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Abstract

Evictable cloud resources give providers extra flexibility
in managing their infrastructure and help reduce resource
idleness. Due to its user-transparent and ephemeral nature,
serverless computing appears to be a logical fit to make use
of this type of resources. However, in its current form, this
flexibility comes at the cost of semantics, namely by impos-
ing execution time limits and only guaranteeing at least once
semantics. As such, developers must either implement idem-
potent code or resort to proactive checkpointing or logging
approaches, which pessimistically introduce runtime over-
heads in every invocation. In this paper, we make the case for
an alternative approach to handling function interruptions,
based on a reactive checkpoint-based mechanism. Follow-
ing this approach, we present R-Check, a system designed
to efficiently migrate function instances running on top of
evictable cloud resources when interruptions are imminent.
Our evaluation shows that significant resource savings can
be achieved using such resources, and that function migra-
tion is possible with minimal runtime overhead.

CCS Concepts: « Software and its engineering — Check-
point / restart; - Computer systems organization —
Cloud computing.
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1 Introduction

To achieve higher resource density, cloud providers now offer
the opportunity to take advantage of cheaper ephemeral re-
sources that could be evicted at any moment if a high-priority
job needs to use the same resources. This momentarily sur-
plus of resources is made available through services such as
Spot [6], and Burstable [4, 22] instances. Harvest VMs [35]
further build up on this idea of using harvestable resources by
expanding or contracting individual Virtual Machine (VM)
instances at runtime (e.g., to add/remove cores).

While the idea of opportunistically taking advantage of
idle resources increases hardware efficiency, it significantly
hampers the programming model as applications now need
to be able to adapt to use more (or less) resources, or com-
pletely terminate in the case of an eviction. In the face of this
adversity, serverless has been proposed as a natural model
to take advantage of such resources [8].

Serverless computing is becoming an increasingly popu-
lar cloud programming paradigm, especially in the form of
Function-as-a-Service (FaaS). It is now supported by major
cloud providers (e.g., Amazon’s AWS Lambda [5], Microsoft’s
Azure Functions [23], Google’s [18] and IBM’s Cloud Func-
tions [19]) as well as through open-source projects (such as
Apache’s OpenWhisk [9] and OpenFaas [24]).

FaaS offers an intuitive, event-based interface for develop-
ing cloud applications. The vision behind this paradigm is
to completely hide the management of VM, runtimes, and
resources from the programmer so that cloud users can focus
on the application logic. Each of these functions can then
be invoked on demand and independently from one another.
Function instances have been shown to start extremely fast
compared to traditional VMs [1], allowing serverless ap-
plications to quickly scale to many compute units without
provisioning a long-running cluster. Cloud providers are re-
sponsible for handling VM/container allocation, deploying
the user code, and scaling the resources up and down. All of
this infrastructure management is transparent to users.

Serverless offerings encourage users to write stateless
and short-running functions [11]. In particular, services like
AWS Lambda set a maximum execution time on the order of
minutes [2] and, in case it is necessary to halt the function
execution (namely for resource scheduling purposes), the
default action is to redeploy the function in a different node
and simply retry it. For this reason, the functional program-
ming model of serverless computing is a good fit to exploit
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harvested resources and it has even been shown to result in
a low overall function eviction rate [8].

However, as a consequence of its growing popularity, more
and more applications are being ported to serverless and, as
a result, the idea of using serverless to harness harvested
resources becomes challenged. First, stateful functions [12,
28, 29], which store and access external state, may lead to
inconsistencies and/or undesired behaviors when evicted at
an arbitrary point (for example, duplicate items appearing in
a shopping cart). To prevent these pathologies, providers of
Faa$ services guide developers to write idempotent code [7]
when devising stateful functions. Second, as the number of
use cases continues to grow, we expect an increase in the
average function invocation lifetime, which increases the
prevalence of the first problem.

In light of these challenges, recent work proposed meth-
ods for saving computation steps, namely by recording the
computation through logging or periodic checkpointing [20,
33, 34]. However, these approaches introduce considerable
performance overheads in every function invocation, even
if only a fraction needs to handle an eviction. Furthermore,
these overheads tend to increase as the range of functions
deployed becomes wider, namely when FaaS services start
supporting longer-running functions [2].

This paper takes the position that serverless computing
can and should evolve to safely deploy non-idempotent state-
ful functions on evictable resources while also inflicting min-
imal runtime overheads. Our vision is based on the insight
that evictions are controlled events and not crash faults. Thus,
by co-designing the function runtime together with provider
scheduling and scaling decisions, we advocate for a reac-
tive and application-transparent checkpointing model that
automatically migrates active invocations upon an eviction.

To realize this idea, we present a proof of concept system
called R-Check, a reactive and fully transparent checkpoint-
based framework for serverless functions. R-Check leverages
the fact that cloud providers grant a termination grace period
before they relocate a resource, e.g., two minutes in the case
of EC2 spot instances [26]. This way, R-Check attempts to
make use of that period to efficiently snapshot the application
state and resume from it afterwards. This allows R-Check’s
functions to be stateful and still be interrupted at any point
during their execution.

We start this paper by studying the resource usage of
serverless clusters with and without R-Check, estimating
resource savings up to 7.24% when using evictable resources
compared to a function compaction policy similar to the one
used by commercial FaaS platforms. Then, we present the
design, implementation, and preliminary evaluation of our
work-in-progress R-Check prototype, showing that the sys-
tem can successfully migrate function instances, achieving
minimal overheads for the vast majority of function invoca-
tions (less than 1 second and 0.5 seconds for checkpoint and
restore, respectively).

2 Benefits of assertive function compaction

Current FaaS offerings, e.g., AWS Lambda and Azure Func-
tions, schedule function invocations by packing them to-
gether with the goal of maximizing memory utilization per
physical node [31]. Despite this bin-packing effort, two main
factors contribute to per-node sub-optimal memory utiliza-
tion: i) highly elastic function invocation bursts, coupled
with ii) unpredictable function invocation times. As a re-
sult, resource utilization across large fleets of nodes becomes
fragmented resulting in low resource utilization.

We argue that it is possible to further consolidate function
invocations by migrating running function instances to other
physical nodes to reduce the amount of idle resources. In
particular, we propose that nodes whose load falls below
a certain threshold can be proactively evicted, migrating
the functions they accommodate to other available nodes so
that the provider can reduce the overall resource and energy
footprint.

To test our vision, we quantify the influence of evicting
nodes that fall below a certain minimum load. We define
load of an active node n at an instant ¢ as the sum of the
memory of all f function invocations running on node n at
instant ¢:

load(n,t) = Z memory s (1)
feF

To do so, we simulate a large FaaS cluster that we use to re-
play invocations from the Azure Functions public trace [27].
The selected trace spans a 24-hour period (day 5) containing
178 million function invocations. The simulation takes into
account the duration and average memory consumption and
schedules functions on a cluster of 32GB nodes following
the compaction-oriented scheduling strategy described in
previous work [31]'. In the simulation, if a node’s load falls
below the minimum load to evict, active function invocations
on that node are migrated and the node is removed from
the available pool of nodes. To measure resource usage, we
define the following metric:

instance-seconds = Z lifetime,, (2)
neN

as the sum of the lifetime, in seconds, of all the n active nodes
from the cluster for the duration of the experiment. A lower
value of this metric means that there were more opportuni-
ties to either power down nodes or allocate them to other
purposes, thus representing a lower resource utilization.
Figure 1 shows both the instance-seconds metric and the
eviction rate, both as a function of the minimum load to evict
threshold. We can see that there is a steep decline in resource
usage up to around 20% of minimum load, achieving ~7.24%

IWe simulate scheduling according to memory consumption because the
trace does not contain other load metrics, namely CPU utilization.
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Figure 1. Instance-seconds needed to run a 24-hour FaaS
cluster (left y-axis), for different minimum thresholds to evict
an instance, and number of function evictions per second
for those settings (right y-axis). The function invocation
throughput in this cluster is, on average, 2060 invocations
per second.

resource savings compared to the baseline scenario (that rep-
resents current FaaS scheduling policies with no compaction
through migration). From 30% onwards, the marginal sav-
ings in terms of instance-seconds become less noticeable
as the load to trigger an eviction increases, and therefore
increasing this threshold beyond 30% is likely not going to
be worth the benefits. Such remark is corroborated by the
number of evictions per second (right-hand axis of Figure 1)
where evictions are fairly limited for thresholds up to 30%
(less than =50 evictions per second). Thus, by setting a min-
imum load to evict of around 20%, there is the potential to
achieve a considerable reduction in resource usage while
affecting a small number of function executions.
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Figure 2. Instance-seconds needed to run a 24-hour Azure
Functions trace on 0% and 20% load eviction policies when
increasing the average function invocation time by a con-
stant duration factor (left y-axis) and savings obtained for
each factor (right y-axis).

The increasing attention that serverless has been receiv-
ing also makes it reasonable to envision a future where more
diverse and general-purpose workloads are deployed on such

platforms. This implies that functions will tend to be longer-
running. In fact, the observation that FaaS platforms have
increased their execution time limits over recent years [2]
is a clear hint in this direction. Hence, we also measure
resource savings in this hypothetical scenario where func-
tions have increased function invocation times. We simulate
longer function execution times by multiplying all original
function execution times from the trace by a constant factor.
We compare the baseline of a 0% to a 20% minimum load
to evict policy and display the results in Figure 2. With the
increased duration, we observe that the number of instance-
seconds for the 20% load scenario grows slower than in the
baseline 0% load scenario, achieving savings of up to ~11.6%
with a duration factor of 10. This means that, in the future,
as the average function duration increases, resource savings
for systems that follow an aggressive function compaction
policy (as proposed in this work) will likely increase. We
also tested increasing the memory footprint of each func-
tion by multiplying it by a constant factor but we observed
no relevant changes in the instance-seconds metric when
compared to the original setting.

Motivated by the aforementioned results, we argue that it
is possible to achieve significant cloud resource savings by
terminating nodes when they are underutilized. However,
at the same time, this aggressive scheduling policy brings
up new challenges as it forces developers to either restrict
application semantics or introduce large runtime overheads
to deal with evictions. In the rest of this paper, we present an
approach that allows serverless applications to be deployed
on evictable resources and keep the same semantics, while
adding no runtime overheads to the normal-case executions
where there are no evictions. But before presenting this pro-
posal, we first put in perspective how the notion of controlled
evictions affects the semantics of cloud services.

3 Serverless fault tolerance: the circle is
now complete

To understand the advantages and drawbacks of various
cloud solutions in the different metrics relevant to this work,
namely fault tolerance, expressiveness, and ability to migrate
instances for better resource utilization, we analyze system-
atically how the offer of cloud services evolved throughout
the years along these axes.

The first cloud service to be launched by Amazon was
EC2, which was the first example of Infrastructure as a Ser-
vice (IaaS). In this class of services, the customer can launch
VM instances, which run the entire software stack that the
customer desires. While this is optimal in terms of expressive-
ness, VMs expose direct access to the infrastructure, making
it difficult for providers to automatically migrate running
VMs transparently to users. For example, VMs have public
IPs that might become temporarily unreachable.



Faa$ enables a more proactive approach to resource man-
agement, as we previously explained, but does so at the
expense of semantics: to allow the provider to perform fine-
grained management of its resources, current FaaS offerings
bound the function execution time by a limit that is fixed
for each provider, after which the function is forcibly termi-
nated. Furthermore, there is an expectation that the provider
may terminate the function execution at any point before
that limit. This way, invocations can be evicted if resources
become necessary to host a higher-priority tenant/service,
or if more convenient resources become available elsewhere.

However, this constrains not only the duration but also
the semantics of cloud functions, namely by requiring these
to be idempotent so that they can be seamlessly restarted
upon eviction. This constraint can be an entry barrier for
developers of serverless code, as it precludes, for example,
any interaction with external resources.

To address this problem, a few recent research papers pro-
posed the use of either checkpointing (Kappa [34]) or logging
and replay (Beldi [33] and Boki [20]) on top of serverless
systems. The idea is that, during every function execution,
the execution environment either takes periodic checkpoints
of the state of the runtime or logs every single output that
was already issued by the function. Then, upon halting the
execution of a function and restarting it elsewhere, either the
checkpoint allows for resuming the function from a point
near where it was stopped, or the log allows for replaying the
execution and suppressing duplicate outputs. However, the
problem with both techniques is that they impose a runtime
overhead that was not present before, which is paid for by
every function execution, even though only a fraction of
these are expected to be restarted.

In R-Check, our approach is that functions should not
be restarted, but instead migrated. More specifically, our
proposal is grounded on the following insight: evictions are
controlled faults, in contrast to unexpected crashes (e.g., faults
caused by a sudden power outage), which are unplanned, and
thus more difficult to recover from. As a result, the require-
ment of idempotency can be lifted by leveraging the eviction
notice that is present in existing evictable resource-based
cloud services (namely a 30-second up to 5-minute grace
period in spot instances [10, 15, 26]) to conduct a reactive
checkpoint of the cloud function, thus avoiding any incorrect
behavior or loss of application state upon migration.

Our insight is further backed by the observation that pro-
posals that resort to logging or checkpointing offer protec-
tion against a class of faults that today’s cloud services do
not address, which are unexpected crash faults. In particular,
both IaaS and FaaS do not tolerate these faults, and there-
fore the developers that use these cloud services have to
resort to some application-level mechanism in case there is
the need to handle sudden crashes. (In practice, though, we
argue that most applications do not use such extra mecha-
nisms, probably due to a combination of faults being rare

Full Crash No runtime Fine-grained

expressiveness! faults overhead resource mgt.
IaaS v X v X
Faa$ X X v v
Kappa [34] v v X v
Beldi [33] v v X v
R-Check v X v v

! Namely support for non-idempotent code.

Table 1. Relevant characteristics of different cloud services
and research proposals.

and the tolerance to exposing some errors to users, who have
the choice of retrying their interactions with the service.)
Logging and checkpointing, in turn, go to the extent of guar-
anteeing that crashes are tolerated automatically, using the
same mechanisms that are used for function restarts. In our
view, removing the semantic limitation of functions having
to be stateless and idempotent does not require us to tolerate
more faults than what FaaS and IaaS handle today, and, by
equating the level of fault tolerance to Iaas/FaaS, we are also
able to avoid paying expensive runtime overheads for the
fault handling mechanisms.

To demonstrate the feasibility of this approach, we assem-
bled a proof of concept system called R-Check, which we
briefly describe in the rest of this paper. To put the relevance
of R-Check in perspective, Table 1 presents how different
cloud platforms and systems handle different types of faults
and the additional requirements they impose on the applica-
tion code, following our previous discussion.

In summary, R-Check shows that there is a middle ground
between today’s FaaS (which does not support general code)
and systems that support both general code and handle crash
faults [33, 34], by proposing a fault model that, like IaaS,
supports planned evictions but not crash faults. The resulting
system enables users to choose a sensible balance between
performance overhead, expressiveness, and handling faults.

4 Reactive checkpoint & restore

Checkpoint/restore has been explored extensively in server-
less computing to reduce cold start times [14, 17, 30]. In this
work, we look at it not to reduce initialization time, but to
migrate running function invocations upon an eviction.

One way to implement checkpoing/restore is to request
users to provide their own checkpoint/restore logic. Although
this empowers the user to make the eviction handling as opti-
mized as possible, this poses a significant extra programming
effort. Instead, we propose a completely transparent and
function-agnostic checkpoint/restore approach where the
provider triggers its own snapshot mechanism at system-
level with no extra burden for the developer. In the case of
R-Check, this is achieved by the use of Checkpoint Restore
in Userspace, CRIU [16].



In R-Check, when an instance is about to be terminated
due to the cloud provider’s aggressive resource management,
a request is sent to the function instance to save the current
context of execution and store it in a remote storage service
or platform. Once checkpointing finishes, a new function
instance on another available node triggers the restoring
logic code that resumes the previously interrupted function.

T
Checkpoint
Restore

3.5

w25 1

€20
'_

15

1.0

0.5

|
0.0 —
0 200 400 600 800 1000

Memory consumed (MB)

Figure 3. Checkpoint and restore times as a function of
the memory consumed in the execution. Shaded regions
represent the 90% confidence interval of measured times.

We now analyze the potential overhead that is introduced
by using the transparent checkpoint/restore technique pro-
posed above. In this experiment, we run a Python microbench-
mark function that (1) allocates a specific amount of memory
during its execution and (2) sleeps for a given period of time.
We use CRIU as our snapshotting tool and measure the cost
of checkpointing and restoring function instances locally
(leaving room for different remote storage solutions to be ex-
plored in future work). All experiments were run 100 times
on an AWS EC2 t3a.large machine (2 virtual CPUs, 4 GB
RAM).

The results are presented in Figure 3. We can see that func-
tion checkpoint and restore times are kept below 1 second
and 0.5 seconds, respectively, when up to 300 MB of memory
are consumed. From the Azure trace used in Section 2, we
learn that 93% of functions allocate between 100 MB and 300
MB of memory during execution. Taking this estimation as
a reference for how much memory functions may consume,
we anticipate that the overhead introduced by R-Check, as
reported above, is manageable for the majority of function
instances.

5 Discussion

While R-Check facilitates the deployment of serverless on
evictable resources, it also opens a number of challenges,
opportunities, and open questions.

Doesn’t Faa$S already have a fault handling mecha-
nism? While current Faa$ platforms tolerate faults by design,
the mechanism used to recover from such faults - retrying
the function invocation — may cause semantic problems if a
function is not idempotent. For example, imagine a function
that logs user actions in a database. If there is a fault after
updating the database but before the invocation finishes, the
platform will retry the invocation leading to a duplicate data-
base record. Avoiding duplicate records even in this trivial
example is complex, as it requires developers to carefully
check if the record has been added before. Note that simply
disabling the auto-retry functionality would prevent incon-
sistencies (and duplicate records in our example), but this
would also create additional tension by failing requests when
deploying functions atop environments with ephemeral re-
sources such as spot instances. Therefore, instead of relying
on developers to guarantee correctness, R-Check proposes
to migrate function executions instead of retrying them.

Is IaaS obsolete? We envision that serverless will con-
tinue growing, and, as it does, so will need to accommodate
a significantly larger set of use cases. In particular, this may
include cases where applications have an unpredictable load
that results from bursty requests and unpredictable compu-
tation times. R-Check further widens the scope of FaaS to
be able to handle long-running functions, but, to this day,
TaaS is still the most cost-effective deployment type to host
long-running computations with predictable loads.

What if the migration fails? Checkpoint/restore has
received significant attention in recent years and is now even
used in production serverless platforms (e.g., AWS Lambda
uses checkpoint/restore to speed up instance startup [3]).
However, a migration could still fail due to overrunning the
termination period, or because of an unsupported resource
that cannot be checkpointed. In such an event, the platform
should not retry the invocation as it may break the intended
semantics (as described above), but instead, it should provide
the developer with a failure log that allows him/her to resolve
any consistency issues. Note that this is similar to IaaS, where
service crashes may require developer attention to analyze
the logs and take action. In the case of overrunning the
function timeout, we envision that providers could extend
this period even if charging at a higher price.

Can R-Check scale to large function instances? In this
paper, we present a preliminary evaluation of what check-
point/restore looks like in R-Check. We plan to extend the
evaluation of R-Check’s snapshotting capabilities in future
work. We also propose a number of avenues to further opti-
mize snapshotting:

I) Different snapshot communication mechanisms:
One could possibly have an in-memory cache holding snap-
shots waiting to be pulled for a restore. A combination of
different storage types could also be used depending on the
size and available bandwidth as previously proposed [21, 25].
Another alternative would be to take advantage of direct



communication [32] between the evicted node and the node
that will restore the snapshot;

II) Snapshot-aware language runtimes: Faa$S platforms
offer a number of language runtimes capable of running the
most popular languages (e.g., Python, Java, Javascript). These
runtimes pre-allocate large chunks of memory, commonly re-
ferred to as the heap, which is then used for object allocations
at runtime. However, since the heap memory is allocated
(and committed) by the runtime, snapshotting tools cannot
distinguish between used and unused heap memory. One
possible research direction is to adapt runtimes to become
snapshot-aware, for example, to export the memory pages
that contain unused heap memory which could, therefore,
be discarded during snapshot generation [13].

III) Incremental checkpointing: The snapshot size can
be reduced by creating an initial snapshot and subsequently
only tracking the memory that is modified. Such incremental
snapshots could be created after launching the runtime, or
after loading the function code. Then, upon an eviction, an
incremental snapshot would only include modified memory

pages.

6 Conclusion

In this work, we advocate for the placement of serverless
functions on top of evictable resources for better cloud re-
source utilization. To overcome function failures and relax
idempotency requirements of serverless platforms, we pro-
pose R-Check, a system that reactively checkpoints and re-
stores functions when evictions occur. Our approach adds
marginal overheads to the overall execution time and re-
quires no effort from application developers.
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