
FromWarm to Hot Starts:
Leveraging Runtimes for the Serverless Era

Joao Carreira
UC Berkeley

Sumer Kohli
UC Berkeley

Rodrigo Bruno
INESC-ID / Técnico, ULisboa

Pedro Fonseca
Purdue University

ABSTRACT

The serverless computing model leverages high-level lan-
guages, such as JavaScript and Java, to raise the level of ab-
straction for cloud programming. However, today’s design of
serverless computing platforms based on stateless short-lived
functions leads to missed opportunities for modern runtimes
to optimize serverless functions through techniques such as
JIT compilation and code profiling.

In this paper, we show that modern serverless platforms,
such as AWS Lambda, do not fully leverage language run-
time optimizations. We find that a significant number of
function invocations running on warm containers are exe-
cuted with unoptimized code (warm-starts), leading to orders
of magnitude performance slowdowns.

We explore the idea of exploiting the runtime knowledge
spread throughout potentially thousands of nodes to profile
and optimize code. To that end, we propose Ignite, a server-
less platform that orchestrates runtimes across machines to
run optimized code from the start (hot-start). We present evi-
dence that runtime orchestration has the potential to greatly
reduce cost and latency of serverless workloads by running
optimized code across thousands of serverless functions.
ACM Reference Format:

Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. 2021.
From Warm to Hot Starts: Leveraging Runtimes for the Serverless
Era. In Workshop on Hot Topics in Operating Systems (HotOS ’21),
May 31-June 2, 2021, Ann Arbor, MI, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3458336.3465305

1 INTRODUCTION

Serverless computing is gaining traction as a cloud comput-
ing model that promises radically simpler development and
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8438-4/21/05.
https://doi.org/10.1145/3458336.3465305

0 50 100
Request Number

10
−1

10
0

10
1

10
2

La
te

nc
y 

(m
s)

Warm Hot

Cold
 55x

(a) Java

0 50 100
Request Number

10
2

10
3

La
te

nc
y 

(m
s)

Warm Hot

Cold

 2.7x

(b) Javascript

Figure 1: Latency per request for a word count (Word-

Count) workload on Java and Javascript runtimes for

cold/warm/hot stages. These runtimes improve perfor-

mance by 55x (Java) and 2.7x (JavaScript) through JIT

compilation and code profiling. Periodic spikes occur

due to garbage collection.

deployment of highly distributed applications such as data
analytics [3, 4, 19, 22, 27, 30, 31, 33], machine learning [14, 15],
code compilation [23], and video processing [8, 20]. In server-
less computing platforms, developers deploy individual units
of application logic, serverless functions, that are triggered
by configurable events.

One of the key goals of serverless computing is to free de-
velopers from manually managing the underlying resources
used by applications. Serverless computing achieves this by
leveraging modern languages runtimes, such as JVM and
Node.js, to execute functions. This provides a higher-level
model for developers, which significantly simplifies time-
consuming tasks related to memory management, code com-
pilation, and dependency management.

58

https://doi.org/10.1145/3458336.3465305
https://doi.org/10.1145/3458336.3465305


HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca

Unfortunately, developers currently face the difficult choice
between the simpler development model of serverless and
the higher raw compute performance of traditional VM-
based platforms. The performance gap between serverless
and server-based platforms arises from the lack of co-design
between modern language runtimes and serverless comput-
ing platforms. Modern runtimes rely on being able to gather
code statistics about executions of the same code over time
to generate optimized code. However, serverless platforms
are tailored for functions that execute sporadically and that
take at most a few seconds to complete. The inability to
effectively utilize runtime optimizations means that server-
less platforms are at a great disadvantage compared to their
VM-based counterparts.

Figure 1 demonstrates the drastic impact of runtime opti-
mizations in the performance of serverless functions. In this
figure we show the latency of a function that computes a
word count workload (WordCount) [16], running on two dif-
ferent runtimes (Correto for Java and Node.js for JavaScript)
in AWS Lambda [1]. To isolate the impact of runtime opti-
mizations from the overheads of scheduling and container
startup, we ran this function multiple times sequentially in-
side a single lambda. We observe that the first request is
the slowest because the runtime has to load and parse the
function code and the function needs to import libraries
(cold-start). In subsequent function invocations, the runtime
can immediately execute the function by interpreting its
bytecode and thus we observe an immediate performance im-
provement after the first couple of invocations (warm-start).
As the function gets executed multiple times, the runtime
generates code profiles that describe what parts of the code
are good candidates for code compilation and optimization.
Runtimes leverage these profiles and make calls to the Just-
In-Time (JIT) compiler to optimize specific functions. We
find that all compilations combined result in a 55x (Java) and
2.7x (JavaScript) latency speedup. After the runtime has gen-
erated the most optimal code, every new invocation of the
function in the same runtime is executed at the maximum
performance (hot-start).
As our results demonstrate, runtime optimizations can

provide significant benefits to serverless functions, provided
these functions are executed repeatedly within the same
runtime. However most serverless functions run for a short
amount of time, making it impossible for runtimes to profile
and optimize the function code. A recent study of functions in
Microsoft Azure [32] found that on average 50% of functions
take at most one second, and 90% take at most 10 seconds.
Thus, even when a function invocation is served by a warm
container, the function may still execute unoptimized code.
To make matters worse, after a function is executed, the
profiling and compilation information is often discarded and
not reused for later executions of the same function. Our

JavaScript

Baseline
Compiler

Optimizing
Compiler

Hot method
& Profiles

Deopt.

Bytecode
Interpreter

Optimized
Native Mode

Optimized
Mach. Code

Bytecode

a) JavaScript Engine (V8)

Bytecode

Baseline
Compiler

Warm method
& Profiles

Bytecode
Interpreter

Native Mode
Mach. Code

Optimizing
Compiler

Hot method
& Profiles

Deopt.

Optimized 
Native Mode

Optimized
Mach. Code

b) Java VM (HotSpot)

Figure 2: Code pipeline JavaScript and Java runtimes.

experiments show that these problems lead to up to 72x
lower performance for some workloads (see Section 2).

We propose Ignite, a holistic system where runtimes co-
operate to generate optimized function code and serverless
schedulers can schedule functions depending on the state of
the optimization pipeline of each runtime. Ignite reduces
profiling and compilation overheads by sharing code opti-
mization information across runtimes. Furthermore, once
Ignite has been able to generate optimal code for a specific
function, invocations of that function are always hot and no
profile and compilation overheads are incurred.

2 COLD ANDWARM STARTS IN

SERVERLESS

In modern serverless platforms each function runs on top of
its own independent high-level language runtime (e.g., JVM,
Node.js). Within each runtime the function is optimized,
through different stages of code transformation, from high-
level interpretable code (slow) down to machine code (fast)
(see Figure 2). Initially, when a function is invoked within a
newly created container, the runtime has to load and parse
the code to make it executable by the bytecode interpreter,
and initialize its internal datastructures for code execution.
Similarly, the function has to load its libraries. Thus, the
worst function invocation latency is typically observed at
this time (cold-start). After this phase, function invocations
start executing immediately but execution is not optimal
because the function code has not yet been optimized (warm-
start). For instance, the Java VM Hotspot by default requires
thousands of invocations of a function before it gets compiled
to machine code and other similar threshold parameters
exist for different optimizations. The same happens for the
JavaScript V8 engine. Eventually, the runtime identifies and
compiles hot methods. Subsequent invocations of a function
after this stage are executed with optimized code (hot-start).

59



From Warm to Hot Starts:
Leveraging Runtimes for the Serverless Era HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

10
1

10
3

10
5

10
7

10
9

Request latency (us)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Hash (Java)
Hash (JS)
HTML (Java)
HTML (JS)
WordCount (Java)
WordCount (JS)
Thumbnail (Java)

Figure 3: CDF of serverless function invocation laten-

cies for compute-intensive tasks running on top of a

Java and JavaScript runtimes.

Even after a function has been optimized by the runtime, the
runtime continues to gather code profiling statistics which
can lead to new optimizations.

2.1 Performance Benefits of Runtimes

Modern runtimes utilize sophisticated algorithms that can
learn how to best improve the performance of an applica-
tion. For instance, OpenJDKHotSpot JVM, the reference JVM
implementation, uses more than 60 compiler optimizations,
such as escape analysis, method inlining, and method de-
virtualization, to generate high performance code during
run-time[6]. These optimizations are guided by profiling in-
formation that the runtime collects during the execution of
the application.
To understand the ability of modern runtimes to opti-

mize the performance of serverless functions, we evaluated
the execution of a benchmark suite of JavaScript applica-
tions running as functions on top of AWS Lambda, a widely
used commercial serverless platform. For this benchmark
we selected a set of computationally intensive applications:
number hashing (Hash), HTML rendering (HTML), counting
words in a text corpus (WordCount), and image thumbnail
generation (Thumbnail). We developed each task in Java and
JavaScript and created two functions in AWS Lambda, one
for each language. All the functions were configured to run
with 2 GB of memory. We sequentially invoked each function
100 times and measured how long it took to complete each
invocation. Our measurements include only the time spent
inside the user function to minimize variance that arises
from outside components such as the network.
Figure 3 shows the CDF of the request latencies for all

the 4 tasks. For all the tasks in our benchmark, our Java

fi:1 fi:2 fi:3

fi:1 fi:2 fi:3

fi:1 fi:2 fi:3
time

fi:1 fi:3

fi:2

time

fi:1 fi:2 fi:3

fi:1 fi:2 fi:3

fi:1 fi:2 fi:3
time

No Sharing Code Sharing Profile & Code Sharing

Cold Start Warm Start Hot Start

JIT

JIT

JIT

JIT

fi:4

Figure 4: Serverless profile and code sharing modes.

implementation is significantly faster than the correspond-
ing JavaScript implementation. Nonetheless, for all tasks
both runtimes are effective at optimizing each function’s
execution. For instance, we observe that the performance
of the tasks when they are hot is 3.3-72× (Java) and 3.8-
15.2× (JavaScript) faster than when they are warm. For some
task/runtime combinations, such as Hash (Java) and Word-
Count (JavaScript), the function performance has two modes:
before and after JIT compilation. This can be seen by the
single "step" in the CDF. Other task/runtime combinations,
such as WordCount (Java) and Hash (JavaScript), are opti-
mized gradually over time and thus their CDFs show several
"steps".

2.2 The Waste of Runtime Optimizations

High-level code optimization are highly beneficial for long-
running stateful server-based applications. However, unlike
typical server-based applications, serverless functions are
stateless and short-lived. When serverless containers are re-
cycled to give space to the deployment of other functions,
the execution profiles and code generated by runtimes is also
discarded. For instance, Shahrad et al. [32] report that Mi-
crosoft’s Azure Functions [2] recycles serverless containers
every 10-20 minutes. Given that 70% of functions are in-
voked on average less frequently than that, this means that
a staggering two thirds of function invocations are executed
inside a fresh runtime. Even if platforms keep runtimes in
memory between function invocations, at the cost of using
extra memory resources, each individual runtime instance
still has to go through many warm function invocations until
code gets hot. This problem presents a major obstacle for the
adoption of serverless for many workloads.

3 HOT-START FROM THE START!

To overcome this problem,we propose a new runtime-platform
co-design, Ignite, in which serverless platforms are aware of
the code compilation pipeline state, and runtimes are able to
restore the state of the compilation pipeline upon a function
invocation. With this new capability, functions could execute
fully optimized code from the start, therefore replacing most
cold-starts and warm-starts with hot-starts.

60



HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca

3.1 Holistic Compilation Pipeline

To truly benefit from the progress made locally to profile and
compile code, the state of the compilation pipeline must be
aggregated and shared. On the one hand, profiles need to be
aggregated to increase the amount of information available
to guide code compilation. On the other hand, the compiled
code needs to be shared to stop further execution of unop-
timized code. Figure 4 presents a simple example of how
aggregating profiles and sharing compiled code can improve
the overall performance of serverless platforms. In this ex-
ample, a single function is being utilized and invocations
are handled in three distinct instances of a language run-
time. For simplicity, we consider the entire function code
execution mode as cold (first request, requires the initializa-
tion of the runtime, in blue), warm (non-optimized code, in
orange), and optimized (optimized/compiled code, in red).
Inside each non-optimized execution, a single piece of pro-
file information is being accounted, the number of function
invocations (fi). This profile controls when a function is se-
lected for JIT compilation. For simplicity, we consider the
threshold to be three, i.e., a function is compiled after three
invocations although in real runtimes this value can be up
to thousands. After compilation, functions execute in opti-
mized mode (red), resulting in a 10× speedup compared to
non-optimized mode.

Figure 4 presents the execution of multiple function invo-
cations distributed throughout three runtimes. If no sharing
is enabled (left), each runtime individually tracks the num-
ber of function invocations and compiles the function code.
If code sharing is enabled (middle), runtimes profile code
locally but once a single runtime compiles the function code,
it is shared with other runtimes such that future invocations
can benefit from it. If profile and code sharing are enabled
(right), runtimes aggregate their profile information and each
function invocation is accounted globally. Therefore, once
the total invocation counter surpasses the threshold, a single
JIT compilation request is issued and the compiled code is
shared across all runtimes. In this particular example, for the
same workload, a holistic system that takes advantage of the
runtime-platform co-design can reduce cost by 1.9×.

3.2 Open Challenges and Opportunities

Reality, however, is more complex than the one presented in
the previous example. First, each application method goes
individually through the compilation pipeline. Therefore, a
single serverless function executes a number of methods
which may be at any stage of the compilation pipeline. Sec-
ond, profiles not only include invocation counters, but also
include many other metrics such as conditional branch coun-
ters (used for branch prediction [10]), the currently loaded
types that implement a method (used to de-virtualize method

calls [21]), among others. Finally, the compiled code may tar-
get a number of different architectures and may contain a
number of assumptions which are only valid locally (such as
the availability of particular CPU instruction extensions, or
the fact that parts of the code have not been loaded yet). In
this section, we discuss the main challenges and opportuni-
ties present in this area.

Cross-function Sharing. Sharing profiles and code across
functions of different users can be an issue as it would open
several attack vectors. For example, if an attacker is able
to compromise the runtime’s memory and manipulate the
profiles that are shared. Even worse, an attacker could alter
the code to be shared to bootstrap an attack on runtimes
receiving the shared code. Such potential threats mean that
sharing profiles and code should be limited to functions of
the same user.

Coordination Overhead. A single function invocation
can trigger thousands of different methods which will ex-
ercise the compilation pipeline. Profiles and compiled code
will be produced for each method independently as methods
reach their invocation threshold. Sharing all profiles and
compiled code for each individual function requires high
synchronization overhead but delaying synchronization re-
duces the number of hot-starts. Therefore, a balance between
synchronization overhead and global performance must be
determined.

Multi-stageCompilation. Compilation pipelines inmod-
ern runtimes are organized in stages. Taking HotSpot run-
time as an example (see Figure 2), methods can be in any
of three stages: interpreted mode, native mode, optimized
native mode. Each of these three stages produces different
profiling information which needs to be aggregated with
profiles produced at the same stage.

Aggressive optimizations. In addition to multi-stage
pipelines, compilers are free to apply any aggressive opti-
mization such as loop unrolling, method inlining, among
others, based on profiling information. Therefore, each stage
of the compilation pipeline is also characterized by the ap-
plied set of optimizations.

Dealing with Heterogeneity. A number of compiler op-
timizations can be subject to local factors. For example, opti-
mizations such as vectorization are only applicable if the CPU
supports AVX instructions. Even if the same exact hardware
is used, exercising different code-paths will lead to different
optimization outcomes in techniques such as method inlin-
ing. To successfully aggregate profile and share compiled
code, runtimes need to be able to express in which conditions
profiles and compiled code are generated such that sharing
does not result in incorrect or misguided optimizations.

61



From Warm to Hot Starts:
Leveraging Runtimes for the Serverless Era HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

100 10K 25K 50K 100K
Total Request Number

1

2

3

4
5
6

WC
Hash
HTML

(a) Cost Reduction Ratio

1 101 102 103 104 105 106
Request Latency (μs)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

WC (NS)
WC (IGN)
Hash (NS)
Hash (IGN)
HTML (NS)
HTML (IGN)

(b) CDF of Latency

Figure 5: Simulated improvement of using Ignite (IGN) over a no-sharing (NS) approach in: a) cost (total CPU

time), and b) request latency.

Optimizations at Scale. Optimizations are not always
successful and sometimes can even degrade performance
over time [11]. We envision Ignite being able to leverage
the aggregate knowledge of all runtimes running the same
function to learn which versions do, and which do not, im-
prove performance.

4 EVALUATION

We now estimate the total cost and latency reduction that
can be expected with Ignite in a large deployment. To that
end, we developed a serverless platform simulator that simu-
lates the execution of a sequence of invocations of the same
function for two types of serverless platforms: one with a no-
sharing approach, and one with a profile and code sharing
approach (Ignite).

For this simulation we used a set of computationally inten-
sive applications: number hashing (Hash), HTML rendering
(HTML), and counting words in a text corpus (WC). We have
selected these workloads based on previous benchmarks for
serverless platforms [18, 34].
We configured the simulator with function-specific pa-

rameters determined experimentally through benchmarks in
AWS Lambda. The primary parameters include the request
latencies for cold-starts (first invocation, includes loading
and parsing all function’s code), warm-starts (already loaded
runtime and code, running unoptimized code) and hot-starts
(container running optimized code), coupled with the num-
ber of function invocations necessary to transition between
cold to warm and warm to hot. When using Ignite, runtimes
share profiling data to quickly gather enough information to
optimize the code. Such optimized code is then shared with
all other runtimes executing the same function.
Results are presented in Figure 5. In this particular sim-

ulation, a total of 50 independent containers are simulated

and the latencies are estimated based on the measured val-
ues from AWS Lambda. Our experiment demonstrates im-
provements from 1.26× (HTML) up to 5.5× (Hash) for cost
reduction and latency reduction compared to no-sharing (see
Figure 4). Improvements with IGNITE are higher for work-
loads for which the JIT compiler can significantly improve
performance (e.g., 14.9× latency reduction for Hash). Con-
versely, for workloads in which the JIT compiler is not as
beneficial (e.g., 1.37× for HTML), IGNITE provides a lower
cost reduction.
As the number of requests increases, the overall cost re-

duction ratio converges to 1 because with a high number of
requests most function invocations are warm/hot. The simu-
lation considers that the entire platform is running a single
function and therefore, no runtime eviction is necessary. In
reality, evicting a runtime to execute a different function
would further benefit Ignite. Finally, adding more nodes to
the platform will just elongate the curves already presented
in Figure 5.

5 RELATEDWORK

Serverless Optimizations. Recent work, such as snap-
shotting [13, 17], function co-execution [12, 18], fork-based
approaches [7, 29] and warm containers [26], have been
proposed to improve the performance of serverless func-
tions. Similarly, runtime reuse has been proposed in the
context of serverful platforms to mitigate the overheads of
runtime warm-up [24]. All of the proposals for serverless fo-
cus on avoiding function startup overheads, such as creating
a container and loading the runtime/libraries, and ignore the
problem of executing unoptimized code. For instance, snap-
shotting does not guarantee that the function has been fully
optimized at the time of the snapshot. Furthermore, snap-
shotting significantly increases the storage overhead since
every function now requires a full snapshot to be fetched

62



HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca

before execution. Finally, it also raises security issues as run-
times are restored to the same exact state at every function
execution, possibly allowing attacks exploiting fixed address
layouts. Function co-execution, fork-based, and warm con-
tainer approaches have been shown to be effective at reduc-
ing invocation latency but rely on each runtime to optimize
code individually. By doing so, generation of optimized code
is delayed. Runtimes individually incur the overhead of code
profiling and compilation.

Runtime Optimizations. Ahead-of-time compilation is
a viable approach to execute compiled code from the begin-
ning, sidestepping the (potentially) expensive JIT compila-
tion. However, ahead-of-time compilation prevents dynamic
code optimizations, such as trace-based inlining, that can
generate more optimal code. Profile caching [9] and code
caching [5] have also been previously studied, however, sep-
arately and in not in the context of Serverless. In Ignite,
we aim at combining both techniques and study different
scheduling policies that minimize the overhead of profile
and code sharing. Last, garbage collection (GC) is another
source of runtime overhead that can impact the latency and
throughput of serverless applications. Several approaches
have been proposed to mitigate the impact of garbage col-
lection in distributed systems [25, 28]. We expect garbage
collection to be less of a concern in the context of server-
less computing due to the short-lived nature of serverless
functions.

6 CONCLUSION

We are implementing Ignite as a new serverless platform to
provide hot starts for most function invocations. We aim to
leverage the optimizations of several modern runtimes, such
as Hotspot JVM and Node.js V8, and intend to experiment
with different strategies for sharing profiles and code across
nodes.

7 ACKNOWLEDGMENTS

In addition to NSF CISE Expeditions Award CCF-1730628,
this research is supported by gifts from Amazon Web Ser-
vices, Ant Group, Ericsson, Facebook, Futurewei, Google,
Intel, Microsoft, Nvidia, Scotiabank, Splunk and VMware.
Rodrigo Bruno’s research was supported by national funds
through FCT, Fundação para a Ciência e a Tecnologia, under
project UIDB/50021/2020.

REFERENCES

[1] AWS Lambda. https://aws.amazon.com/lambda/.
[2] Azure Functions. https://azure.microsoft.com/en-us/services/

functions/.
[3] Corral. https://github.com/bcongdon/corral.
[4] FaastJS: Serverless batch computing made simple. https://faastjs.org/.
[5] JITServer technology. https://www.eclipse.org/openj9/docs/jitserver/.
[6] JVM JIT-compiler overview. https://cr.openjdk.java.net/~vlivanov/

talks/2015_JIT_Overview.pdf.
[7] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,

and V. Hilt. Sand: Towards high-performance serverless computing.
In Proceedings of the 2018 USENIX Conference on Usenix Annual Techni-
cal Conference, USENIX ATC ’18, page 923–935, USA, 2018. USENIX
Association.

[8] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter. Sprocket: A serverless
video processing framework. In Proceedings of the ACM Symposium
on Cloud Computing, pages 263–274, 2018.

[9] M. Arnold, A. Welc, and V. T. Rajan. Improving virtual machine perfor-
mance using a cross-run profile repository. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA ’05, page 297–311, New
York, NY, USA, 2005. Association for Computing Machinery.

[10] T. Ball and J. R. Larus. Branch prediction for free. In Proceedings of the
ACM SIGPLAN 1993 Conference on Programming Language Design and
Implementation, PLDI ’93, page 300–313, New York, NY, USA, 1993.
Association for Computing Machinery.

[11] E. Barrett, C. F. Bolz-Tereick, R. Killick, S. Mount, and L. Tratt. Virtual
machine warmup blows hot and cold. Proc. ACM Program. Lang.,
1(OOPSLA), Oct. 2017.

[12] S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky. Putting the
"micro" back in microservice. In Proceedings of the 2018 USENIX Con-
ference on Usenix Annual Technical Conference, USENIX ATC ’18, page
645–650, USA, 2018. USENIX Association.

[13] J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Appavoo.
Seuss: Skip redundant paths to make serverless fast. In Proceedings of
the Fifteenth European Conference on Computer Systems, EuroSys ’20,
New York, NY, USA, 2020. Association for Computing Machinery.

[14] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz. A case for
serverless machine learning. InWorkshop on Systems for ML and Open
Source Software at NeurIPS, volume 2018, 2018.

[15] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz. Cirrus: A
serverless framework for end-to-end ml workflows. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’19, page 13–24, New
York, NY, USA, 2019. Association for Computing Machinery.

[16] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[17] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H. Chen.
Catalyzer: Sub-millisecond startup for serverless computing with
initialization-less booting. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’20, page 467–481, New York, NY,
USA, 2020. Association for Computing Machinery.

[18] V. Dukic, R. Bruno, A. Singla, and G. Alonso. Photons: Lambdas on a
diet. In Proceedings of the 11th ACM Symposium on Cloud Computing,
SoCC ’20, page 45–59, New York, NY, USA, 2020. Association for
Computing Machinery.

[19] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis, M. Za-
haria, and K. Winstein. From laptop to lambda: Outsourcing everyday
jobs to thousands of transient functional containers. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages 475–488, Renton,
WA, July 2019. USENIX Association.

63

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://github.com/bcongdon/corral
https://faastjs.org/
https://www.eclipse.org/openj9/docs/jitserver/
https://cr.openjdk.java.net/~vlivanov/talks/2015_JIT_Overview.pdf
https://cr.openjdk.java.net/~vlivanov/talks/2015_JIT_Overview.pdf


From Warm to Hot Starts:
Leveraging Runtimes for the Serverless Era HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

[20] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng,
R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein. Encoding,
fast and slow: Low-latency video processing using thousands of tiny
threads. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 363–376, Boston, MA, 2017. USENIX
Association.

[21] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. A
study of devirtualization techniques for a java just-in-time compiler.
In Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA ’00, page
294–310, New York, NY, USA, 2000. Association for Computing Ma-
chinery.

[22] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the
cloud: distributed computing for the 99%. In Proceedings of the 2017
Symposium on Cloud Computing, pages 445–451. ACM, 2017.

[23] A. Klimovic, Y.Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis.
Pocket: Elastic ephemeral storage for serverless analytics. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 427–444, Carlsbad, CA, Oct. 2018. USENIX Associa-
tion.

[24] D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, and D. Yuan. Don’t
get caught in the cold, warm-up your JVM: Understand and eliminate
JVM warm-up overhead in data-parallel systems. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), pages 383–400, Savannah, GA, Nov. 2016. USENIX Association.

[25] M. Maas, K. Asanović, T. Harris, and J. Kubiatowicz. Taurus: A holis-
tic language runtime system for coordinating distributed managed-
language applications. SIGPLAN Not., 51(4):457–471, Mar. 2016.

[26] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhom-
linov. Agile cold starts for scalable serverless. In Proceedings of the 11th
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’19,
page 21, USA, 2019. USENIX Association.

[27] I. Müller, R. Marroquín, and G. Alonso. Lambada: Interactive data
analytics on cold data using serverless cloud infrastructure. arXiv
preprint arXiv:1912.00937, 2019.

[28] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, and O. Mutlu.
Yak: A high-performance big-data-friendly garbage collector. In Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation, OSDI’16, page 349–365, USA, 2016. USENIX As-
sociation.

[29] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Sock: Rapid task provisioning with
serverless-optimized containers. In Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference, USENIX ATC ’18,
page 57–69, USA, 2018. USENIX Association.

[30] Q. Pu, S. Venkataraman, and I. Stoica. Shuffling, fast and slow: Scalable
analytics on serverless infrastructure. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), pages
193–206, Boston, MA, Feb. 2019. USENIX Association.

[31] J. Sampé, G. Vernik, M. Sánchez-Artigas, and P. García-López. Server-
less data analytics in the ibm cloud. In Proceedings of the 19th Interna-
tional Middleware Conference Industry, pages 1–8.

[32] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini. Serverless
in the wild: Characterizing and optimizing the serverless workload at
a large cloud provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 205–218. USENIX Association, July 2020.

[33] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman, I. Stoica,
B. Recht, and J. Ragan-Kelley. numpywren: serverless linear algebra.
arXiv preprint arXiv:1810.09679, 2018.

[34] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot. Benchmark-
ing, Analysis, and Optimization of Serverless Function Snapshots, page

559–572. Association for Computing Machinery, New York, NY, USA,
2021.

64


	Abstract
	1 Introduction
	2 Cold and Warm Starts in Serverless
	2.1 Performance Benefits of Runtimes
	2.2 The Waste of Runtime Optimizations

	3 Hot-start from the start!
	3.1 Holistic Compilation Pipeline
	3.2 Open Challenges and Opportunities

	4 Evaluation
	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

