
NG2C: N-Generational Garbage Collector for
Big Data Memory Management

Rodrigo Bruno, Paulo Ferreira

{rodrigo.bruno,paulo.ferreira}@inesc-id.pt

INESC-ID - Instituto Superior Técnico, ULisboa

2

Motivation
● Applications use large amounts of memory to enable fast data access

○ Eg: memory caches used in Cassandra or RDDs on Spark

2

Motivation
● Applications use large amounts of memory to enable fast data access

○ Eg: memory caches used in Cassandra or RDDs on Spark

● Having lots of data in memory puts too much stress on current memory
management technologies, in particular, the Garbage Collector (GC);

2

Motivation
● Applications use large amounts of memory to enable fast data access

○ Eg: memory caches used in Cassandra or RDDs on Spark

● Having lots of data in memory puts too much stress on current memory
management technologies, in particular, the Garbage Collector (GC);

■ ! Leads to big application pauses which compromise
performance and responsiveness !

3

Goals

1. Minimizing GC stop-the-world pauses. How?

3

Goals

1. Minimizing GC stop-the-world pauses. How?

2. Avoiding object copy within the heap. Why?

3

Goals

1. Minimizing GC stop-the-world pauses. How?

2. Avoiding object copy within the heap. Why?

○ We found that the cost of GC stop-the-world pauses is mostly
dominated by the number (and size) of objects to copy:

3

Goals

1. Minimizing GC stop-the-world pauses. How?

2. Avoiding object copy within the heap. Why?

○ We found that the cost of GC stop-the-world pauses is mostly
dominated by the number (and size) of objects to copy:

■ Promotion (moving objects from young to old generation)

■ Compaction (compacting objects within the old generation)

4

Solution
● Avoid copying objects in memory. How?

4

Solution
● Avoid copying objects in memory. How?

● Replacing the current heap layout of two generations (young and old) by
an arbitrary number of generations. How?

4

Solution
● Avoid copying objects in memory. How?

● Replacing the current heap layout of two generations (young and old) by
an arbitrary number of generations. How?

○ Giving the programmer the power to:

■ Create and collect specific generations (run time);
■ To allocate objects directly in a specific generation;

4

Solution
● Avoid copying objects in memory. How?

● Replacing the current heap layout of two generations (young and old) by
an arbitrary number of generations. How?

○ Giving the programmer the power to:

■ Create and collect specific generations (run time);
■ To allocate objects directly in a specific generation;

● Each generation should contain objects with similar expected life-cycles

○ All objects in a generation are expected to die about the same time
○ Eg: all objects stored in a cache die when the cache is flushed;
○ Eg: all objects created to handle a specific computation task die

when the task is finished.

5

Solution

2-Generation (traditional) Heap Layout

x Objects allocated in the Eden are
copied several times;

x Old generation is hard to collect,
potentially leading to full GCs;

6

Solution

N-Generation Heap Layout

✓ Objects allocated in specific
generation, near other objects with the
same life cycle.

✓ Heap is organized according to object
life cycle. Easy to collect.

7

Code Sample
Creates a new generation. Allocations with the
@Gen annotation will go directly to this generation.

Special annotation for allocating object in
specific generation (other than Eden).

Creates a new epoch in the current
generation. Memory previously

allocated s now ready to be collected.

8

Solution
● Is it a good idea to ask the programmer to give hints to the GC?

8

Solution
● Is it a good idea to ask the programmer to give hints to the GC?

○ For most applications: NO!

8

Solution
● Is it a good idea to ask the programmer to give hints to the GC?

○ For most applications: NO!

○ For applications with strict performance requirements: YES!

8

Solution
● Is it a good idea to ask the programmer to give hints to the GC?

○ For most applications: NO!

○ For applications with strict performance requirements: YES!
■ Most applications already resort to several tricks to circumvent the

GC (eg: using offheap memory, keep memory objects bounded,
etc…)

8

Solution
● Is it a good idea to ask the programmer to give hints to the GC?

○ For most applications: NO!

○ For applications with strict performance requirements: YES!
■ Most applications already resort to several tricks to circumvent the

GC (eg: using offheap memory, keep memory objects bounded,
etc…)

■ Places where generations are allocated and collected are usually
well defined;

9

Preliminary Results
● Simple application (very similar to code sample):

○ 4 threads processing tasks;
○ Each task has 1 GB of data to process;
○ Total working set of 4 GBs.

● Three collectors used:
○ Concurrent Mark-and-Sweep (default GC for OpenJDK < 9)
○ Garbage First (default GC for OpenJDK >= 9)
○ N-Generational Garbage Collector (our collector)

● Both CMS and G1 with young generation sizes of 8 GBs (twice the
working set). NG2C with 1 GB.

● Heap size fixed at 12 GBs for all collectors.

10

Preliminary Results

10

Preliminary Results

Thank you for your time.
Questions?

Suggestions?

Rodrigo Bruno
email: rodrigo.bruno@tecnico.ulisboa.pt
webpage: www.gsd.inesc-id.pt/~rbruno

mailto:rodrigo.bruno@tecnico.ulisboa.pt
http://www.gsd.inesc-id.pt/~rbruno

