: lb[N ]← {0, 0, . . . , 0} � per page lock bit

6: Local variables: � initialized upon every transaction attempt
7: private tc[N ]← {0, 0, . . . , 0} � local version of tc
8: pages read← ∅ � set of pages accessed as read
9: pages written← ∅ � set of pages accessed as write

10: function STM READ(addr)
11: page← GetPage(addr) � get page where this address lies
12: VALIDATE READSET()
13: if page /∈ pages read then � First time page is read
14: pages read← pages read ∪ page
15: private tc[page]← tc[page]

16: if status[page] == #READWRITE then
17: ACQUIRE lb[page]
18: MPROTECT(READ) � issue mprotect with read-only
19: status[page]←#READ � set status to read
20: RELEASE lb[page]

21: val← TX Read(addr) � call the STM API
22: if private tc[page] �= tc[page] then
23: STM RESTART()

24: return val

25: function STM WRITE(addr,val)
26: if page /∈ pages written then � First time page is written
27: ATOMIC INCREMENT(wc[page])
28: pages written← pages written ∪ page

29: if status[page] �=#NONE then
30: ACQUIRE lb[page]
31: MPROTECT(NONE) � issue mprotect with none
32: status[page]←#NONE � set status to none
33: RELEASE lb[page]

34: TX Write(addr, val) � call the STM API

35: function VALIDATE READSET
36: for page ∈ pages read do
37: if tc[page] �= private tc[page] then
38: STM RESTART()

39: function STM RESTART
40: for page ∈ pages written do
41: ATOMIC DECREMENT(wc[page])

42: TX Abort

43: function STM COMMIT
44: VALIDATE READSET()
45: TX Commit � ask the STM to commit
46: for page ∈ pages written do
47: ATOMIC DECREMENT(wc[page])

48: function HANDLE AV(addr,isReadOnly)
49: wait until wc[page] = 0 � drain writing STM transactions

50: ACQUIRE lb[page]
51: if ¬isReadOnly then
52: status[page]←#READWRITE
53: else
54: status[page]←#READ

55: MEM FENCE

56: if wc[page] �= 0 then
57: status[page]←#NONE
58: RELEASE lb[page]
59: go to 49 � wait for writers count to be 0

60: if ¬isReadOnly then
61: tc[page] + +
62: MPROTECT(READ/WRITE)
63: else
64: MPROTECT(READ)

65: RELEASE lb[page]

HTM transactions to correctly execute concurrently, omitting

the logic of the Scheduler and Auto-Tuner (see Sec. III-C), as

well as several optimizations that are discussed in Sec. IV-B).

STM reads. When a read is issued by a STM transaction, it is

first checked if the transition count of previously read pages

has changed since the last access. If any of them has changed

in the meanwhile, it means that some HTM transaction may

have updated that page (and possiby committed); thus, the

STM transaction is aborted. Next, if it is the first read access

to this page by this transaction, it stores a local copy of the

transition count to use it for future checks. Then, it checks

the metadata of the page to which it is issuing a read. If the

page’s access rights are Read/Write (line 16), which means

that a HTM transaction can perform updates on it, then the

lock bit is acquired in order to change the protection of the

page to Read, allowing concurrency with HTM transactions

that read this page. After setting the metadata of the page

and releasing the lock bit, the transaction effectively reads the

memory position, using the underlying STM’s API, and checks

again if the transition count has changed. If so, the performed

read is not legal and consequently, the transaction is restarted.

If not, the read is successful.

STM writes. Upon a write to shared data from within a STM

transaction, if it is the first time the transaction writes to a page

it atomically increases the writers count for that page (line

27). This blocks any attempt by concurrent Signal Handlers

of changing the HTM access rights for that page. Then it is

checked if the page corresponding to the location to be updated

is accessible by HTM (line 29). If so, after acquiring the

lock bit, the access rights for HTM are revoked. This protects

HTM from witnessing inconsistent states by observing values

written by incomplete STM transactions. After changing the

page access rights via mprotect() to None and updating the

status field of the page, the lock bit is released and the

transactional update of the value is finally performed.

STM aborts. Before a STM transaction aborts, either due to

data conflict or abort from DMP-TM, the writers count of all

the pages previously written by the transaction is decreased

(lines 40-41). This allows HTM transactions to regain accesses

to those pages.

STM commits. After a STM transaction finishes its execution,

it enters in the commit phase, in which it first checks if the

transition count of the pages previously read have changed

meanwhile (line 44). In the case they have changed, the

transaction restarts as explained before. Otherwise, it continues

to commit according to its implementation-dependent logic.

Then, finally, it decrements the writers count atomically for

all the pages it has written to (lines 46 - 47).

Signal Handler. The Signal Handler (function HAN-

DLE AV()) is activated whenever a HTM transaction ac-

cesses a page for which it does not have adequate access rights.

In this case the OS generates a SIGSEGV, which is intercepted

and managed in the same thread that generated the exception.

After having extracted the target address of the memory oper-

ation that triggered the access violation1, the Signal Handler

waits for the writers count of the corresponding page to be

zero. Next, it acquires the page’s lock bit, sets the metadata to

1This information is obtained via the siginfo struct that is passed by the
OS to the Signal Handler. Existing Intel implementations of HTM reset the
siginfo if the access violation occurs in a hardware transaction, which is the
reason why DMP-TM does not currently support Intel’s architecture.
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Read/Write or Read (depending on whether the exception was

generated in an update or a read-only transaction) and checks

again for the writers count, to ensure that it did not change in

the meanwhile. Otherwise, the Signal Handler defers to any

active writing STM by resetting the access rights to None and

going back to wait until the writers count is zero. After that,

the Signal Handler can restore the HTM access rights to the

desired page and, in case the exception occurred in an update

transaction, it increments the transition count to notify STM

transactions about the occurrence of possible conflicts with

HTM transactions. It should be noted that transition count is

increased before acquiring the Read/Write rights, in order to

guarantee that if a HTM transaction is granted back permission

to update and commit a page (via MPROTECT()), the STM

path is guaranteed to detect the corresponding change of the

transition count.

A. Correctness Argument

In this section, we provide a set of (informal) arguments

on the correctness of the DMP-TM. We organize our analysis

by discussing, separately, how DMP-TM enforces isolation of

HTM and STM transactions.

Isolation of HTM transactions. The key invariant enforced

by DMP-TM to ensure correctness of a HTM transaction

THTM , despite the concurrent execution of any STM trans-

action TSTM , is to ensure that THTM has no permission

to access any of the pages written by TSTM throughout

its execution. To this end, STM transactions remove HTM’s

access rights to each page they write to, before issuing the

actual write operation. As already mentioned, the removal

of the access right causes the immediate abort of any HTM

transaction that had already read/written that page, as well as

future accesses by HTM transactions to that page.

It is however necessary to carefully synchronize the concur-

rent execution of the Signal Handler(s) and STM transactions

that compete to restore/remove the access rights of the same

page. In particular, it is necessary to ensure that the Signal

Handler can restore HTM’s access to a page only when there

are no active STM transactions updating that page, i.e., when

the page’s writers count is set to zero. This is achieved by

having the Signal Handler check for the writers count twice,

while setting the metadata to Read/Write in between. For the

second check to be valid, there can be no concurrent STM

transaction that started a write operation on this page yet

— recall that the writers count is atomically incremented

as the first step of processing a STM write. In case of a

STM transaction T starting a write operation after the second

check of the Signal Handler, then T will notice that HTM

transactions have access to the page, thanks to the memory

barrier that precedes the second check (line 55); in this

case, T will acquire the page’s lock (synchronizing with

any concurrent Signal Handler operating on the same page)

and issue a MPROTECT that will abort any concurrent HTM

transaction.

Isolation of STM transactions. In order to ensure correctness

of STM transactions, DMP-TM guarantees that none of the

pages accessed by STM transactions can be altered by HTM

transactions, since the time in which each page is first read and

until the end of the STM transaction. This is achieved via two

key mechanisms: i) ensuring that a STM transaction accesses

a page after having removed any non-compatible permission

to the corresponding HTM heap’s page; ii) checking the

transition count of every read page, upon each read and before

commit, letting the transaction proceed (without aborting) only

if none of them changed since the first time in which that page

was read. This implies that the page was not concurrently

modified by a HTM transaction, since the transition count
would be found different if protections had been changed in

the meanwhile. It should also be noted that the atomicity

of each individual STM read is guaranteed by reading the

transition count of a page before and after performing the

read via the API of the underlying STM implementation.

It should be noted that, in order to reduce overheads, STM

transactions check the status of a page without first acquiring

the corresponding lock. It is hence possible that a STM

transaction finds, in line 16, a page as not writeable by the

HTM path and that, before it completes the read, a Signal

Handler restores write permission to HTM for the same page.

In this case, HTM transactions may even commit and update

to that page, before the STM completes executing its read. In

such a case, though, the transition count would be found to

have changed, when it is checked for the second time in line 22

by the STM transaction. If, instead, the values of the transition

counts are not found to have changed, then the STM read is

also guaranteed to observe the permissions set by the Signal

Handler when it increased the value of transition count — as

the memory fence in line 55 ensures that if the increase to

the transition count is globally visible, so is the corresponding

page’s state. This causes the STM transaction to synchronize

with concurrent Signal Handlers, by acquiring the page’s lock,

and to ensure that HTM write permissions are removed before

performing the read.

B. Optimizations

The following are a set of optimizations that can be applied

to the algorithm described above to further enhance its perfor-

mance:

• instead of checking the transition count of every accessed

page upon each access, one can use a global transition
count that is incremented atomically from within the

Signal Handler together with the increment of the page’s

transition count. Then instead of checking each transition
count of every page upon each STM access, it suffices to

only check if the global transition count has changed. If

it has not (the common case in workloads that exhibit

good partitionability), no further checks are required;

else, we undergo the normal procedure and have the STM

transaction check the transition count of each page it

previously read.

• instead of maintaining a single writers count per page

shared by all STM threads, which must be incremented or

decremented atomically, one can use a set of, per thread,
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local counters. This will spare STM transactions from the

need to perform expensive atomic operations. However,

the Signal Handler will need to ensure that all the flags are

unset before it attempts to change the page’s protection.

• certain STM algorithms need to re-validate their readset

in order to ensure the safe execution of transactions, e.g.,

as in the case of TinySTM in presence of concurrent

commits of update transactions. These STM implemen-

tations could be made aware of the execution of read-set

validations performed by DMP-TM (if transition count is

found to have increased), which may allow them to spare

duplicate validations.

The current implementation of DMP-TM integrates the first

two optimizations, but not the last one. Unlike the first two

mechanisms, in fact, the last optimization comes at the cost of

requiring to alter the inner logic of the STM implementation

employed by DMP-TM, whereas one of the key design goals

of DMP-TM is its STM-agnostic nature.

V. EVALUATION

This section reports the results of an extensive experimental

study, in which we evaluated both the static (DMP-TM) and

the dynamic version (DMP-TUNE) of the proposed solution.

In the static version, transactions are statically assigned to

either one of the back-ends according to an exhaustive offline

search for the best configuration, whereas in the dynamic

version the scheduler module decides upon the transaction as-

signment during run-time. We compared DMP-TM and DMP-

TUNE (whose implementation we made publicly available2)

against: i) HTM with a single global lock as fallback (htm-

sgl); ii) TinySTM with the same configuration as the one

used for DMP-TM and DMP-TUNE; iii) HyNOrec using 2

counters to decouple subscribing from signaling; iv) NOrec

with write back configuration; v) HyTinySTM, which we

implemented by adapting the original algorithm [25] to replace

the prefetchw instruction, which is not available in current

HTM implementations, with a write; vi) HyTL2, based on

the algorithm described in [23]. All hardware-based solutions

try executing each transaction 10 times in hardware before

resorting to the fallback path. DMP-TM and DMP-TUNE,

however, try the transactions attributed to HTM 100 times

before acquiring the global lock. This is done since the

transactions attributed to HTM in DMP-TM and DMP-TUNE

are hardware-friendly and likely to commit using HTM, if

tried long enough. Conversely, using such a high retry count

with other hardware-based solutions will dramatically degrade

their performance, since the approaches try all transactions

(including non-HTM-friendly ones) first in hardware.

We start by using synthetic benchmarks to generate diverse

workloads. intended to test extreme scenarios regarding parti-

tionability of HTM and STM access patterns. Then, we tested

DMP-TM using real-world complex benchmarks, namely two

benchmarks of the popular TM benchmark suite STAMP [15]

2https://github.com/pedroraminhas/DMP-TM

 0.1

 1

 10

 1  10  100

1 thread

sp
ee

du
p 

w
rt

. t
in

ys
tm

dmp
dmp-tune

htm-sgl

 10  100

10 threads

% Long Transactions (1,2,5,10,15,50,90,100)

hynorec
norec

 10  100

80 threads

hytinystm
hytl2

 0

 20

 40

 60

 80

 100
1 thread

C
om

m
its

 (
%

)

HTM SGL STM

hytinystm
hynorec

htm-sgl
dmp

10 threads

% Long Transactions (1,2,5,10,15,50,90,100)
hytinystm

hynorec
htm-sgl

dmp

80 threads

hytinystm
hynorec

htm-sgl
dmp

Fig. 3: Speedup and commits breakdown for disjoint data structures running
1, 10 and 80 threads

and TPC-C [16]. All presented results were obtained by exe-

cuting on an 80-way IBM Power8 8284-22A processor with

10 physical cores, where each core can execute 8 hardware

threads. The OS installed is Fedora 24 with Linux 4.7.4 with

page size of 64KB and the compiler used is GCC 6.2.1 with

-O2. The reported results are the average of 5 runs.

Thread pinning was used to pin a thread per core at the

beginning of each run for all the solutions until exhausting

the number of available cores, and then distributing them in

round-robin fashion to minimize unbalances between cores.

A. Synthetic Benchmarks

In order to assess the effectiveness of DMP-TM in diverse,

yet identifiable workload settings, we rely on a synthetic

benchmark based on two different hashmaps, storing 128,

resp. 1024, elements per bucket. This setting was motivated

by the fact that if HTM transactions read all the elements of a

bucket from the first hashmap, the size of the read-set fits in

the cache. However, if HTM transactions read all the elements

from the second hashmap, the read-set will exceed the cache

size, thus causing a capacity abort.

Disjoint data structures. To demonstrate the potential of

DMP-TM we consider a workload, composed of two trans-

actions types, one amenable for execution in hardware and

one not (as it exceeds deterministically HTM’s capacity), that

generate perfectly partitionable memory accesses, i.e., the sets

of pages accessed by each transaction type are disjoint. To We

populated the hashmaps to use 64 pages in total and used a

workload with 10% lookups and 90% update transactions.

Figure 3 reports the throughput speedup normalized with

respect to TinySTM and the breakdown of commits for three

different thread configurations: 1, 10 and 80 threads. For each

of these configurations, we varied the percentage of small

transactions executed. The x-axis reports the probability of

a thread to be executing a long transaction from 1% to 100%

(only long transactions). The results show remarkable gains
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either for DMP-TM and DMP-TUNE, since in this experiment

both data structures are disjoint and the operations executed

are so heterogeneous that HTM shines when executing short

transactions, whereas STM excels with long ones. We normal-

ize the throughput of all the solutions according to TinySTM

(which we accordingly omit from the plot), and use log scale

on both y and x-axis to enhance visualization.

With one thread, we can assess the overhead that DMP-TM

and DMP-TUNE incur. When the workload constitutes mainly

small transactions, both variants of DMP-TM achieve better

performance than HTM-SGL, thanks to their ability to run

HTM transactions without any instrumentation and executing

large transactions in STM — which spares the cost of retrying

them several times before using the fallback path. As the per-

centage of large transactions in the workload increases, DMP-

TM variants start to be outperformed by TinySTM, paying a

penalty of ∼20% in the 100% long transactions workload. This

is the cost of the extra instrumentation that DMP-TM adds on

top of TinySTM. Note that NOrec consistently outperforms

TinySTM, thanks to its more lightweight instrumentation.

At 10 threads, DMP-TM becomes the best performing back-

end, achieving speedups of up to ∼2× compared to HTM-

SGL, and more than 3× compared to TinySTM and ∼ 6×
compared to NOrec-based solutions. This can be explained by

the breakdown of commits shown in the middle row of Figure

3. DMP-TM is able to execute short transactions in HTM

and long transactions as STM, unlike HTM-SGL that executes

large transactions using the pessimistic single global lock. In

this configuration, TinySTM starts to surpass the throughput

of HTM-SGL when the workload is running operations in the

smaller data structure with probability less than 20% but only

at 50%, TinySTM’s throughput equalizes DMP-TM. At 100%

of large transactions, due to the fact that DMP-TM requires

additional instrumentation on top of STM, it suffers ∼20%

performance penalty w.r.t. TinySTM.

80 Threads continue showing the same trend as 10 threads,

but with even greater speedups: more than 20× compared

to HTM-SGL, ∼10× compared to HyTinySTM and ∼7×
compared to TinySTM. The gains with respect to both HTM-

SGL and HyTinySTM are due to DMP-TM’s ability to execute

more transactions in hardware, as shown in the commits

breakdown plot. At high number of threads, capacity aborts

become non-deterministic as more threads share hardware

resources and it is, thus, beneficial to retry more times in

hardware than reverting to the fallback path. However, without

differentiating between deterministic and non-deterministic

capacity aborts, high retry counts becomes harmful in terms of

throughput. Again, TinySTM outperforms DMP-TM whenever

the probability of executing large transactions is greater than

30% leading to a 30% overhead at 100% large transactions.

Throughout the entire experiment, the dynamic version of the

algorithm (DMP-TUNE) worked as expected, since whenever

transactions execute operations in the smaller hashmap the

percentage of aborts due to exceeding transactions footprint is

negligible. Nevertheless, when transactions execute operations

in the larger hashmap, they deterministically abort due to
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exceeding the cache size. Thus, the scheduler module assigns

the type of transactions accessing large hashmap as STM

transactions, matching the offline assignment used by DMP-

TM . Thanks to this assignment ability, DMP-TUNE is able

to still benefit from using high retry counts unlike other

hardware-based solutions.

Non-disjoint data structures. This experiment stresses the

worst case scenario for DMP-TM, by allocating both hashmaps

in the same memory region and interleaving the buckets of

each hash map. With the granularity of DMP-TM being a

single page, any access to either of the hashmaps is going to

be considered a conflict. Therefore, DMP-TM will suffer from

a very large number of system calls, as for either of the back-

ends to commit a transaction, it is most likely that some page

protection has to be restored, given that we are considering a

90% update workload.

Figure 4 depicts the results of running this workload with

1, 10 and 80 threads. It is clear that DMP-TM suffers large

performance penalties, up to 20× compared with TinySTM

in the worst case. This is true across all workloads except

when the workload is dominated by either short or long

transactions. At those extremes, there is no need for changing

the pages access rights since DMP-TM is executing only one

of the back-ends. Other than that, DMP-TM incurs significant

overheads. This can be explained by looking at the ratio of

system calls to commits, which shows that DMP-TM can pay

up to more than 0.8 system calls per commit.
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This is a typical workload where the Auto-Tuner module

should decide to bailout and stick to either one of the back-

ends. Inspecting the speedup plots in Figure 4, we can see

that DMP-TUNE manages to match the performance of the

best performing of both back-ends. At 1 thread, HTM-SGL

performs better than TinySTM, except when the system is

running only large transactions (right side of the 1 thread

figure); so, as expected, DMP-TUNE falls back to HTM-SGL

with percentage of long transaction less than 100%. At 10

threads, by looking at the commit breakdown is possible to

see that DMP-TUNE falls back to HTM-SGL in workloads

characterized by less than 50% of long transactions. However,

after this mark, TinySTM begins to be the best performing

back-end. Thus, DMP-TM falls back to TinySTM at this mark.

At 80 threads mark, the best performing back-end is TinySTM,

independently of the percentage of long transactions, and

DMP-TUNE correctly adapts itself to employing TinySTM.

B. STAMP

STAMP [15] is a popular TM benchmark suite constituted

of 8 different complex applications. Out of the 8 applications,

Genome and Intruder are the ones that typically benefit from

HyTM systems as they encompass both small and large

transactions. Other applications generate either only small

transactions (SSCA2 and KMeans) or large ones (Labyrinth

and Yada). Thus, there is no room for improvement for

any HyTM. The remaining two applications are Bayes and

Vacation. Bayes is known to suffer of very high variance and

yields unreliable results [31]. Vacation is another benchmark

that can benefit from a HyTM system, however, it has low

degree of partitionability. Hence, DMP-TUNE would perform

as good as either HTM or STM. We omitted the results of

Vacation for space constraints.

Genome represents the process of reconstructing the original

source genome from a pool of DNA segments. We conducted

an extensive brute-force experimental study in order to infer

which of the 5 transaction types generated by Genome to

run with HTM or STM. We found that this workload in-

deed presents partitionability, as we can define three disjoint

transactional clusters according to their data access. DMP-TM

successfully exploits this workload’s property, achieving the

maximum throughput and scaling to 64 threads, yielding ∼2×
higher throughput than HyTinySTM, the second best baseline

at 80 threads (Figure 5).

This can be explained by analyzing the commits break-

down, which shows DMP-TM’s ability to execute >90% of

transactions in hardware, ∼1% using the pessimistic fall-

back path and ∼5% as STM at all thread counts. Although

HyTinySTM manages to demonstrate similar commit patterns

up to 8 threads, it performed worse than DMP-TM due to the

extra instrumentation it imposes to its HTM path. Beyond 8

threads, HyTinySTM could not commit as many transactions

in hardware, since it incurs more frequent capacity aborts that

consume its retry count and lead to more frequent activations

of the fallback path.

Furthermore, the workload is characterized by low con-

tention. Therefore, up to 4 threads, NOrec and TinySTM

achieve slightly better throughput than DMP-TM as they do

not impose any extra instrumentation to their STM path. Up

to 2 threads, HyNOrec, shows similar throughput as DMP-

TM, since as shown in the commit breakdown plots of Figure

5, it still manages to commit 95% and 38% of the times in

hardware, respectively for 1 and 2 threads, and uses as fallback

NOrec, which as stated before achieves higher throughput than

DMP-TM in this workload for a low thread count. However,

as the thread count increases, abort rate starts to increase. In

these contention settings, DMP-TM benefits from executing

transactions in software, which enables more concurrency

than the SGL fallback used by HTM-SGL. For the case

of HyNOrec, the fallback of only one thread makes all the

threads fallback to NOrec, and this has an adverse impact on

performance when the thread count is higher than 4. After

16 threads, HyTinySTM starts to incur overheads due to

the fact that at this thread count, cores are shared by more

than one hardware thread, which reduces the effective cache

capacity available for each hardware thread. As HyTinySTM

instruments hardware transactions to check for changes in the

STM ORecs, it suffers from an increased abort rate compared

to the solutions that do not instrument hardware transactions,

namely HTM-SGL and DMP-TM. For the case of HyTL2,

unlike the STM counterpart, TL2, not shown in the study,

does not extend the snapshot used during STM reads, which

leads to an increase of the transaction’s abort rate.

Intruder is a signature-based network intrusion detection

system that encompasses three parallel transactions. The right

column of figure 5 shows DMP-TM being the only back-end

to scale up to 16 threads achieving ∼1.5× higher through-

put than TinySTM, the second best performing back-end.

The lower speedups in Intruder, as compared with Genome,

can be attributed to the lower percentage of transactions

(∼30%) that DMP-TM manages to execute in hardware.

Again, HyTinySTM, which even commits more transactions in

hardware, is outperformed by DMP-TM achieving 2× lower

throughput at 16 threads, due to the costly instrumentation of

its HTM path. NOrec’s HyTM counterpart follows the same

trend as NOrec. However, the commit breakdown shows that

starting the execution in the HTM path and falling back to

NOrec causes performance losses in the order of 0.73× com-

pared to NOrec. It is worth noting that NOrec achieves the best

throughput until 4 threads, thanks to its lower instrumentation

costs. However, at 8 threads, its throughput deteriorates due

to the increase of the contention in the workload. Further,

HTM-SGL and HyTL2 are the worst back-ends, due to the

pessimistic nature of the fallback of the former and to the

inability of the STM fallback path of the latter to perform

well in high contention workloads.

C. TPC-C

Finally, we move to evaluating DMP-TM using TPC-C [16].

TPC-C is a well-known benchmark for relational database

management systems that emulates a workload of a whole-
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Fig. 5: Speedup, commits breakdown and system calls ratio for Genome and
Intruder of STAMP benchmark suite.

sale supplier. It consists of five transactions operating on

a database. In this work, we use a port of TPC-C for in-

memory databases3 where transactions are executed by an

underlying TM implementation. To promote partitionability,

we performed vertical partitioning, according to the TPC-

C standard, by moving attributes that are points of conflict

to different memory regions to reduce false conflicts. We

consider two different workloads that exhibit different degrees

of partitionability between short and long transactions.

The left column of Figure 6 reports the results of a workload

composed by 95% of payment, 1% stock level and 4% of

delivery transactions. This workload has a high degree of

partitionability, reflected in a very low system calls to commits

ratio. DMP-TM achieves the best throughput showing up to

2.4× speedups compared with the second best contender,

TinySTM. At a low thread count, namely up to 4 threads,

TinySTM achieves slightly better throughput than DMP-TM

due to the fact that it has no extra instrumentation. Although

HTM-SGL and HyTinySTM execute more than 90% of the

transactions in hardware, they yield ∼3× lower throughput

than DMP-TM. For HTM-SGL, this is due to the fact that

stock level and delivery operations, that do not meet HTM’s

capacity limitations, are much longer than payment operation.

This hinders parallelism and thus limits throughput gains

and scalability of HTM-SGL. While for HyTinySTM, also in

3https://github.com/evanj/tpccbench
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Fig. 6: Speedup, commits breakdown and system calls ratio for two workloads
of TPC-C.

this case the problem is rooted to the high instrumentation

costs of the HTM path. NOrec, HyNOrec and HyTL2 incur

performance losses due to the fact that payment operation

has very high contention. After 32 threads, neither DMP-

TM nor DMP-TUNE scale. This happens despite the commit

breakdown plot (and the abort rate) incurred by these solutions

do not show any significant spike. We have verified, though,

that, above 32 threads, the Instruction Per Cycle drop severely,

with a corresponding spike in the number of stalled cycles —

which suggests that, increasing the thread count, the bottleneck

for DMP-TM eventually becomes contention to some physi-

cal resource, probably memory or some micro-architectural

resource of the processor.

Finally, the right column of Figure 6 shows the throughput

results for a workload with low degree of partitionability, as

reflect by the high systems calls to commits ratio. Due to

the high number of system calls, DMP-TM incurs 16× lower

throughput compared with TinySTM at 80 threads. Again

thanks to its self-tuning ability, DMP-TUNE is able to fallback

to TinySTM and achieve similar throughput.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented DMP-TM, a HyTM algorithm that

exploits a key novel idea: leveraging operating system-level

memory protection mechanisms to detect conflicts between

HTM and STM transactions. This innovative design allows

for employing highly scalable ORec-based STM implementa-
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tions, while avoiding any instrumentation on the HTM path.

DMP-TM demonstrated robust performance in an extensive

evaluation, achieving gains of up to ∼20× when compared to

state of the art HyTM systems.

As a concluding remark, we note that the current imple-

mentation of DMP-TM cannot be used with Intel’s HTM

implementations, which, unlike IBM’s, lack support for a

simple feature: reporting information on the address that

caused an access violation that occurred within a transaction.

We hope that the performance benefits achievable by DMP-

TM will motivate other CPU manufacturers, besides IBM, to

integrate this feature in their future CPU generations.

In our future work, we plan to investigate two mechanisms to

allow DMP-TM to cope with this limitation and allow interop-

erability with existing Intel’s HTM implementations. The first

technique consists in obtaining the address of the instruction

that caused the exception via the Last Branch Records, which

in recent Intel processors store the last branches executed

by the CPU and can be used to pinpoint the address of

the instruction that caused an access violation [32]. The

key challenge with this approach lies in determining which

memory address had the offending instruction targeted, based

on the program control flow information stored in the LBRs.

A second approach we intend to investigate is the use

of Processor Tracing (PT), namely a recent ISA extension

that supports inbuilt tracing mechanism for Intel TSX, and

provides extensive control not only on the control flow within

transactions, but also precise timing analysis on asynchronous

events (like interrupts and signals). While it appears that

this information could be used to accurately estimate the

memory addresses that triggered an access violation by a HTM

transaction, the overheads incurred by tracing and analyzing

this information in run-time are still unclear and can only be

evaluated by building a realistic prototype.
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