

NG2C - N-Generational GC
for Big Data Memory Management

Rodrigo Bruno, Paulo Ferreira – rodrigo.bruno@tecnico.ulisboa.pt, paulo.ferreira@inesc-id.pt

1. Problem

Big Data platforms use lots of memory to
enable fast data access.

Most of this data (eg. caches or processing
queues) stays in memory for some time,
where they get copied several times until
reaching the old generation.

Applications experience severe pauses
because not all objects die young!

 For more information, please contact us or visit our website at www.gsd.inesc-id.pt/~rbruno

2-Gen(most common) Heap Layout

3. Other Approaches

● Complex GC tunning to match the
application allocation rate with the heap
size;

● Implement complex memory management
strategies to control object allocation;

● Resort to Off-heap memory.

2. Solution

Avoid copying objects by allocating directly
in specific generations according to their
estimate life cycle.

Each generation contains objects that will be
mostly dead by the same time (this is done
with the help of the programmer).

This prevents unnecessary copying of
objects and improves GC efficiency.

5. Code Sample

6. Results

N-Generational Heap Layout

4. 2-Gen vs N-Gen Heap Layout

0 20 40 60 80 100 120
0

0.01

0.1

1

10256
512
1024
2048
4096

Survival Rate (%)

M
in

or
 C

ol
le

ct
io

n
P

au
se

 (
se

g)

Bound to Memory Bandwidth!

✗ Objects allocated in
the Eden are copied
several times;

✗ Old generation is hard
to collect, potentially
leading to full GCs;

✔ Objects allocated in
specific generation,
near other objects with
the same life cycle.

✔ Heap is organized
according to object life
cycle. Easy to collect.

Eden Size (MB)

Creates a new generation.

Creates a new epoch in the current generation.
 Memory previously allocated in the current generation

 is now ready to be collected.

Annotation for allocating object in
specific generation (other than Eden).

0 50 100 150 200 250
5

50

500

5000

CMS G1 NG2C
Time (seg)

A
pp

lic
at

io
n

P
au

se
 T

im
e

(m
s)

Percentiles 50 75 90 99 99.9 99.99

CMS (ms) 461 670 853 1873 2048 2065

G1 (ms) 94 241 588 838 853 854

NG2C (ms) 11 12 14 16 16 16

Application pauses
severely reduced!

● 4 threads processing tasks with
1 GB of data;

● Working set of 4 Gbs;

● CMS and G1 with 8 GB young
gen;

● NG2C works fine with 1GB.
Heap size of 12 GB.

mailto:rodrigo.bruno@tecnico.ulisboa.pt
mailto:paulo.ferreira@inesc-id.pt
http://www.gsd.inesc-id.pt/~rbruno

	Slide 1

