TECNICO ' :
i i e

NG2C: N-Generational Garbage Collector for
Big Data Memory Management

Rodrigo Bruno, Paulo Ferreira

{rodrigo.bruno,paulo.ferreira}@inesc-id.pt

INESC-ID - Instituto Superior Técnico, ULisboa

TECNICO o
LISBOA inescid

Motivation

e Applications use large amounts of memory to enable fast data access
o Eg: memory caches used in Cassandra or RDDs on Spark

TECNICO
W LISBOA

Motivation

e Applications use large amounts of memory to enable fast data access
o Eg: memory caches used in Cassandra or RDDs on Spark

e Having lots of data in memory puts too much stress on current memory
management technologies, in particular, the Garbage Collector (GC);

W TECNICO @ .
LISBOA lnesrc id

;V‘\"i‘

Motivation

e Applications use large amounts of memory to enable fast data access
o Eg: memory caches used in Cassandra or RDDs on Spark

e Having lots of data in memory puts too much stress on current memory

management technologies, in particular, the Garbage Collector (GC);

m ! Leads to big application pauses which compromise
performance and responsiveness !

TECNICO L
W LISBOA %@ggﬂd
Goals

1. Minimizing GC stop-the-world pauses. How?

TECNICO L
W LISBOA %@ggﬂd
Goals

1. Minimizing GC stop-the-world pauses. How?

2. Avoiding object copy within the heap. Why?

TECNICO L
W LISBOA %&g&sﬂd
Goals

1. Minimizing GC stop-the-world pauses. How?
2. Avoiding object copy within the heap. Why?

o We found that the cost of GC stop-the-world pauses is mostly
dominated by the number (and size) of objects to copy:

TECNICO
W LISBOA
Goals

1. Minimizing GC stop-the-world pauses. How?
2. Avoiding object copy within the heap. Why?

o We found that the cost of GC stop-the-world pauses is mostly
dominated by the number (and size) of objects to copy:

m Promotion (moving objects from young to old generation)

m Compaction (compacting objects within the old generation)

TECNICO .
w LISBOA %@ggﬂd

Solution

e Avoid copying objects in memory. How?

TECNICO : :
| M g

Solution

e Avoid copying objects in memory. How?

e Replacing the current heap layout of two generations (young and old) by
an arbitrary number of generations. How?

TECNICO
W LISBOA

Solution

e Avoid copying objects in memory. How?

e Replacing the current heap layout of two generations (young and old) by
an arbitrary number of generations. How?

o Giving the programmer the power to:

m Create and collect specific generations (run time);
m To allocate objects directly in a specific generation;

W TECNICO @ ,
LISBOA Jnescid

Solution

e Avoid copying objects in memory. How?

e Replacing the current heap layout of two generations (young and old) by
an arbitrary number of generations. How?

o Giving the programmer the power to:

m Create and collect specific generations (run time);
m To allocate objects directly in a specific generation;

e Each generation should contain objects with similar expected life-cycles

o All objects in a generation are expected to die about the same time
o Eg: all objects stored in a cache die when the cache is flushed;

o Eg: all objects created to handle a specific computation task die
when the task is finished.

TECNICO
W LISBOA

Solution

to

from

%%pggc id

x Objects allocated in the Eden are
copied several times;

old

\ /

2-Generation (traditional) Heap Layout N

x Old generation is hard to collect,
potentially leading to full GCs;

TECNICO .
W LISBOA %%pggud

Solution

v/ Obijects allocated in specific
generation, near other objects with the
same life cycle.

Genl Gen?2 Gen N-1 Gen N

........................ old

N-Generation Heap Layout N

v Heap is organized according to object
life cycle. Easy to collect.

to |from

TECNICO : :
| M g

Code Sample

Creates a new generation. Allocations with the
@Gen annotation will go directly to this generation.

public void runTask()}iﬁﬁﬁijjizszi,/,/,//,
System.newGen() ;
while (running) {
DataChunk data = new @Gen DataChunk();

initializeData(data);
doComplexProcessing(data) ;

}
System.collectGen();

]- Special annotation for allocating object in
specific generation (other than Eden).

Creates a new epoch in the current
generation. Memory previously
allocated s now ready to be collected.

TECNICO ..
W LISBOA %@g}ggcw

Solution

e Isita good idea to ask the programmer to give hints to the GC?

TECNICO o
LISBOA inescid

Solution

e Isita good idea to ask the programmer to give hints to the GC?

o For most applications: NO!

TECNICO o
LISBOA inescid

Solution

e Isita good idea to ask the programmer to give hints to the GC?
o For most applications: NO!

o For applications with strict performance requirements: YES!

TECNICO .
LISBOA inescid

Solution

e Isita good idea to ask the programmer to give hints to the GC?
o For most applications: NO!

o For applications with strict performance requirements:
m Most applications already resort to several tricks to circumvent the
GC (eg: using offheap memory, keep memory objects bounded,
etc...)

W TECNICO @ .
LISBOA jnescid

Solution
e Isita good idea to ask the programmer to give hints to the GC?

o For most applications: NO!

o For applications with strict performance requirements:
m Most applications already resort to several tricks to circumvent the

GC (eg: using offheap memory, keep memory objects bounded,

etc...)
m Places where generations are allocated and collected are usually

well defined;

W TECNICO @ .
LISBOA lnesTc id

Preliminary Results

e Simple application (very similar to code sample):
o 4 threads processing tasks;
o Each task has 1 GB of data to process;
o Total working set of 4 GBs.

e Three collectors used:
o Concurrent Mark-and-Sweep (default GC for OpenJDK < 9)
o Garbage First (default GC for OpenJDK >= 9)
o N-Generational Garbage Collector (our collector)

e Both CMS and G1 with young generation sizes of 8 GBs (twice the
working set). NG2C with 1 GB.

e Heap size fixed at 12 GBs for all collectors.

TECNICO .
W LISBOA %@ggﬂd

Preliminary Results

5000
| |
&
= & il
g - B o = m
s 520 e .| g m*
@ * * i
= - ECMS
= +*G1
z %0 - * * NG2C
z
& [|
= B m $
5
0 50 100 150 200 250
Time (s3eq)

10

TECNICO
w LISBOA

i%egc id

Preliminary Results

Application Pause Time (ms)

|
&
[| - 4 n
m | m
u * + B . *
° e
L] * .
- B CMS
+*G1
* * * NG2C
* *®
[|
O @ AL IR
50 100 150 200 250
Time (s3eq)
Percentiles 50 75 80 a9 99.9| 99.99
CMS (ms) 461 | 670| 853 | 1873 | 2048 2065
G1 (ms) 94| 241 | 588| 838| 853 854
NG2C (ms)

10

Thank you for your time.
Questions?
Suggestions?

Rodrigo Bruno
email: rodrigo.bruno@tecnico.ulisboa.pt
webpage: www.gsd.inesc-id.pt/~rbruno

mailto:rodrigo.bruno@tecnico.ulisboa.pt
http://www.gsd.inesc-id.pt/~rbruno

