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Abstract. The number of mobile devices is rapidly outgrowing the
current world population, making them the most popular medium to
communicate and share information. In addition, applications that enable
communication and data sharing still heavily rely on centralized networks.
We believe that this problem is mainly due to the lack of tools to help
programmers develop and test applications with many devices in edge
environments.
To help programmers develop and test such distributed applications, we
propose EdgeEmu, an Android distributed emulation testbed for mobile
applications. EdgeEmu supports a high number of Android emulators
participating in a large network by allowing them to remotely participate
in the emulation, thus removing the scalability bottleneck that current
Android testing infrastructure has. EdgeEmu is, therefore, not limited to
locally deployed emulators as opposed to the standard Android SDK.
To study the performance of EdgeEmu, extensive evaluation through differ-
ent scenarios has been conducted. Results demonstrate that EdgeEmu out-
performs the standard Android SDK by approximately 59.1% in terms of
emulation startup time when ten Android emulators are used. Evaluations
also show promising results for low latency and negligible overhead when
sending messages to and from different emulators.

Keywords: Android · Edge Networks · Wi-Fi Direct · Emulation ·
Peer-to-Peer · Bluetooth · Edge.

1 Introduction
With more mobile devices than people in the world [1] and with their ever
growing computational power, mobile devices have become the most pervasive
computational platform for users [2] and are today an invaluable tool.

To achieve their full potential, mobile devices require communication with
other mobile devices or external resources. As a consequence, almost every mobile
application uses some form of communication technology. This is particularly true
for data-sharing applications and location-based multiplayer games [3, 4]. These
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applications normally provide data sharing functionalities and users communi-
cations through the Internet, using Wi-Fi or broadband cellular network. For
example, suppose two users want to share a file while being in the same physical
location; to share this file, most data-sharing applications establish a connection
to a remote central server or some kind of redirection service to exchange the
data between the users, even though they are co-located. Using remote services
instead of local ones increases latency, and globally increases the utilized network
bandwidth. In addition, such applications have the limitation that they do not
function properly in case of intermittent or limited Internet connection.

To avoid using an Internet connection when users are in proximity of each
other, edge networks1 provide an important shift regarding device-to-device
communication and data sharing. Instead of relying on a central access point
(router) with an Internet connection to establish communication and data trans-
ferring, mobile devices can use Peer-to-Peer (P2P) communication technologies
like Bluetooth or Wi-Fi Direct [5] to achieve the same results when devices are
near each other. Using such networks, applications can be developed to exploit
user proximity.

When developing applications that take advantage of such edge networks,
developing an application becomes an issue. One option is to gather dozens of
Android devices in order to accurately develop it, while also having some device
displacement to simulate users moving in and out of range with each other. This
solution is not practical for several reasons such as cost, time, logistics, etc.

Android provides its own development tool kit with support for virtual
emulation of Android devices called Android Studio [6]. However, this tool does
not provide the necessary support to develop and test applications that apply
the edge network paradigm. The Android Standard Development Kit (SDK) [7]
does not implement multi-node emulation and displacement for the emulated
Android devices, which is required to properly test edge network scenarios. Also,
Android SDK supports up to 16 emulated Android devices, which limits the
size of the emulated network. Other available network simulation and emulation
tools (discussed in Section 2), offer no support for developing and testing such
applications on top of the network created.

This lack of proper support for developing and testing edge-based applications
forces developers to publish applications without proper testing or instead,
drives developers away from using P2P communication technologies in favor of
centralized communication technologies. To empower developers with the ability
to test P2P communication-enabled applications with many Android devices, we
propose EdgeEmu, a system capable of creating both small and large emulated
edge networks, and support the development and testing of Android mobile
applications that follow such a paradigm. EdgeEmu transparently allows Android
emulators to participate in large emulated networks while being hosted remotely,
in different physical nodes (potentially in a public cloud).

1 In our paper, the term edge network represents a special case of ad-hoc networks
that targets mobile devices that are co-located and involved in social interactions.
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Fundamental requirements to consider in the design of EdgeEmu include
support several Android emulators (only limited by the number of machines) and
negligible overhead in terms of latency and bandwidth. To support several emula-
tors, EdgeEmu is designed and developed in a distributed manner. EdgeEmu has
two main components. A Client that runs locally on the developer machine that
is responsible for creating and modifying the network that is being emulated. A
Server that runs on a machine that is used to run emulators that participate
in the emulated network. The Server is responsible for managing the Android
emulator instances that run on the same machine as the Server. A Client is able
to connect to multiple Servers and use the emulators managed by them on the
emulated network.

In order to examine the performance of EdgeEmu and show that it ful-
fills its design requirements, we performed a comprehensive evaluation. Results
show that EdgeEmu can support up to 90 Android emulated devices when
nine machines with 16 GB RAM are used for running EdgeEmu Servers. The
number of supported emulators can vary depending on the number and specifica-
tions of the machines running EdgeEmu Servers. Also, results demonstrate that
EdgeEmu components induce insignificant overhead in latency and bandwidth
tests. In short, EdgeEmu is a new solution for the problem of developing and
testing networks of Android emulated devices with negligible overhead in terms
of latency and bandwidth while handling a large number of Android devices.

This paper is organized as follows. Section 2 provides a comprehensive study of
the current network and cloud computing simulators and emulators, and testing
frameworks. Section 3 presents some background information introducing the
concept of Android Virtual Device (AVD), and Section 4 presents the architecture
of EdgeEmu. A description of the implementation and an experimental evaluation
are explained in Section 5 and Section 6, respectively. The paper concludes in
Section 7.

2 Related Work
This section covers three areas we consider relevant to this work. First, net-
work simulators/emulators (i.e., systems that help to develop and test net-
work protocols). Then, we compare our work to simulators/emulators aimed at
cloud/fog/edge environments; these are centered around simulating/emulating
events between multiple devices (and not only network events). Finally, we also
analyze other test frameworks, specially mobile application testing frameworks.

2.1 Network Simulators/Emulators
Network simulators are software solutions that can perform tasks in the
abstract to demonstrate the behavior of a network and its components, without
executing the real/concrete actions of these components or networks.

NS-2 [8] is an open-source, object-oriented TCL (OTcl [9]) script interpreter
with a network simulation event scheduler. This network simulator can be used
to extensively test new protocol solutions for various network paradigms. NS-2 is
feature-rich when considering protocol and network testing, but it supports only
a few number of network elements (nodes) that a network can have. The real



4 Lyla et al.

problem that renders it incapable of supporting EdgeEmu is that NS-2 has no
support for mobile application development and testing since it does not support
mobile virtual devices.

NS-3 [10] was developed to improve the core architecture, software integration,
models, and educational components of NS-2 while maintaining almost all features.
The major improvement over NS-2 is using C++ programs or python scripts to
define the simulations instead of relying on OTcl as its scripting environment.
This made the tool significantly easier to use and build on top of. However, NS-3
still has the same problems as the ones identified on NS-2; it only supports a few
nodes and shows no support for mobile application development and testing on
top of the simulated network, thus making this tool unsuitable for EdgeEmu.

Other Network Simulation tools, e.g., GloMoSim [11], OMNET++ [12], J-
Sim [13], or OPNET [14] provide distinct advantages and disadvantages [15, 16].
Despite any desirable quality all these systems may have, they all fail to provide
support for mobile application development and testing on top of the simulated
network. This is crucial given the fundamental objective of this work in enabling
the development of edge-based applications.

Network emulators are normally available as hardware or software solutions
that mimic the behavior of a network to functionally replace it. Network emulators
allow network architects, engineers, and developers to attach end-systems such
as computers to the emulated network; thus, such computers can act exactly as
if they were attached to a real network [17]. This allows a user to accurately
gauge an application’s responsiveness, throughput, and quality of experience
prior to applying or making changes or additions to a system. Most network
emulation tools do not provide the necessary network characteristics to emulate
edge-networks by allowing the network nodes to move within the network. In fact,
all the network emulation tools that we analyzed show no support for mobile
devices. Nevertheless, some of the tools present interesting solutions to system
scalability; below we present the most relevant one.

NetWire [18] is a distributed network emulation system at the physical and
MAC layer of the ISO/OSI network model. It follows a client/server architec-
ture to the emulated network and the applications running on top. Each client
(system or application) can interact with one or more servers emulating one
or more networks. Network and node emulation can be spread among multiple
workstations to distribute the computational load, by connecting several network
servers, drastically improving the system’s scalability. However, NetWire has no
support for virtual mobile devices or mobile applications being unable to emulate
edge-networks since nodes within the network are stationary.

2.2 Fog, Edge and Cloud Simulators
In recent years, a number of simulators have been developed for paradigms
such as cloud, edge, and fog computing in the context of, for example, Internet-
of-Things (IoT) [19]. EmuEdge [20] is a hybrid emulator and extends Mininet
alike systems to emulate edge computing platforms with heterogeneous nodes.
CloudSim [21] is a popular simulator for cloud environments, allowing users to
simulate cloud-related events such as resource provisioning. EdgeCloudSim [22]
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improves on CloudSim to target the specific demands of Edge Computing research.
In particular, it provides support for the computation and networking abilities
inherent to edge computing. CrowdSenSim [23] was developed to simulate Mobile
Crowdsensing as it is an appealing paradigm [24].

Compared to current fog, edge, and cloud simulators, EdgeEmu presents
a number of advantages when developing Android mobile applications. First,
none of the above provide out-of-the-box support for testing Android devices
with P2P protocols such as Wi-Fi Direct. Second, these solutions offer support
only for simulation and not emulation and, as mentioned for network simulators,
simulators provide less support for the design and development of applications.
Finally, EdgeEmu provides a GUI that allows users to indicate where a smartphone
is located and its path while moving.

2.3 Test Frameworks
There exist several commercial and open-source solutions to provide automated
testing and enable the development of mobile applications (for example, Mon-
keyRunner [25], Appium [26], Expresso [27] and Robotium [28]). All of these
tools present distinct advantages and disadvantages between them [29]. However,
all these tools show the same problem, i.e., none is capable of emulating or
simulating a network, which in turn renders them unable to properly execute
tests for the particular case of applications that use edge-networks.

Termite [30, 31] is an emulation test-bed that provides support for the develop-
ment and testing of mobile applications. We found Termite to be the only system
that has the ability to properly help to develop and test mobile applications
running on emulated mobile devices on top of an emulated edge-network, with
proper support for node displacement and interactions. Thus, Termite is the
system that most closely resembles the one described in this work. However,
it presents several downsides when it comes to developing and testing large
edge-networks. To overcome the Android SDK limit that emulators can only
communicate with up to 15 other emulators spawned in the same physical node,
Bruno et al. propose using Android x86 [32]. Using Android x86, emulators can be
distributed throughout different physical nodes and communicate with each other.
However, using Android x86 images leads to several problems. First, using such
images disrupts the normal Android development cycle as applications cannot be
easily deployed and debugged with the help of Android Studio. Second, not all
emulators (nor supported emulated features) that are available in the Android
SDK are available in Android x86. Third, Termite requires a full deployment of
a cloud infrastructure platform such as CloudStack [33] or OpenStack [34] to
automatically deploy large edge-networks.

3 Android Virtual Devices and Networking
An Android Virtual Device (AVD) [35] defines the characteristics of an Android
phone, tablet, Wear OS, Android TV, or Automotive OS device that is virtualized
through an Android Emulator. In this particular work, an AVD configuration
represents any Android mobile device. AVDs contain the hardware profile, system
image, storage area, skin, and other properties that represent the Android device
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that developers may want to emulate. With this information, developers are able
to create multiple unique Android emulators with the features described in their
configuration.

When using the Android SDK, Android emulators run inside an isolated
network inside the developer’s machine. Each emulator instance runs behind
a virtual router/firewall service that isolates it from the development machine,
network interfaces, and from the Internet. According to the official Android
Emulator networking documentation [36], there is a virtual router for each AVD
instance that manages the 10.0.2.0/24 network address space; therefore, all
addresses managed by the router are in the form of 10.0.2.N, where N is a
number between 0 and 255. Addresses within such address space are pre-allocated
by the emulator/router [36]. In this paper, Android emulators are also referred
to as emulators hereafter.

So, consider a scenario in which we have an application running inside an
AVD emulator instance (e.g., a smartphone app) communicating with some local
service, listening on port 90 on IP 127.0.0.1 (in the developer’s local machine).
Note that both the developer machine’s local network is 127.0.0.1 as well as
the local network of the emulator; this is due to the fact that emulators have
their own network environment. Thus, an application running in the smartphone
cannot use the address 127.0.0.1:90 to access a local service on the developer
machine; in fact, this would correspond to the emulators’ loopback interface (a.k.a.
127.0.0.1). Instead, the application must use the special address 10.0.2.2
(10.0.2.2:90 to access the local service).

The developer machine sees each AVD emulator instance as a process that
can be accessed via a pair of control ports. This pair of control ports (on the
developer machine) correspond to: i) a default control port, and ii) an Android
Debug Bridge (adb) client port. The default control port ranges from 5554 to
5584 (even numbers), and the adb client port ranges from 5555 to 5585 (odd
numbers). Thus, each AVD emulator instance has a control port and an adb
client port pair. These ports are sequentially attributed to each AVD emulator
instance until the maximum port number is reached (5584 and 5585). Due to
this limited port range, we can only have a maximum number of 16 emulators
running simultaneously on the same developer machine.

It is important to note that the ports mentioned above only grant access
to the AVD emulator instance and not to the mobile application that might
be running inside; such ports are meant only to detect and configure the AVD
emulator instance. The communication between any process on a developer
machine network environment and an application running inside an AVD emulator
instance requires that we first set a port redirection rule on the emulator.

To better understand how such redirection can be done, imagine that we wish
to connect a client application process, running on the developer machine, to
an application, acting as a server, inside emulator A that is listening on port
9001. As previously described, we know that processes (in this case the client
application) outside the emulators network environment cannot reach or locally
access the server application running inside it. To this end, we first need to set a
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Fig. 1. EdgeEmu components and their interactions.

port redirection rule on the emulator. This is done by using the adb command
line tool (that communicates with the emulator through the adb client port) to
perform a port redirection command: redir add tcp:X:Y. The port redirection
command instructs the emulator A that any connections received on the port
X in the localhost network of the developer machine must be redirected to the
port Y inside the localhost network of the emulator A (X can be any available
port number on the localhost network of the developer machine and Y is a port
number of the application listening inside the emulator’s network environment).
Assuming X is 9010 and Y is 9001, the client application process accesses the
server application inside the emulator A using the developer machine address
127.0.0.1:9010 which is redirected to the server port 9001 inside the emulator’s
localhost network.

4 EdgeEmu Emulation
We designed EdgeEmu to allow developers to develop and test applications that
require large edge-networks. To that end, EdgeEmu is able to use emulators that
are running across multiple machines (see Figure 1).

As mentioned before, EdgeEmu consists of two main components: a Client and
a Server. The EdgeEmu Client runs from a console window on the developer
machine where the emulated network is created and modelled. User interactions
with EdgeEmu can also be performed through this Client. The user is able
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to choose between two interface options: the text-based console where system
interactions are done using written commands, or a GUI where system interactions
are performed via interactive menus and options (see Section 5 for details).

An EdgeEmu Server needs to be running on each machine where we want
to run emulators. In order for an EdgeEmu Client to access an EdgeEmu Server
(and the emulators managed by it), the user must register them. This consists
on writing the local IP addresses of the machines where EdgeEmu Servers are
running on a configuration file provided to the EdgeEmu Client (see Figure 1).
This configuration file is a simple plain text file. Each local IP address of the
EdgeEmu Servers’ machines should be written in a separate line of the file. For
instance, in Figure 1, the local IP address of machine 1 is 192.168.1.1. This IP
address is automatically discovered by the EdgeEmu Server and can be used for
accessing to EdgeEmu Server. Clearly, the user can assign arbitrary IP addresses
to the EdgeEmu Servers via EdgeEmu Server-side plain text configuration file.

Thanks to the EdgeEmu Server, EdgeEmu is able to support a large number
of emulators distributed across multiple machines. In EdgeEmu, emulators are
identified using the machine’s local IP address where they are running and two
pairs of network addresses and port numbers. For example, in Figure 1, emulator
A is identified by the addresses localhost:9010, localhost:10010, and the
local machine 1 network address (192.168.1.1); emulator B is identified by the
addresses localhost:9010, localhost:10010, and the local machine 2 network
address (192.168.1.2). These addresses are set by the EdgeEmu Servers. These
addresses enable two types of interactions between EdgeEmu components: Control
Messages and Data Messages.

Messages are sent from the EdgeEmu Client to the emulators following
instructions given by the developer. These messages are called Control Messages
(blue/solid arrows between the Client and the EdgeEmu servers 1 and 2) and are
sent in two cases: i) when nodes (within the emulated network) move close to
others, or ii) when P2P groups are formed between nodes (also within the emulated
network). Control Messages contain information that allows the triggering of
P2P events inside an application (e.g., using the Wi-Fi Direct API provided
by Android). One such event is the creation of a P2P group with other target
emulators. When such an event occurs, an application creates a socket connection
with other group members, allowing them to communicate through Data Messages
(green/dotted arrows). For example, taking into account Figure 1, emulator A
connects with the target emulator B. This connection is then redirected to the
application (running in emulator B) and received by a socket also opened by the
EdgeEmu API on port 10001.

As illustrated in Figure 1, the EdgeEmu Client connects with each registered
EdgeEmu Server through the addresses 192.168.1.1:8085 and 192.168.1.2:
8085. Note that the port value 8085 is predefined on the EdgeEmu Server
but can be changed to any other port value chosen by the user through the
EdgeEmu Server-side plain text configuration file. With these connections,
the EdgeEmu Client is then able to discover and use the emulators that are
running on each EdgeEmu Server machine. These connections are used by
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Fig. 2. EdgeEmu GUI implementation.

the EdgeEmu Client to send the Control Messages to emulators using the
EdgeEmu Servers as intermediaries.

As already mentioned, emulators can communicate with each other by using
EdgeEmu to create a socket connection with the group member (the socket connec-
tion is created using the addresses of each emulator, provided within the control
message information). This connection is performed with the EdgeEmu Server(s)
of each emulator as intermediaries. In Figure 1 we can see this and the addresses
used by looking at the green/dotted arrows.

Lastly, it is worth mentioning that EdgeEmu easily allows the user to manage
the emulators’ life cycle (create, destroy, start, stop and install, and start applica-
tions) from the EdgeEmu Client. This is crucial for EdgeEmu to support several
Android emulators as it allows a user to create and manage a large number of
them (and the applications running inside) distributed across multiple machines
from a single control point.

5 Implementation
Most components in EdgeEmu were implemented using Java version 17. We use
this language to guarantee that it can easily run on any platform and that it is
easily extendable. In addition, as Android libraries and applications are largely
written in Java [37], it was a natural choice.

The EdgeEmu GUI runs on top of an Apache Tomcat Server version 9 and
the interface logic is implemented using JavaScript ES6. We opted for JavaScript
as it allows the interface logic to run across any modern web browser (Google
Chrome, Firefox, Safari, etc.). EdgeEmu supports both Google Maps API [38]
and OpenStreetMap API [39] and gives users an option to select their preference.
We chose Google Maps due to its extensive documentation and features and
OpenStreetMap as it is free.

The GUI performs two types of communications with the EdgeEmu Client: i)
requesting data (e.g., requesting emulators to be used on the emulated network),
and ii) sending data (e.g., sending Control Messages to the target emulators
or commands to start new emulators). These communications (illustrated in
Figure 2) are implemented using HTTP GET and POST requests and the data
is formatted using JSON objects. These requests are sent from the web browser
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to a web service (implemented using Java Servlets running inside the Tomcat
Server) that translates them to EdgeEmu commands (similar to those when a
user uses the console interface). The commands are then sent from the Servlets
to the EdgeEmu Client (through a socket connection on localhost:8081) to be
processed.

6 Evaluation
In this section, we compare EdgeEmu with Termite, a previous existing open-
source system (described in Section 2). Looking both at Termite and EdgeEmu’s
architectures, we can identify that the main difference is the EdgeEmu Server
and EdgeEmu Client components (both used to relay messages). These compo-
nents, both in EdgeEmu, completely change how messages are exchanged within
the system: both when we consider the communication protocols between the
EdgeEmu Client and the emulators, and also between emulators. In fact, in Ter-
mite, messages are exchanged directly from the sender emulator to the receiver. In
EdgeEmu, such communication is not direct because the EdgeEmu Server acts as
a middle point responsible for redirecting messages sent from the EdgeEmu Client
to the target emulators and messages exchanged between emulators.

To compare both systems and focus on the most differentiating aspects,
we developed two tests: i) the Ping Test, a latency test (see Section 6.2) that
measures the time it takes to send a ping message from the EdgeEmu Client to
the emulators and receive a response; ii) the File Sharing Test (see Section 6.3),
a bandwidth test that measures the time it takes to send a large message from
one emulator to another and receive a response.

We also conduct additional experiments using latency and bandwidth tests
where an increasing number of emulators is either deployed locally or remotely
(see Section 6.4). First, we run both tests on Termite and EdgeEmu while running
locally (i.e., all system components and emulators run on the same developer
machine). Then, we execute the same tests on EdgeEmu, this time running all the
necessary AVD emulator instances remotely. This means that on one machine we
run the EdgeEmu Client while the necessary emulators run on multiple remote
machines. On each remote machine, there is an instance of the EdgeEmu Server.
The number of emulators running on each machine varies according to the test
being performed.

6.1 Testing environment
When performing the tests locally, all elements of both Termite and EdgeEmu ex-
ecute on a single cluster node. All cluster nodes run Ubuntu 18.04, and are
equipped with an Intel Core i5-4460 3.20GHz (Quad-core) CPU, with 16 GB
RAM. All the used emulators correspond to a Pixel2 Android phone running
Android 5.1 with API 21. This Android version and API allow us to cover more
than 99% of the existing smartphones [40]. When performing tests where the
AVD emulators’ instances are distributed throughout different cluster nodes, the
EdgeEmu Client executed in a local MacBook Pro with macOS Catalina 10.15.7,
featuring a (Dual-Core) Intel Core i5 2,7 GHz CPU (4 threads), with 8GB of
RAM.
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Fig. 3. Ping test local results. Fig. 4. Ping test remote results.

We never run more than ten emulator instances simultaneously on a single
cluster node. This was done due to memory constraints as Android emulators have
high memory requirements, and over committing memory rapidly slows down
emulators’ response times. In fact, running 10 emulators consumes approximately
13GB of RAM and utilizes 40% of CPU. Thus, with a cluster node, having 16GB
of RAM (14GB usable), running more than ten emulators starts to severely
impact system speed and responsiveness.

6.2 Ping Test
The Ping test was developed to evaluate EdgeEmu Server’s latency impact when
messages are exchanged between an EdgeEmu Client and the emulators. The
test consists of measuring the time it takes to send a single message from the
EdgeEmu Client component to an increasing number of AVD emulator instances.
Thus, we created a test script that would send a message to each emulator
and measured the time that each message took to be received and a response
being sent. Starting with one emulator instance, we executed the test script
until the variance of time values obtained becomes less than 10%. In order to
ensure the validity of results, we performed the test script at least ten times. We
then increased the number of emulators and performed the same test until a
maximum of ten emulators instances was reached. After all tests were concluded,
we calculated the average value of each test.

As explained before, the test was performed in two different scenarios. First,
we executed the tests running all system components and the emulators locally
(i.e., in a single machine). Then, we performed the same test but instead of
increasing the number of emulators that run locally, we increased the number of
remote machines being used with each machine running a single emulator.

The results obtained when performing the Ping test locally on Termite and
EdgeEmu can be seen in Figure 3. Results show that EdgeEmu Server has a
negligible impact on the time that it takes to send/receive the ping messages
(less than 3 milliseconds). This allows us to conclude that EdgeEmu presents a
performance similar to Termite on this type of communication within a local
environment.

For the tests conducted with each emulator running in different remote cluster
nodes, the results show (see Figure 4) there is a performance impact when
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Fig. 5. File Sharing test local results. Fig. 6. File Sharing test remote results.

compared with the local EdgeEmu test results (around 40 to 70 milliseconds
depending on the number of remote machines). The reason for this increase is
that messages are exchanged over the Internet between EdgeEmu Client and the
cluster nodes. This is expected and we believe that 40-70 ms of latency does not
compromise the usability of the system as many real systems that operate over
the Internet also include similar latencies.

6.3 File Sharing Test
We now evaluate EdgeEmu bandwidth impact when exchanging messages between
two emulators. The test consists in measuring the bandwidth between two
emulators by measuring the time that takes to send a varying size file (1 MB to
10 MBs) from one emulator to another (when they are part of a P2P group). To
that end, we create an Android mobile application (running in emulators) that
detects the creation of the P2P group and automatically sends the file to the
other group member (i.e., the other emulator). The application then measures
the time between sending the file and receiving a response from the other group
member. In order to trigger this P2P event between the two emulators, we run a
script using EdgeEmu commands that emulate the creation of the P2P group
between two emulators running the app previously mentioned. We ran this test
script until the variance of time values obtained was less than 10%. To respect
the reliability of the results, the test script was executed at least 10 times. Similar
to the Ping Test, this test was performed in two different scenarios. After all
tests are finished, we calculate the average time value for each test.

Results obtained for the File Sharing test on Termite and EdgeEmu with both
emulators running on the same machine can be seen in Figure 5. The results show
that EdgeEmu Server has a negligible impact on the time that messages take to
be sent from one emulator to another (an increase of around 30 milliseconds per
MB). We conclude that EdgeEmu presents a similar performance as Termite on
this type of communication when emulators are running on the same machine.

For the tests conducted on EdgeEmu with each AVD emulator instance
running on different cluster machines, the results show (see Figure 6) that there
is a performance impact when compared with the local EdgeEmu test results: an
increase of 20-109 milliseconds per MB when compared with the results obtained
on EdgeEmu using local emulators. The reason for this time increase is the fact
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that the messages sent from one emulator to another are done from two different
cluster machines over the network. Nevertheless, we consider this overhead to be
completely normal as it is mostly due to network communication latency and
not due to EdgeEmu. Furthermore, we expect real applications to send small to
medium size files as sending large files through a P2P connection (Wi-Fi Direct)
is not recommended due to the unstable nature of this type of communication
(devices come in and out of proximity of each other depending on their speed).

In conclusion, EdgeEmu Server has a negligible impact on the time that
an emulator takes to send and receive messages from and to another emulator.
This happens due to the fact that messages are not sent directly between them
(as is the case when using Termite). Instead, messages are first received by the
local EdgeEmu Server and redirected to the destination (to the Server that is
managing the target emulator). When both emulators are running on the same
machine the performance impact is low; the impact is higher when the emulators
are running on different machines. However, we believe that in both cases the
performance impact is acceptable for the communication paradigm we are using
and we believe that EdgeEmu presents an acceptable performance difference
when compared to Termite.

6.4 Number of Emulators
The number of AVD emulator instances we can use within the emulated network
running the application we wish to develop and test has an obvious impact on
EdgeEmu performance. We have previously mentioned that when using Termite
we need to use the Android Studio AVD Manager or user-made scripts to create
and manage the emulator instances. We also know that due to Android SDK
limitations we can only start a maximum of 16 emulators instances at the same
time on a single machine. As such, when using Termite, we are only able to create
an emulated network with a maximum of 16 target emulators. This number
assumes that the local machine has all the resources needed for that purpose,
which is not realistic for most commodity developer laptops and desktops.

On the contrary, with EdgeEmu, one can now create and manage all AVD
emulator instances directly from an EdgeEmu Client. This removes the need
to use Android AVD Manager or user-made scripts to manage the emulators.
Using EdgeEmu also provides a solution to the Android SDK limitation on the
maximum number of emulators we can run locally. This is done by allowing a
user to create the emulated network on one machine and run the AVD emulator
instances distributed across other machines. As a result, users can create much
larger emulated networks.

Local Deployment: This test evaluates the time that it takes to launch an
increasing number of AVD emulator instances running a test application using
both Termite and EdgeEmu. The test consists of measuring the time it takes to
launch a selected number of emulator instances, installing an application on each
emulator and running it.

To perform this test on Termite we created a simple script file using Termite
commands to perform the same actions of launching the emulators, installing
the applications, and running them. Starting with one emulator instance to a
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Fig. 7. Local Deployment results for Ter-
mite and EdgeEmu.

Fig. 8. Startup time for local and remote
emulators using EdgeEmu.

maximum of 10, the test runs until the variance between time values obtained
was less than 10%. We ran the test script at least 10 times to ensure the validity
of the results. This test was performed on a single cluster machine. Results
for this test are shown in Figure 7. By looking at the plot it is possible to see
that EdgeEmu presents a significant improvement in the time that it takes to
launch the emulators, install the applications and start them. The reason for
this improvement is due to the fact that Termite starts the emulator instances
sequentially while EdgeEmu starts all emulator instances in parallel. We can see
this by considering that the time improvement when we use EdgeEmu is greater
when the number of emulators used increases.

Distributed Deployment: From the previous test results we were able
to show how EdgeEmu speeds up the deployment of the increasing number
of emulators and applications on a single machine. However, because we are
running all the emulator instances on a single machine, we are still limited by
its performance and the hard limit imposed by Android SDK of 16 emulators
instances running at the same time on the same machine.

To truly show how EdgeEmu behaves with an increasing number of emulators,
we developed a similar application to the previous one but now each emulator
instance runs on a different cluster machine. To perform the test, we used a
similar script file as the one created for the Local Deployment test, but now we
distribute the emulators across multiple cluster machines. This script file was
loaded on EdgeEmu Client and the emulators started on remote machines.

First, we started by measuring the time it takes to deploy a single emulator per
machine, installing the template application and starting it. Then, we perform the
same test but this time we deployed 10 emulators instances per remote machine.
With 9 cluster machines, we were able to launch a total of 90 emulators, a drastic
improvement over the maximum of 16 emulators that one can run when using
Termite.

In Figure 8 we show the values obtained when starting one emulator across
the 9 cluster machines, and compare these values to those obtained on the
Local Deployment test, where we started the same amount of emulators (using
EdgeEmu) on a single cluster machine. We can see that with the distributed
approach, the time it takes to start one emulator on a single machine and start
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Fig. 9. The time that it takes to start 10 emulators across the 9 cluster machines.

9 emulators across 9 different machines is approximately the same (the slight
difference is because of the network delay between EdgeEmuClient machine
and cluster machines). This happens due to the fact that the EdgeEmu Client
processes/sends the start commands to the EdgeEmu Servers on multiple machines
at the same time. Thus, with EdgeEmu it is possible to explore the inherent
parallelism of a distributed system.

This parallel processing is again shown on the results obtained when starting
10 emulators across each one of the 9 cluster machines (see Figure 9). As expected,
starting 10 emulators on a single machine takes approximately the same time
as starting 90 emulators across 9 different machines (with 10 emulators per
machine).

Finally, by looking at Figure 9 and comparing the results obtained to those
that we presented on the Local Deployment test, we can see that starting 90
emulators takes less time than to start 10 emulators on Termite (using Android
Studio which starts the emulators sequentially). With these results, we can easily
conclude that EdgeEmu offers better performance when compared to Termite.

7 Conclusion
On the one hand, network simulation and emulation tools available today do not
provide sufficient support to develop and test edge-based applications. On the
other hand, existing tools that emulate edge-based networks lack the necessary
network layer where tests must be performed. Termite, the closest system to
EdgeEmu, does not perform well with an increasing number of Android emulators.

This work presents EdgeEmu. It proposes a distributed system architecture
where the emulated network and the emulated Android devices used can run
on distinct machines. The user is able to create the emulated network on one
machine and offload/distribute the computational load of running a large number
of emulators throughout other machines. This allows the creation of much larger
emulated networks where more complex applications can be developed and tested.
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