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Abstract
The Collections framework is an essential utility in virtually
every Java application. It offers a set of fundamental data
structures that exploit Java Generics and the Object type in
order to enable a high degree of reusability. Upon instantia-
tion, Collections are parametrized by the type they are meant
to store. However, at compile-time, due to type erasure, this
type gets replaced by Object, forcing the data structures
to manipulate references of type Object (the root of the
Java type system). In the bytecode, the compiler transpar-
ently adds type checking instructions to ensure type safety,
and generates bridge methods to enable the polymorphic be-
havior of parametrized classes. This approach can introduce
non-trivial runtime overheads when applications extensively
manipulate Collections.
We propose the Java Collections Specializer (JCS), a tool

we have developed to deliver truly specialized Collections.
JCS can generate ArrayLists, ConcurrentHashMaps and
HashMaps with true type specialization that incur no per-
formance penalties due to bridge methods or type checking
instructions. JCS offers the possibility to easily extend its use
to other Collection data structures. Since the specialized data
structures extend and inherit from the generic counterpart’s
superclasses and interfaces, the specialized versions can be
used in most places where generic versions are employed.
The programmer uses JCS to generate specializations ahead
of time. These are generated under the java.util package,
and need only be added to the class path and integrated into
the application logic. We show that the specialized data struc-
tures can improve the runtime performance of data intensive
workloads by up to 14% for read use-cases and 42% for write
use-cases.
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1 Introduction
Data structures stand at the core of all software applications.
Structures such as hash maps, lists, double-ended queues,
or sets are a necessity for building complex software solu-
tions. Consequently, these fundamental data structures are
frequently provided as part of the standard development kits
across a large number of programming languages. For exam-
ple, in Java these data structures are available as part of the
Collections framework, in C++ they are part of the Standard
Template Library, and in Rust they are offered as part of the
Standard Collections Library. Such data structure libraries
exploit language constructs to ensure seamless reusability
across any type of application. These constructions carry
different names and implementations across languages, but
their ultimate goal is to allow the programmer to write be-
havior once and repeatedly reuse it across various data types.
In Java and Rust, this mechanism is called Generics, and in
C++ it is called Templates.
The Collections framework in Java represents a funda-

mental part of the programming language’s ecosystem. The
framework consists of a set of essential parametrized [8]
data structures, which are represented, on the one hand,
by contract-defining interfaces, such as: Map, List or Set,
and, on the other, by the classes that carry out their imple-
mentations. Well known implementations include HashMap,
ArrayList, HashSet and ConcurrentHashMap. The Collec-
tions framework extensively relies on the use of Generics
and the Object type. This gives these data structures the
ability to be easily reused with any data type. Due to the
intrinsic ways in which Java implements Generics via the
use of type erasure [1, 6], as well the frequent use of the
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Object type, at runtime such data structures end up stor-
ing and manipulating references of the Object type rather
than the target type to which the programmer specializes.
Consequently, the compiler introduces a set of type checks,
type casts, as well as additional proxy methods around these
data structures, which imply a non-trivial overhead when
the application processes large collections. This can come
as a surprise to the programmer, which expects the data
structures to be truly specialized and to incur no additional
overheads.

We henceforth refer to the true specialized data structures
as specialized data structures, and the original Java imple-
mentations of such data structures as generic data structures.
In this paper we present an approach towards generat-

ing truly specialized data structures from the collections
framework:

• We present JCS, a tool capable of generating special-
ized data structures from the Collections framework,
and explain its mechanisms for generating specializa-
tions. The specialized data structures offer identical
behavior, but do not rely on using Generics or the
Object type, thus avoiding performance penalties.

• We show that specialized data structures generated
by JCS produce up to 14% runtime improvement on
read intensive use-cases, and 42% on write intensive
use-cases.

2 Background
The ubiquitous nature of the Java Collections framework
is due in no small part to its large degree of reusability. To
enable this reusability, the classes and interfaces in the frame-
work make extensive use of Java Generics. This allows such
data structures to be easily employed in virtually any con-
text, and with any super-type. For example, instantiating an
ArrayList that stores instances of a the type rooted in the
Point type, one can use ArrayList<Point> myArrayList
= new ArrayList<Point>().

Due to an early design decision, Java implements Generics
without any type specialization. This contrasts, for example,
with languages such as C++ and C#. Instead, Java implements
it through type erasure. Type erasure allows multiple special-
izations of the same data structure to be reduced to a single
one at compile time, reducing the memory footprint of the
application code. To ensure consistent types and polymor-
phism, the compiler introduces type checks, casts and bridge
methods. This design brings limited advantages in modern
runtimes, as memory is no longer a limiting factor. Moreover,
all the additional compiler code is expensive and increases
the cost of working with parametrized data structures

2.1 Type Erasure and Type Checks
With the help of Generics, a programmer can define behavior
without binding it to a specific type. Listing 1 shows the

public E get(int index) {
rangeCheck(index);
return elementData(index);

}

Listing 1. ArrayList’s get method logic.

public Object get(int index) {
rangeCheck(index);
return elementData(index);

}

Listing 2. ArrayList’s get method logic after type erasure.

logic of the ArrayList’s get method. Note the use of the
E placeholder, in lieu of the data element’s type, which is
only later revealed at run-time when the method is called.
Such examples can be found all throughout the logic of the
Collections framework.
While Generics are an essential tool in the implementa-

tion of the Collections framework, they only provide part of
the solution. As Java is statically typed, one cannot instanti-
ate generic instances, nor can one readily call methods on
generic objects. In the context of the Collections data struc-
tures, it is thus not possible to store data elements internally
under the form of generic arrays, as these would require in-
stantiation. Consequently, such data structures often rely on
the Object type for internal storage and data representation.
For instance, ArrayList stores its data in an array of the
form:

Object[] elementData,
which can be instantiated.
At compile time, Java programs undergo an additional

stage, called type erasure, wherein generics get replaced with
the Object type. For instance, Listing 2 shows the logic
of Listing 1 after type erasure. Note that the E placeholder
has now been replaced by the Object type. To compensate
for type erasure and enforce type safety, the Java compiler
transparently introduces type checking instructions in the
compiled bytecode (as demonstrated below).

Through type erasure and the extensive use of the Object
type in the bytecode, data structures in the Collections frame-
work ultimately end up storing and manipulating Object
references. They also heavily rely on frequent type checking
instructions in the bytecode. To the average programmer,
this behavior might end up being surprising as such data
structures are expected to be truly specialized for the type
they are declared for. Moreover, due to the numerous type
checking instructions, non-trivial runtime overheads can
occur when iterating over large collections.

A possible approach towards truly specializing Collections,
refers to deploying a Java agent with the aim of intercept-
ing and instrumenting an application’s bytecode during the
Class Loading stage. At this stage in the execution, the code
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ArrayList<Point> pointArray = new ArrayList<Point>();
...
for (int i = 0; i < pointArray.size(); ++i) {

Point p = pointArray.get(i);
}

Listing 3. Iterating through an ArrayList of Point in-
stances

...
74: invokevirtual #29 // ArrayList.get:(I)LObject;

77: checkcast #13 // class Point

80: astore 5
...

Listing 4. Simplified bytecode showing the unpacked in-
structions around the get method call from Listing 3.

has already undergone type erasure and the bytecode already
features checkcast instructions that ensure type safety. List-
ing 3 exemplifies a for loop iterating though an ArrayList
of Point instances. Listing 4 shows the compiled bytecode
around

Point p = pointArray.get(i).
Note that
74: invokevirtual #29
is responsible for calling the get method of pointArray.

Due to type erasure, the return type of this method is Object.
To ensure the returned object is indeed an instance of Point,
instruction

77: checkcast #13
is added by the compiler. If the check passes, the instance

is finally stored in
Point p
via
80: astore 5.
checkcast instructions also get added inside the logic

of the Collections’ data structures. For instance, such an
instruction is placed inside the logic of ArrayList’s add
method or HashMap’s put method, in order to ensure that
the object added to the list is safe to add to the elementData
array.

Consequently, a tool at this level needs to parse the byte-
code, identify the instructions where data structures from the
collections framework are instantiated, generate data struc-
tures with identical behavior and true type specialization,
and finally instrument the bytecode, such that the special-
ized data structure gets instantiated at runtime. While this
approach would ensure no checkcast instructions are added
to the bytecode of the specialized data structure, this still
leaves the checkcast instructions added by the compiler
in the user code. The tool would also have to identify the
checkcast instructions associated to the newly specialized
data structure and remove them. Granted that all Collec-
tions data structures are specialized within the context of

Animal<T>

+ eat(what : T): void

Herbivore

+ eat(what :Vegetable): void

extends Animal<Vegetable>

(a) Pre-compilation

Animal

+ eat(what : Object): void

Herbivore

+ eat(what :Vegetable): void
+ eat(what :Object): void

extends Animal

(b) Post-compilation

Figure 1. Class hierarchy which shows the generation of
the bridge method eat(what: Object) in Herbivore.

an application, removing the checkcasts is safe, since no
segment of code could be executed both by specialized and
generic data structures. Otherwise, the decision to remove
checkcasts becomes non-trivial, as one must keep track of
what types of data structures share what sections of code,
and only remove those sections that are not shared by spe-
cialized and non-specialized data structures. As analyzed
codebases can be considerably sizable and complex, with ar-
bitrary interactions between objects and methods, this task
quickly becomes very complex.

2.2 Bridge Methods
A set of additional challenges stem from Java’s approach of
ensuring polymorphism in the context of type erasure via the
use of bridge methods. Figure 1 describes this phenomenon
graphically. The class Animal makes use of Generics (here
identified by the type placeholder T). Herbivore implements
Animal and parametrizes the generic to the class Vegetable,
as shown in Figure 1a. After compilation, due to type era-
sure, T gets replaced by Object. Hence, the what parameter
of the eatmethod is of type Object in class Animal. In class
Herbivore no type erasure takes place, hence the same pa-
rameter in eat is of type Vegetable. This is problematic for
enabling polymorphism, since calling the eat method on an
object declared as

Animal<Vegetable> animal = new Herbivore()
would call the logic in Animal rather than Herbivore.

To make sure polymorphism works correctly, the compiler
automatically generates bridge methods in the sub-class,
that have identical signatures to the generic methods in the
parent class. Bridge methods are also added when a class
implements a generic interface. These methods intercept
calls, and redirect them to the parametrized method in the
sub-class by casting the parameters to the correct type. Fig-
ure 1b shows the class diagram after compilation, when
eat’s bridge method is added. Listing 5 shows the logic of
the aforementioned bridge method.
Bridge methods are necessary in order to ensure poly-

morphism works correctly in the context of type erasure.
They however introduce additional overheads due to the
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void eat(Object what) {
eat((Vegetable) what);

}

Listing 5. Code of the eat bridge method.

extra level of indirection, and the intrinsic checkcast in-
structions added by the compiler in their bytecode to ensure
type safety. In the context of specialized data structures they
represent a significant challenge. If the tool generates spe-
cializations which extend the original generic classes or in-
terfaces, then the specialized class would still feature bridge
methods, which are employed whenever the type of the data
structure is seen as that of the parent.

Generating specialized data structures in this manner can
be desirable, in spite of the bridge methods, as it provides the
specialized data structures with greater usability throughout
the code. For instance, a specialized data structure of the
form

public class IntegerMap implements Map<Integer>
can be used as an instance of Mapwherever necessary. This

type information inside the Map instance already unlocks
several type optimizations such as Object Inlining. In a recent
work [2], this very techniquewas used to inline objects inside
Java HashMaps, resulting in significant reductions in the total
memory footprint to keep the data structure in memory,
reduction in GC latency, and improvements in data structure
access throughput.
Alternatively, a tool can instrument the code, such that

polymorphic behavior on specialized data structures is mini-
mized by narrowing down the parameter types of methods,
or duplicating themwith narrower types.When polymorphic
behavior is completely removed, specialized data structures
no longer make use of their bridge methods, and the special-
ized data structure incurs no additional overheads due to the
use of generics and type erasure.
Carrying out this type of instrumentation at the byte-

code level is difficult, as the agent needs to undo changes
introduced by the compiler (e.g. checkcast instructions),
and make extensive changes to the bytecode in order to
remove the polymorphic behavior of specialized data struc-
tures. A more straight-forward approach is, thus, to modify
the source code directly, prior to compilation. Our tool acts
on the code in this way, generating and plugging in special-
ized data structures in the code prior to compilation.

3 JCS Design
JCS generates the specialized data structures prior to ap-
plication compilation. To benefit from the generated data
structures, the programmer simply uses them inside the ap-
plication code. JCS currently provides support for special-
izing the ArrayList, HashMap and the ConcurrentHashMap
data structures, but additional classes can be easily added
by exploiting the current codebase of JCS. The generated

specializations have a high degree of usability, as they extend
and implement the superclass and interfaces of the original
generic type. It should be noted, however, that instances of
the specialized type should generally not be cast to more
generic types (e.g. a specialized version of ArrayList to
List), as this will force the compiler to add type checking
instructions, and to make use of bridge methods.

To partially address this problem, it would be possible to
generate a specialized version of an interface, such as List,
that extends the base interface, and is used by the specialized
data structure in lieu of the base interface itself. For instance,
one could generate the specialized

interface ListInteger extends List<Integer>,
which is then used in the specialization
class ArrayListInteger implements ListInteger.
This would allow one to upcast specialized subclasses

such as the class ArrayListInteger to ListInteger and
sidestep bridge methods. The programmer could then use
the new ListInteger type in code in order to increase its
reusability. As ListInteger extends List it would be pos-
sible for its subclasses to be upcasted to List as well. In the
latter scenario, however, bridge methods would be employed.
JCS does not support interface specialization out-of-the-box,
but adding support for it is straight forward.
To use the specialized types generated by JCS, the pro-

grammer needs to follow two steps. In the first step, the
programmer runs JCS in order to generate a set of special-
ized data structures and compile them to bytecode, such that
they can later be used in the application. For the the second
step, the programmer adds the generated binaries to the class
path of the application, and readily uses the structures gener-
ated in the first step by importing them into the source code
and employing the new types as any other regular class.

3.1 Generating the Specialized Data Structures
The specialized data structures must be generated prior to
running the application. To do so, the programmer runs JCS
and specifies the types of specialized data structures that
need to be generated. For instance Listing 6 exemplifies the
command line required to run the generation part of our tool.
Note that

[<specializations with full paths>]+
represents a list of space separated data structures from

the collections framework with fully qualified paths and
explicit data types. An example of such an element is

HashMap<String, Point>.
This latter element would request the generation of a

HashMap specialized to String and the user defined class
my.testpackage.Point. The generated data structure will
be called HashMapStringPoint, and is compiled under the
<generated binaries directory>.

JCS generates these data structures by parsing the source
code of the generic version of the data structure from the Col-
lections framework and generating its Abstract Syntax Tree
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java TypeSpecialization.jar <path to jdk sources> \
<generated sources directory> \
<generated binaries directory> \
["<specializations with full paths>"]+

Listing 6. Bash command for generating specialized data
structures using JCS.

(AST). Via the visitor pattern, nodes of interest in the AST are
modified. Generic placeholders are replaced by the concrete
types for which the data structure is being specialized. For
example, to generate the HashMapStringPoint data struc-
ture, JCS replaces the K type placeholder with String and
the V placeholder with Point. JCS also makes sure to add
any necessary imports, e.g. when using a user defined class
such as my.testpackage.Point. Inner classes also require
specialization. For instance, the Node, KeySet, EntrySet and
Values, all nested classes in HashMap, require specialization.
Inmany cases, classes from the Collections framework rely in
some form on auxiliary classes, outside of their own compila-
tion unit, which also employ Generics. For instance, HashMap
relies on LinkedHashMap and LinkedHashMap.Entry. Con-
sequently, when HashMap gets specialized, these classes need
to be specialized as well. JCS handles these additional tasks
automatically.

Extending JCS such that it supports additional data struc-
tures should be a relatively straight forward task. JCS’s main
class, called TypeSpecialization, needs to be augmented
in two ways. The first change implies the definition of a new
method which creates a specialization request. The special-
ization request contains essential information for the special-
ization process, such as the name of the generic placehold-
ers to be replaced, the names of the original and the target
compilation units, and any additional classes outside of the
original compilation unit which also need to be specialized
due to dependency concerns (e.g. the LinkedHashMap and
the LinkedHashMap.Entry in the case of the HashMap). The
second change refers to augmenting TypeSpecialization’s
main method such that the previously defined specialization
method can be used correctly. The changes required in main
refer to recognizing an incoming specialization request for
the new data structure, calling the new method, and passing
its return value further down along the specialization logic.

There are cases when adding support for a new data struc-
ture requires the visitor logic to be augmented. For instance,
in the case of the ConcurrentHashMap, the default special-
ization visitor class SpecializationVisitor needs to be
extended, in order to add additional visitor behavior that
makes the specialization work correctly, such as adding an
additional import or removing certain code elements.

3.2 Compiling and Launching Applications
Once the AST has been modified, JCS requests its compi-
lation. Both the generated sources and the compiled class

import java.util.HashMapStringPoint;
...
HashMapStringPoint specializedMap =

new HashMapStringPoint();

Listing 7. Using a specialized data structure directly in code.

file are stored on disk, at the paths indicated by the user.
The specialized ArrayLists and HashMaps are added to the
java.util package. The specialized ConcurrentHashMaps
are added to the java.util.concurrent package. The gen-
erated classes are ready to be imported and used directly into
a project, as long as the application includes the binaries of
the new data structures in the class path. Listing 7 shows
an example of how the HashMapStringPoint generated by
JCS can be used in a user application. The advantage of this
approach is that no bridge methods are employed, since the
specialized data structure object requires no polymorphic
behavior.
Since the newly generated specialized data structures

are defined in already existing and well-known packages
(java.util, for example), additional flags may need to be
passed into the javac and java commands. In particular,
depending on the JVM implementation, extra command line
flags may be necessary to allow new classes (i.e., the special-
ized data structures) to be added to already existing packages
and modules.
JCS does not add any additional security elements to the

JVM runtime. This implies JCS enjoys the default level of
security of any jar whose code is running inside the JVM.
It would be possible to add additional security measures,
such as checking a security digest of the specialized class
against a trusted reference hash. This would ensurewith high
probability that the executed code is indeed trustworthy. We
leave this aspect for future work.

4 Evaluation
This section presents the performance benefits of specializ-
ing popular Java data structures. In particular, we are inter-
ested in measuring the throughput improvements that result
from the simplified data structure access code when using
specialized data structures.

4.1 Experimental Setup
We do not report results on other performance metrics such
as memory footprint, Garbage Collection overhead, or appli-
cation tail latency as these metrics remain unchanged with
the proposed transformation. Given that specializing data
structures creates additional classes to compile and store in
the code cache, we also measured such overheads. However,
no measurable JIT compilation nor code cache overheads
could be observed and therefore such metrics are not re-
ported.
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Figure 2. Throughput comparison of Generic versus Specialized data structures.

Experiments run in isolation for at least 1000 iterations
(more iterations are used if results take longer to stabilize).
The last 500 iterations are utilized to create average values
and the standard deviation. To reduce interference in our
measurements, we run all experiments with enough memory
such that no GC cycle ever runs during our measurements
(we found that 256MB of heap size is enough to prevent
GC cycles). Experiments take place in a single cluster node
running Debian 10 (Linux kernel 4.19.0-10) equipped with an
Intel(R) Xeon(R) CPU E3-1225 v6 @ 3.30GHz, and 32GB of
DDR4 DRAM. CPU frequency scaling and hyper-threading
are disabled. A GraalVM CE 21.1.0 (based on Java 11) Java
Virtual Machine is used in all experiments. The following
JVM flags are passed to the JVM to add the specialized data
structure classes to Java’s java.base module:
–patch-module java.base=<spec. classes> and
–add-reads java.base=ALL-UNNAMED.
In addition, the following JVM flag is used to allow spe-

cialized data structure classes to access user data types:
-Xbootclasspath/a:<user data type classes>.
These JVM flags are required for two reasons: i) special-

ized data structures are defined inside the java.basemodule
and therefore these generated classes need to be appended
to the java.base module (specialized data structures could
not be defined outside the java.base module due to depen-
dencies to package-private definitions in the original data
structures); ii) the specialized data structure classes may
need to import user data types (Point, for example), which
therefore also need to be loaded by same Java classloader
used for java.base (bootstrap classloader). No other flags
are utilized.
The remainder of this section is further divided into two

sub-sections. First, we explore the throughput improvements
resulting from type specialization when using two popu-
lar Java data structures (ArrayList and HashMap). Second,
we provide a more complete use-case using a producer-
consumer pattern to showcase the performance impact of
the specialization.

ArrayList

- elementData: Object[]

- size: int

+ get(int): Object

+ add(Object): boolean

(a) Generic

ArrayListPoint

- elementData: Point[]

- size: int

+ get(int): Point

+ add(Point): boolean

(b) Specialized

Figure 3. Generic and specialized Java ArrayList.

HashMap

- table: Node[]

- size: int

+ get(Object): Object

+ put(Object, Object): boolean

Node

- hash: int

- key: Object

- value: Object

- next: Node

+ getKey(): Object

+ getValue(): Object

(a) Generic

HashMapIntegerPoint

- table: NodeIntegerPoint[]

- size: int

+ get(Integer): Point

+ put(Integer, Point): Point

NodeIntegerPoint

- hash: int

- key: Integer

- value: Point

- next: NodeIntegerPoint

+ getKey(): Integer

+ getValue(): Point

(b) Specialized

Figure 4. Generic and specialized Java HashMap.

4.2 Specialized Java Data Structures
Data structures play an important role not only in application
development, but also in its performance. In this section we
analyze the performance impact of generic data structures
compared to specialized data structures. To that end, we se-
lect two of the most popular Java data structures: ArrayList
and HashMap.
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4.2.1 ArrayList. is a popular generic data structure that
internally stores an array of objects. Figure 3 (left-hand side)
presents a simplified class diagram of ArrayList. The dia-
gram also includes two key methods in the implementation
of the data structure, the get method that allows accessing
stored objects and the add method that allows inserting ob-
jects into the data structure. A second version of the same
data structure is also present in Figure 3 (right-hand side).
This data structure is specialized to the Point class, a sim-
ple data type representing an N-dimensional point in space.
From the diagram, it is possible to identify that the internal
array (elementData) and both methods utilize the special-
ized type (Point) instead of the original Object type.

We compare the performance of both versions by perform-
ing a total of 1M read (get method) and write (add method)
operations per iteration on each data structure. Results are
presented in Figure 2a and show that the specialized data
structure, for the same read and write workload, improves
read throughput by 14% and write throughput by 16%. These
performance improvements result from the reduced number
of instructions to access the data structure, which no longer
has to perform type checks.

4.2.2 HashMap. is, perhaps, themost popular data structure
in Java. It provides a simple interface to a key-value store
which maps keys to values. Figure 4 (left-hand side) presents
a simplified class diagram of the data structure. A HashMap
contains (among other fields and methods), a Node array
(table). A Node represents a single key-value pair. Both the
HashMap and the Node classes deal with objects of Object
type.
In this experiment we specialize a HashMap to Integer

(the key type) and to Point (the value type). Figure 4 (right-
hand side) presents the class diagram of the specialized
classes. As depicted, all types are now specialized includ-
ing the new NodeIntegerPoint which replaces the original
Node.
Similarly to the ArrayList experiment, we also exercise

both data structures (generic and specialized) through 1M
read (get method) and write (put method) operations per
iteration. Figure 2b shows that the specialized data structure
improves read throughput by 5% and write throughput by
42%. As for the previous experiment, all improvements come
from the reduced number of instructions necessary to fetch
and insert items into the data structure.

4.3 Specialized Producer-Consumer
While in the previous section, all experiments were focused
on measuring the performance of a particular data structure
operations, in this section, we test a widely used program-
ming pattern, producer-consumer. This is a useful pattern
used to synchronize the communication between a number
of producers and consumers through a shared data structure

(typically a queue). Among other use-cases, this pattern can
be used to implement load balancers.

In our particular instance of producer-consumer, we use a
single producer inserting objects into a shared ArrayList
(similar to the one presented in Figure 3), and three con-
sumers which remove objects from the shared data structure
and place it into a private one. It should be noted that for
each producer-consumer operation, two data structures are
necessary: i) one operation to remove an item from the pro-
ducer data structure, and ii) one operation to insert the item
into the consumer data structure. For this experiment, a total
of 1M operations per iteration were issued.

Results in Figure 2c show that, following the trend of the
previous experiments, specializing data structures does im-
prove data structure access performance. In this experiment,
data structure specialization improved throughput by 18.4%
compared to using the original generic data structures.

5 Related Work
Previous work has focused on generating specialized types
in Scala [5]. The tool allows the user to annotate generic pa-
rameters in classes or methods. During compilation, classes
which permit specialization (i.e. those that are annotated),
are expanded if they are further used in a specialized manner,
e.g another class extends the generic one, and specializes at
least one of its specializable generics. Expansion refers to
generating several versions of the original class, where meth-
ods with specializable generics are duplicated: once with the
Object type, and once with the concrete type. The newly
generated classes are then introduced between the original
subclass and superclass. JCS differs from this approach, as
it focuses on specializing canonical classes from the Collec-
tions framework. Moreover, by allowing the programmer
to generate specialized data structures prior to compiling
the user applications, the programmer can use the special-
izations as types directly in code, avoiding bridge methods
completely.
Alternative approaches to implement Generics in Java

without modifying the JVM have focused on producing alter-
native compilers, such as NextGen [3]. For each instantiation
of a parametrized type, NextGen generates wrapper classes
and interfaces which carry type information. The generated
classes extend an artificial abstract base class constructed
from the logic of the type erased parametrized base class. Our
method differs from this, since it does not generate wrapper
methods to carry additional type information, rather it gen-
erates specialized classes that directly use the target class,
and trivially extend and inherit the classes and interfaces of
the original base class. Moreover, our tool works prior to the
compilation step.

Other work has focused on identifying how JIT compilers
are suitable in carrying out runtime optimizations to collec-
tions based workloads in Scala [9]. The authors recognize
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the challenge of speculating on data structure invariants,
and endorse work on static specialization of generic data
structures. Improving the performance of the type check-
ing system in the JVM presents another line of work which
benefits the runtime of checkcast and instanceof byte-
codes [4]. Ultimately, however, these type checks would still
need to be executed, and would still incur an overhead. In
contrast, our work tries to completely sidestep type checks.
The C# programming language implements generics in

an efficient manner, by generating specialized code at run-
time via just-in-time type specialization, a feature which
is permitted by the programming language’s dynamic run-
time [7]. Consequently, C# can generate truly specialized
code for generic types with low overhead, and have it linked
at runtime. Moreover, this mechanism also provides support
for specializing generics towards primitive types, without
employing boxing and unboxing.

6 Future Work
JCS provides much opportunity for future work. We see
potential in extending a priori specialization to parametrized
classes beyond the Collections framework. In addition to
this, work on instrumenting legacy code, such that only
specialized data structures are used, is an interesting avenue
for future research. Adding extra security features to the
specializations is another potential topic for future work.

A current limitation of the current JCS implementation is
the lack of support for nested data structures. For example,
if a user needs a specialized version of

HashMap<String, HashMap<String, Point>> into
HashMapStringHashMapStringPoint,
two consecutive specializations would have to be invoked

instead of just one. The first specialization would create a
specialize

HashMap<String, Point> into
HashMapStringPoint,
and then a second specialization would be required to

specialize
HashMap<String, HashMapStringPoint> into
HashMapStringHashMapStringPoint.
Supporting nested data structures does not require sig-

nificant design changes and it would allow users to easily
specialize any combination of data structures.
We also see research potential in producing more auto-

mated means of using specializations which avoid bridge
methods and type checking instructions, with as little pro-
grammer intervention as possible. For instance, a potential
future research idea is a code analysis tool which identifies
all uses of generic data structures and specializes them on
the fly. While very appealing, this approach brings a set
of interesting challenges. For instance, one would have to
trace the use of the specialized data structures throughout
the code, and identify what methods they are used in when

passed as parameters. To ensure that such programs continue
to run as expected, such methods, where specialized data
structures appear, would have to be replicated once for the
generic version and once for the specialized version of the
data structure. Methods which make use of several special-
izable parameters will have to potentially be expanded into
all possible combinations of specialized and non-specialized
parameters. Most of these expansions are required to ensure
the specialized code runs as expected when interacting with
foreign non-specialized code. The problem can be simpli-
fied by limiting the scope of the specialization exclusively
to self-contained code, which does not interact with foreign
logic.
Another possibility would be to use user annotations in

order to indicate which data structures to specialize. Such
data structures could then be specialized on the fly and in-
strumented into the bytecode during the compilation process.
This approach removes the need of generating the data struc-
tures prior to writing the code.

7 Conclusion
We have presented JCS, a tool capable of generating spe-
cialized versions of data structures from the Collections
framework. The use of the specialized data structures pre-
vents the compiler from introducing type checking byte-
code instructions, and avoids the use of bridge methods.
JCS currently offers support for ArrayLists, HashMaps and
ConcurrentHashMaps, with the possibility of easily extend-
ing its use to other data structures. JCS generates the special-
ized data structures prior to compiling the application logic.
The generated specializations are added to the java.util
package, and need only be added to the class path at compila-
tion to be visible. The specializations can be interchangeably
used with their generic counterparts, as they extend and
inherit from the generic version’s superclass and interfaces.
In other words, specializations are siblings to their generic
counterparts in the class hierarchy. We have shown that
the specialized data structures offer up to 14% runtime im-
provement for read intensive use-cases and up to 42% write
intensive use-cases. Our experiments also show that the
popular producer-consumer pattern sees an 18.4% runtime
performance improvement. JCS is open source, and is avail-
able at https://github.com/rodrigo-bruno/specialized-java-
datastructures/tree/specialization.
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