
Pay-as-you-Go Resource Isolation
Work-In-Progress (WIP) Paper

Miguel Lourenço
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa

Marios Kogias
Imperial College London

Rodrigo Bruno
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa

1 OVERHEAD OF ISOLATINGWORKLOADS
Serverless computing delegates provisioning and scaling to the
cloud provider so that developers can focus on building and running
applications. Its auto-scaling and finer billing granularity make it
easy-to-use and cost-efficient. In this paradigm, servers remain idle
until an event arises, upon which the infrastructure automatically
provisions a sandbox that encapsulates the user code and efficiently
handles incoming requests [15]. However, a sandboxed environ-
ment (e.g., a container, or a Virtual Machine) can take a long time
to initialize, ranging from hundreds of milliseconds to a couple of
seconds [25]. One of the main factors contributing to this overhead,
also known as cold starts, comes from OS-level isolation primitives
such as chroot and namespaces. Figure 1 shows that these opera-
tions can be up to 2-3 orders of magnitude more expensive than
creating a new process (fork). The setup_chroot column includes
not only the creation of a chroot but also the necessary bind mounts
to pre-populate the environment with basic system libraries. Simi-
larly, setup_network corresponds to creating a network namespace
and setting up and attaching virtual network devices. These results
were collected on a Ubuntu machine with Linux kernel 5.15 and
Intel(R) Xeon(R) Gold 6138 @ 2.00GHz. Since most serverless func-
tions execute within a few hundred milliseconds [18, 24], reducing
the overhead of such isolation primitives is essential to guarantee
good resource utilization and user experience.

2 RESOURCE ISOLATION IN THEWILD
Serverless functions run inside a sandbox that can take the form
of a traditional VM or a lightweight microVM, a container, or a
memory isolate.

Virtual Machines rely on a hypervisor such as Xen [3] or Linux
KVM [6] to coordinate its access to the underlying hardware and
keep VM resources separate from one another [12]. VMs have been
a critical backbone of cloud computing but, as a result of the de-
mand for high elasticity in serverless environments, microVMs
have been proposed. MicroVMs such as Firecracker [14] are light-
weight VMs with a minimalist design that excludes support for a
wide range of devices, focusing instead on supporting the minimum
set of architectures and devices necessary in serverless environ-
ments. However, when deployed in production, microVMs are still
launched within a resource jail built on top of OS-level isolation
primitives [17].

Containers, such as Docker [21] and LXC [8], share the same
host OS and rely on isolationmechanisms built into the Linux kernel.
These mechanisms include control groups (cgroups), responsible for
monitoring and managing resource usage; namespaces, which iso-
late an application view of the global system resources, like process
IDs, and user IDs; chroot, which provides an isolated file-system;
and seccomp-bpf, which limits access to system calls [10]. Together,

Figure 1: Latency overhead of namespaces and chroots.

these tools provide a powerful toolkit for isolating containers. Nev-
ertheless, to enforce an additional layer of security, a few studies
propose a reduction of the kernel surface, for example, through an
application kernel of the Linux system call interface in user space.
Gvisor [13] takes this approach at the cost of higher per-system call
overhead. Others have combined microVMs with containers (eg.
Kata containers [19]) to improve existing secure container technolo-
gies. RunD [20] identified a solution that solves three bottlenecks:
it implements a more efficient container rootfs that reduces disk
usage and its creation time, generates a snapshot of a pre-patched
kernel image to reduce image size, and prepopulates a cache with a
fixed number of cgroups.

Memory Isolates, such as V8 isolates [1], Native Image iso-
lates [5], and Wasm modules [11] rely on Software-Fault Isolation
to enforce memory isolation. Each newmemory isolate is created in
an existing environment with its disjoint memory heap. This elimi-
nates the cold starts of the virtual machine or container given that
the language runtime has already been created and initialized [4].
However, to effectively build a lightweight isolated sandbox us-
ing memory isolates, we still need to wrap memory isolates with
namespaces and chroots to isolate resource access.

In sum, different sandboxing techniques rely on OS-level iso-
lation mechanisms, whose startup latencies easily dominate the
execution time of functions in serverless [23]. Despite this, none
previous work explores how to reduce the costs associated with
the initialization of those primitives. Techniques such as check-
point/restore alleviate cold start latency but still always require
setting up namespaces and chroots beforehand. Approaches that
focus on reusing/caching sandboxes result in high resource utiliza-
tion and do not directly address the original problem [22]. To the
best of our knowledge, this is the first work to directly address the
costs of creating and initializing OS-level isolation primitives.

SESAME’24, April 22nd, 2024, Athens, Greece Miguel Lourenço, Marios Kogias, and Rodrigo Bruno

Figure 2: SJailer isolation set up in the background.

Figure 3: Time to execute thefirst network/file system-related
system call. The total execution time is presented in red.

3 INSIGHT: LAZILY ISOLATING RESOURCES
Most serverless functions are short-lived and sparsely invoked,
meaning that cloud providers can only keep a small number of
functions warm. As a result, a significant amount of time is spent
on setting up sandboxes [24]. When looking at how sandboxes are
initialized, we identify that all user code only starts executing after
resource isolation is set up. In this work, we explore the following
question: Can user code start before resource isolation is set up? In
an ideal execution, user code starts executing, and only when it
requests access to a specific resource through a Linux system call,
the execution is moved into an isolated environment, where the
request is handled. Figure 2 demonstrates how isolation set up and
user code can overlap. For example, namespaces can be created
in parallel with user code execution. If the user code executes a
system call (e.g. getpid), then it needs to be moved into a pid names-
pace. If such a namespace is already available, then the request is
immediately executed. Otherwise, the system call waits until the
namespace is ready.

Lazily moving code execution into namespaces and chroots can
alleviate isolation initialization latency if system calls requiring
access to those resources are not invoked early in the execution (in
this case, there would be no benefit compared to setting up isolation
before user code starts). To analyze this window of opportunity,
we focused on the top two most expensive isolation primitives: file
system and network namespaces. Figure 3 illustrates how different
functions ranging from ML inference, to dynamic HTML gener-
ation take hundreds of milliseconds before issuing a system call
requesting access to the file system and network. In other words, it
is possible to delay resource isolation until the user code issues a
system call that attempts to access protected resources.

Figure 4: SJailer’s lazy resource isolation overview.

4 SJAILER
To achieve lazy resource isolation, we propose SJailer, a system call
jail, that intercepts system calls and moves the calling application
into a particular namespace depending on the requested resource. If
the system call does not require any resource or requires a resource
that is already isolated, then it executes as normal. SJailer’s goal is to
eliminate resource isolation from the sandbox initialization critical
path. In the worst case, SJailer’s execution becomes equivalent to
traditional sandboxes where isolation set up is performed before
the user code launches.

Our design relies on system call patching 1 to replace syscall
instructions with SJailer’s hook points, responsible for checking
whether or not the user code needs to be further isolated according
to the requested system call. However, static system call patching
does not guarantee that our solution is efficient and secure as pars-
ing the entire code section to find system call instructions imposes a
long latency period and fails to cover scenarios where applications
generate code (e.g., using a JIT compiler).

Consequently, SJailer relies on seccomp-bpf [10] to guarantee
full coverage of system calls by running a fast kernel program that
checks whether or not the calling thread is attempting to execute a
system call that has been previously patched. The downside of this
approach is that, for security reasons, the seccomp-bpf cannot be
removed once installed, and thus, even patched system calls still
need to be validated. This incurs a negligible overhead [16].

In practice, users make system calls that are intercepted by the
seccomp-bpf, which checks if the system call hasn’t been previ-
ously patched (Step 1 in Fig. 4). Then, it notifies the Monitor (Step
2), which handles the call accordingly (Step 3.a) and patches the
user code to optimize future invocations (Step 3.b). After the first
execution of a system call (dashed arrows in Fig. 4), subsequent
calls are handled by SJailer’s hooks (Step 4) which check if the
application should be moved into a particular namespace or chroot.
Once the necessary isolation is in place, the system call is issued
(Step 5) and validated in the BPF verifier which allows the system
call to execute (Step 6).

5 OPEN CHALLENGES
We are currently using seccomp-bpf to distinguish from patched
and non-patched syscalls, and so, this layer of security must be
consistent to prevent breaches that could compromise the isolation
of our solution. For example, we want to guarantee that user code
cannot jump directly to syscalls and completely bypass our hook
points. Because of this, we are considering Intel MPK [9] or ARM

1Our implementation is based on syscall_intercept [2].

Pay-as-you-Go Resource Isolation SESAME’24, April 22nd, 2024, Athens, Greece

Memory Overlays [7] to strengthen our validation step. Addition-
ally, instead of patching system calls in SJailer’s set up phase, we
aim to build a pre-patched version of the user code or libc as an
optimization step. Lastly, we want to implement a function that al-
lows the Monitor to patch system calls outside the libc dynamically,
after it receives a notification (Step 3.b in Fig 4).

6 ACKNOWLEDGMENTS
This work was funded in part by the Fundação para a Ciência e a
Tecnologia under award UIDB/50021/2020.

REFERENCES
[1] [n. d.]. Fine-Grained Sandboxing with V8 Isolates. https://www.infoq.com/

presentations/cloudflare-v8/. Accessed: 2024-01-21.
[2] [n. d.]. GitHub - pmem/syscall_intercept: The system call intercepting library.

https://github.com/pmem/syscall_intercept. Accessed: 2024-01-21.
[3] [n. d.]. Home - Xen Project. https://xenproject.org/. Accessed: 2024-01-24.
[4] [n. d.]. How Workers works · Cloudflare Workers docs. https://developers.

cloudflare.com/workers/reference/how-workers-works/. Accessed: 2024-01-21.
[5] [n. d.]. Isolates and Compressed References: More Flexible and Efficient

Memory Management via GraalVM | by Christian Wimmer | graalvm |
Medium. https://medium.com/graalvm/isolates-and-compressed-references-
more-flexible-and-efficient-memory-management-for-graalvm-a044cc50b67e.
Accessed: 2024-01-21.

[6] [n. d.]. KVM. https://www.linux-kvm.org/page/Main_Page. Accessed: 2024-01-
24.

[7] [n. d.]. Learn the architecture - AArch64 memory attributes and proper-
ties. https://developer.arm.com/documentation/102376/0200/Permission-
indirection-and-permission-overlay-extensions/An-example-of-using-
permission-indirection-and-permission-overlay-features. Accessed: 2024-01-25.

[8] [n. d.]. Linux Containers. https://linuxcontainers.org/. Accessed: 2024-01-24.
[9] [n. d.]. Memory Protection Keys — The Linux Kernel documentation. https:

//www.kernel.org/doc/html/next/core-api/protection-keys.html. Accessed: 2024-
01-28.

[10] [n. d.]. Seccomp BPF (SECure COMPuting with filters) — The Linux Kernel
documentation. https://www.kernel.org/doc/html/v4.19/userspace-api/seccomp_
filter.html. Accessed: 2024-01-21.

[11] [n. d.]. WebAssembly Core Specification. https://www.w3.org/TR/wasm-core-1/.
Accessed: 2024-01-24.

[12] [n. d.]. What are virtual machines? | IBM. https://www.ibm.com/topics/virtual-
machines. Accessed: 2024-01-21.

[13] [n. d.]. What is gVisor? - gVisor. https://gvisor.dev/docs/. Accessed: 2024-01-21.
[14] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
virtualization for serverless applications. In 17th USENIX symposium on networked
systems design and implementation (NSDI 20). 419–434.

[15] Kuldeep Chowhan. 2018. Hands-on Serverless Computing: Build, run, and orches-
trate serverless applications using AWS Lambda, Microsoft Azure Functions, and
Google Cloud functions. Packt Publishing.

[16] Jake Edge. [n. d.]. A seccomp overview [LWN.net]. https://lwn.net/Articles/
656307/. Accessed: 2024-01-27.

[17] Radek Gruchalski. [n. d.]. The jailer | gruchalski.com. https://gruchalski.com/
posts/2021-02-19-the-jailer/. Accessed: 2024-01-24.

[18] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke Darlow,
Jianfeng Wang, and Adam Barker. 2023. How Does It Function? Characterizing
Long-term Trends in Production Serverless Workloads. In Proceedings of the
2023 ACM Symposium on Cloud Computing (, Santa Cruz, CA, USA,) (SoCC ’23).
Association for Computing Machinery, New York, NY, USA, 443–458. https:
//doi.org/10.1145/3620678.3624783

[19] Tytus Kurek. [n. d.]. What is Kata Containers and why should I care? | Ubuntu.
https://ubuntu.com/blog/what-is-kata-containers. Accessed: 2024-01-21.

[20] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian, Yi Tao, Bin Zha,
Qiang Wang, Weidong Han, and Minyi Guo. 2022. RunD: A Lightweight Secure
Container Runtime for High-density Deployment and High-concurrency Startup
in Serverless Computing. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22). USENIX Association, Carlsbad, CA, 53–68. https://www.usenix.org/
conference/atc22/presentation/li-zijun-rund

[21] Dirk Merkel et al. 2014. Docker: lightweight linux containers for consistent
development and deployment. Linux j 239, 2 (2014), 2.

[22] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK: Rapid Task Provi-
sioning with Serverless-Optimized Containers. In 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 57–70.

https://www.usenix.org/conference/atc18/presentation/oakes
[23] Shijun Qin, Heng Wu, Yuewen Wu, Bowen Yan, Yuanjia Xu, and Wenbo Zhang.

2020. Nuka: A Generic Engine with Millisecond Initialization for Serverless
Computing. In 2020 IEEE International Conference on Joint Cloud Computing.
78–85. https://doi.org/10.1109/JCC49151.2020.00021

[24] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 205–218. https://www.usenix.
org/conference/atc20/presentation/shahrad

[25] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020. Prebaking
functions to warm the serverless cold start. In Proceedings of the 21st International
Middleware Conference. 1–13.

https://www.infoq.com/presentations/cloudflare-v8/
https://www.infoq.com/presentations/cloudflare-v8/
https://github.com/pmem/syscall_intercept
https://xenproject.org/
https://developers.cloudflare.com/workers/reference/how-workers-works/
https://developers.cloudflare.com/workers/reference/how-workers-works/
https://medium.com/graalvm/isolates-and-compressed-references-more-flexible-and-efficient-memory-management-for-graalvm-a044cc50b67e
https://medium.com/graalvm/isolates-and-compressed-references-more-flexible-and-efficient-memory-management-for-graalvm-a044cc50b67e
https://www.linux-kvm.org/page/Main_Page
https://developer.arm.com/documentation/102376/0200/Permission-indirection-and-permission-overlay-extensions/An-example-of-using-permission-indirection-and-permission-overlay-features
https://developer.arm.com/documentation/102376/0200/Permission-indirection-and-permission-overlay-extensions/An-example-of-using-permission-indirection-and-permission-overlay-features
https://developer.arm.com/documentation/102376/0200/Permission-indirection-and-permission-overlay-extensions/An-example-of-using-permission-indirection-and-permission-overlay-features
https://linuxcontainers.org/
https://www.kernel.org/doc/html/next/core-api/protection-keys.html
https://www.kernel.org/doc/html/next/core-api/protection-keys.html
https://www.kernel.org/doc/html/v4.19/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.19/userspace-api/seccomp_filter.html
https://www.w3.org/TR/wasm-core-1/
https://www.ibm.com/topics/virtual-machines
https://www.ibm.com/topics/virtual-machines
https://gvisor.dev/docs/
https://lwn.net/Articles/656307/
https://lwn.net/Articles/656307/
https://gruchalski.com/posts/2021-02-19-the-jailer/
https://gruchalski.com/posts/2021-02-19-the-jailer/
https://doi.org/10.1145/3620678.3624783
https://doi.org/10.1145/3620678.3624783
https://ubuntu.com/blog/what-is-kata-containers
https://www.usenix.org/conference/atc22/presentation/li-zijun-rund
https://www.usenix.org/conference/atc22/presentation/li-zijun-rund
https://www.usenix.org/conference/atc18/presentation/oakes
https://doi.org/10.1109/JCC49151.2020.00021
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad

	1 Overhead of Isolating Workloads
	2 Resource Isolation in the Wild
	3 Insight: Lazily Isolating Resources
	4 SJailer
	5 Open Challenges
	6 Acknowledgments
	References

