
A

A study on Garbage Collection Algorithms for Big Data Environments

Rodrigo Bruno, INESC-ID / Instituto Superior Técnico, University of Lisbon
Paulo Ferreira, INESC-ID / Instituto Superior Técnico, University of Lisbon

The need to process and store massive amounts of data (Big Data), is a reality. In areas such as scien-
tific experiments, social networks management, credit card fraud detection, targeted advertisement, and
financial analysis, massive amounts of information is generated and processed daily to extract valuable,
summarized information. Due to its fast development cycle (i.e., less expensive to develop), mainly because
of automatic memory management, and rich community resources, managed object-oriented programming
languages (such as Java) are the first choice to develop Big Data platforms (e.g., Cassandra, Spark) on which
such Big Data applications are executed.

However, automatic memory management comes at a cost. This cost is introduced by the Garbage Col-
lector which is responsible for collecting objects that are no longer being used. Although current (classic)
garbage collection algorithms may be applicable to small scale applications, these algorithms are not ap-
propriate to for large scale Big Data environments as they do not scale in terms of throughput and pause
times.

In this work, current Big Data platforms and their memory profiles are studied to understand why classic
algorithms (which are still the most commonly used) are not appropriate, and also to analyze recently pro-
posed and relevant memory management algorithms, targeted to Big Data environments. The scalability of
recent memory management algorithms is characterized in terms of throughput (improves the throughput
of the application) and pause time (reduces the latency of the application) when comparing to classic algo-
rithms. The study is concluded by presenting a taxonomy of the described works and some open problems,
with regards to Big Data memory management, that could be addressed in future works.

CCS Concepts: rGeneral and reference → Surveys and overviews; rComputer systems organiza-
tion → Cloud computing; rSoftware and its engineering → Allocation / deallocation strategies;
Garbage collection;

Additional Key Words and Phrases: Garbage Collection, Big Data, Processing Platforms, Storage Platform,
Java, Memory Managed Rutime, Scalability, Big Data Environment

ACM Reference Format:
Rodrigo Bruno and Paulo Ferreira, 2016. A study on Garbage Collection Algorithms for Big Data Environ-
ments. ACM Comput. Surv. V, N, Article A (January 2016), 35 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The need to handle, store and process large amounts of data, Big Data, to extract
valuable information, is a reality [Akerkar 2013]. Scientific experiments (such as pro-
tein folding, physics simulators, signal processing, etc), social networks management,
credit card fraud detection, targeted advertisement, and financial analysis are just a
few examples of areas in which large amounts (thousands or even hundreds of thou-
sands of GBs) of information are generated and handled/processed daily. Moreover,
the importance of live strategic information has led the biggest companies in the world
(Google, Facebook, Oracle, Yahoo, Tweeter, Amazon, and others) to build Big Data plat-
forms.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 0360-0300/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:2 R. Bruno et al.

Big Data platforms are designed to efficiently handle massive amounts of data.
There are many examples of such platforms: Hadoop [White 2009] (a MapReduce
implementation), Cassandra [Lakshman and Malik 2010] (a distributed Key-Value
store), Neo4J [Robinson et al. 2013] (a graph database), Spark [Zaharia et al. 2010] (a
cluster computing system for Big Data applications), Google File System [Ghemawat
et al. 2003] (a distributed file system), Naiad [Murray et al. 2013] (a dataflow system),
Dryad [Isard et al. 2007] (a scheduler for distributed Big Data applications), etc. A
particularly challenging property of such systems is the need for scalability. In other
words, Big Data platforms’ performance is expected to increase proportionally to an
increase in the amount of resources.

It is also a fact that many of these Big Data platforms are running on managed
object-oriented programming languages (such as Java). Java if often the preferred
choice for designing and implementing such platforms mainly because of its fast devel-
opment cycles and rich community resource. However, despite making programming
easier, these languages use automated memory management (Garbage Collection) that
comes at a performance cost. This cost is significantly magnified when these managed
runtimes implementations are used to run Big Data applications, which tend to har-
vest computational resources.

Moving back to unmanaged languages (such as C or C++) could be a possible solu-
tion. However, unmanaged languages are error-prone (debugging memory problems is
known to be a long and painful task). Furthermore, since a great number of existing
Big Data platforms are already developed in a managed language, it is unrealistic to
re-implement them from scratch.

Therefore, with the advent of Big Data platforms, new scalability requirements are
posed to actual managed runtimes such as the Java Virtual Machine (JVM). These run-
times (and the JVM in particular) must allow Big Data platforms to scale, i.e., as new
Big Data platforms demand more computational resources (such as memory and pro-
cessing power), current memory management strategies must provide solutions that
scale with these new resource requirements. Current studies show that the overhead
introduced by memory management can be up to one third of the total execution time
[Gidra et al. 2013], and that this performance overhead cannot be solved by adding
additional resources [Nguyen et al. 2015; Bruno et al. 2017].

Given i) the importance of Big Data platforms, ii) the relevance of managed run-
times to develop such platforms, and iii) the difficult and significant performance prob-
lems posed by automatic memory management on Big Data application performance
[Nguyen et al. 2015; Bruno et al. 2017], this work studies recent Garbage Collection
algorithms designed to cope with the scalability requirements posed by Big Data plat-
forms. The goal of this work is to provide a clear view over the recent works on Garbage
Collection, which aim to improve the performance of Big Data applications by reduc-
ing the negative performance impact of automatic memory management. It is true
that there are also interesting contributions on automatic memory management con-
tributions for runtime environments such as JavaScript engines [Clifford et al. 2015],
which focus web applications. However note that such engines do not support the tar-
get environment and applications of this work: large-scale and long-running Big Data
applications, which lead to long workloads, with high resource demands.

To the best of the authors’ knowledge, the work presented in this paper is the first
to explore the limitations of current Garbage Collection implementations in Big Data
environments, and to present and compare several proposed works in the area. This is
a very relevant topic as there is a growing need to improve current collectors to keep
up with the demands posed by new Big Data environments.

The paper is organized as follows. Section 2 analyzes the types of Big Data platforms
and how memory is handled by each type of platforms, what types of memory layouts

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:3

are used and which scalability challenges they pose regarding memory management.
Then, Section 3 provides an overview of the main concepts in memory management.
These concepts are necessary to introduce and describe the classic Garbage Collec-
tion (GC) algorithms (see Section 4) which are the basis for more recent algorithms
described in Section 5. Section 5 is divided in: i) throughout oriented algorithms, and
ii) latency oriented algorithms because some recent algorithms are optimized either
for throughout (i.e., these algorithms try to keep application throughput as high as
possible) or for latency (i.e., these algorithms try to keep applications pauses as short
as possible). The work concludes with open research directions for Big Data memory
management (Section 6) and some conclusions on Section 7.

In sum, the main contributions are the following:

— a comprehensive description of Big Data environments’ memory profiles, i.e., how
objects created by Big Data applications are kept in memory, and which scalability
challenges arise from these applications;

— an analysis of recent GC algorithms targeted to Big Data platforms which deal with
the main scalability problems present in Big Data environments: throughput and
latency.1

— a set of open problems that can lead to new research directions which could result in
solutions for actual problems in today’s design of memory management algorithms
and strategies.

The authors hope that this work provides a better understanding on: i) how cur-
rent Big Data platforms impact memory management in managed runtimes, and ii)
the limitations of current GC algorithms that could be used for developing new, more
capable, memory management algorithms for Big Data platforms.

2. BIG DATA ENVIRONMENTS
The term Big Data was used for the first time in an article by NASA researchers
Michael Cox and David Ellsworth [Cox and Ellsworth 1997]. The pair claimed that the
rise of data was becoming an issue for current computer systems, which they called
the ”problem of big data”. In fact, in recent years, the amount of data handled by
computing systems is growing. However, not only the amount of data is growing, but
also the speed at which it grows is increasing.

Data can be big in many ways. Big Data can be applied in many areas and in each
of which it may have slightly different meanings. Within this work, Big Data is used
to represent high volumes of data that, because of its dimension, need specialized soft-
ware tools to handle it (i.e., tools previously developed do not scale to large data sets,
in different performance metrics). The typical motivation for storing and processing
such volumes of data is to extract valuable/summarized information from large sets of
data.

Throughout the paper, the following terms are used: Big Data environments, Big
Data platforms, and Big Data applications (Figure 1 illustrates these concepts). The
first (Big Data environments) refers to a group of one or more Big Data platforms that
are used to complete a specific task. These platforms are frequently organized in a
stack, i.e., each platform is given the output of the previous platforms and prepares
the input of the next (Figure 2 shows an example of such stack: the Hadoop stack).

1In this work, two different terms are used: latency and pause time. Latency is used to describe the response
time of an application to the user. Pause time is used to describe the amount of time that the application is
stopped because of the GC (for example, to collect memory). The two terms are related given that application
pauses will have a direct impact on application latency; the longer the pause, the higher the application
latency.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:4 R. Bruno et al.

Fig. 1. Big Data Environment Taxonomy

Fig. 2. Big Data Platform Stack Example: Hadoop Stack

Each Big Data platform represents a processing or storing engine running on top of
a managed runtime environment (for example, a JVM). Finally, a Big Data applica-
tion represents the user code executed or served by the engine (inside the Big Data
platform).

The fact that many existing platforms do not apply to Big Data due to scalability
problems is now widely accepted as more and more companies invest large amounts
of money for creating new Big Data platforms capable of storing and processing their
data [Bryant et al. 2008; Lynch 2008]. Among many possible real world Big Data use
case scenarios, some of them may be the following:

— Trend Analysis. It is known that big companies often apply data mining techniques
(machine learning, for example) to extract sales patterns associated with some prod-
uct, advertising, or pricing. This is a clear example where large volumes of data (sales
reports in this case) are stored and then processed to extract valuable information.
Such information helps company owners adapt their offer to the available market;

— Behavioral Analytics. Similarly to sales report processing, user’s information regard-
ing, for example, purchasing or searching habits, can be used to improve the user
experience by automatically suggesting similar results or for performing targeted ad-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:5

vertising. This is only possible if each user’s interactions are recorded and processed
to extract the behavior pattern of each user within a short time frame;

— Internet Search Engines. The web crawling process (from which Internet search in-
dexes are built) is another example of a Big Data use case. Companies such as Google,
Yahoo!, and Microsoft, process, every day, large amounts of Internet web pages to feed
rankings (and other kinds of metrics) to different search engines. In this scenario,
data is not only analyzed for pattern extraction but also transformed into another
representation, one that enables search engines to rank pages according to several
desired metrics (keywords, popularity, date of creation, and more);

— Fraud Detection. By extracting user’s behavioral information, companies can also
detect potential fraudulent behaviors and take a preventive measures. Credit card
fraud detection is a real example of this use case. Companies fighting fraud detect
unlikely transactions (according to the users’ behavior and historic) and stop them.

Scalability in Big Data environments is most often measured in terms of throughout
and latency scalability. Within this work, consider that: i) being throughput scalable
means that the throughout (number of operations per amount of time) should increase
proportionally to the amount of resources added to the system, and ii) being latency
scalable means that the latency (duration of a single request) should not increase when
the throughput increases. For example, in fraud detection system, the number of credit
card transactions verified per second (throughput) is as important as the duration (la-
tency) of a single credit card transaction verification. Therefore, in the case of fraud
detection, the ideal system is both throughput and latency scalable (i.e., the system
should increase its throughput as more resources are used but the latency should not
be affected by increasing the throughput). However, as discussed in Section 5, through-
out and latency can be difficult to achieve at the same time.

The throughput and latency scalability problems are further aggravated if a stack
of Big Data platforms (Big Data environment) is considered. In this scenario, the
throughput of the whole environment is as high as the throughput of the system with
lower throughput, and the latency is as low as the system with higher latency. In other
words, a single platform can compromise the scalability of the whole environment.

The challenge of extracting valuable information from very large volumes of infor-
mation can be decomposed in into two sub-problems: i) how to store massive amounts
of data and provide scalable read and write performance, and ii) how to process mas-
sive amounts of data in a efficient and scalable way. Both sub-problems are usually
handled by different types of platforms: storage and processing. For the remainder of
this section, each type of platform is analyzed in separate (storage and processing plat-
forms), identifying, for each one, their memory profiles and the resulting challenges,
which memory management algorithms are faced with.

2.1. Processing Platforms
A Big Data processing platform, in the most simple and generic way, is a system which
i) receives input data, ii) processes data, and iii) generates output data. The system
can be composed by an arbitrary number of nodes, which can exchange information
during the processing stage. Input data can, for example, be retrieved from: i) a storage
platform, ii) other processing platforms, or iii) directly from sensors. Output data can,
be sent to: i) a storage platform, ii) to other processing platforms, or iii) to the final
user.

In the remainder of this section, representative real world Big Data processing plat-
forms are analyzed. The goal is to understand how these platforms work and, most
importantly, how memory is used by these platforms, or, in other words, their memory
profile.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:6 R. Bruno et al.

2.1.1. MapReduce-based Platforms. MapReduce [Dean and Ghemawat 2008] is a popu-
lar programming model nowadays [Herodotou and Babu 2011; Dittrich and Quiané-
Ruiz 2012]. In a MapReduce application, computation is divided into two stages: map
and reduce. First, input data is loaded and processed by mappers (nodes assigned with
a map task). Mappers produce intermediate data which is then shuffled, i.e., sorted
and split among reducers (nodes assigned with a reduce task). In the reduce stage,
data is processed into the final output.

Several MapReduce implementations were produced but Apache’s Hadoop [White
2009] soon become the de facto standard implementation for both industry and
academia [Dittrich and Quiané-Ruiz 2012]. In fact, Hadoop is currently used by some
of the worlds’ largest Information Technology companies, Facebook [Borthakur et al.
2011], Twitter [Lin and Ryaboy 2013], LinkedIn [Sumbaly et al. 2013], and Yahoo
[Shvachko et al. 2010].

The novelty behind recent MapReduce programming model implementations is that
most distribution and fault tolerance details are hidden from the programmer. Thus,
only two functions need to be defined: i) a map function which converts input data
into intermediate data, and ii) a reduce function which aggregates intermediate data.
All other steps regarding task distribution, intermediate data shuffling, reading and
writing from and to the storage platform, and recovering failed nodes is handled au-
tomatically by the platform. Additionally, Hadoop comes with the Hadoop Distributed
File System, HDFS, (addressed in Section 2.2) which was specially designed to han-
dle large amounts of data. These two systems (Hadoop MapReduce and HDFS), while
working together, form a Big Data environment with both processing and storage ca-
pabilities.

Another important factor about MapReduce and HDFS is that both platforms are
basic building blocks for more complex Big Data platforms (these platforms represent
stack layers on top of MapReduce and HDFS) such as Hive [Thusoo et al. 2009], Pig
[Olston et al. 2008], and Spark [Zaharia et al. 2010]:

— Hive is a data management platform that works on top of Hadoop. Hive provides data
summarization, query, and analysis, exporting an SQL-like language called HiveQL
which automatically converts to MapReduce jobs to execute in Hadoop. All data is
read from and written to HDFS;

— Pig is a workload designer that creates MapReduce workloads using a Hadoop
MapReduce cycle as building block for more complex operations. Pig proposes a lan-
guage called Pig Latin that abstracts the MapReduce programming model idiom into
a notation that makes MapReduce programming high-level, very similar to SQL for
RDBMS systems. Similarly to Hive, input and output data comes and goes to HDFS
and Hadoop MapReduce is used to perform the MapReduce tasks;

— Spark is a MapReduce engine (among other capabilities) that enables efficient in-
memory data processing. Spark aims at improving the performance of applications
that reuse data between MapReduce cycles. In Hadoop, between each cycle, all data
must be flushed to disk and retrieved in the next MapReduce cycle. To cope with this
problem Spark provides the Resilient Distributed Dataset (RDD) which maintains a
various sets of objects that can be used in subsequent MapReduce iterations. Spark
is very popular, for example, in iterative machine learning algorithms.

2.1.2. Directed Graph Computing Platforms. Another relevant type of processing plat-
forms to consider is the one based on directed graphs. This is a more general model
than MapReduce model as it allows arbitrary flows of data among computations. The
model uses directed graphs to express data processing tasks (vertexes), and data de-
pendencies (edges). The developer is left with the job of building the computation graph
and providing a function to execute on edges.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:7

Fig. 3. Typical Processing Platform

Several Big Data platforms have been proposed using graphs to express computa-
tions and data flows. The goal for the rest of this section is to analyze some well-known
platforms, namely Dryad [Yu et al. 2008], Naiad [Murray et al. 2013], Pregel [Malewicz
et al. 2010], and MillWhell [Akidau et al. 2013], in order to understand their memory
profiles. Although these platforms might not run on top of the same runtime environ-
ment (some platforms might run on top of a JVM, others might run on top of the .NET
Common Language Runtime [Box and Pattison 2002]), all runtime environments must
deal with automatic memory management, which is directly affected by the memory
profile of each platform.

Dryad is a general-purpose (i.e., can produce any king of graph-based workload) ex-
ecution engine. Dryad allows the definition of distributed applications that organize
computation in edges and communication as data channels. The platform provides au-
tomatic application scheduling, handles faults, and automatically moves data along
edges into vertexes. Dryad application developers can specify an any kind of compu-
tation graph (which must be directed and acyclic) to describe application’s data flows,
and the computation that takes place at vertexes using subroutines.

Naiad is, similarly to Dryad, an execution system for distributed data-parallel appli-
cations. However, as opposed to Dryad, it allows the definition of directed graphs with
cycles. The main goal of Naiad is to provide a platform which processes a continuous
incoming flow of data and to allow low-latency, on-the-fly queries over the processed
data. This is specially important for a number of areas such as: data stream analysis,
interactive machine learning, and interactive graph mining. Similarly to Dryad, com-
munication between vertexes can be implemented automatically (this is typically left
to the developer to decide) in multiple ways.

MillWhell is a similar approach for low-latency data streaming platform. It also pro-
vides developers with the abstraction of directed computing graphs which can be built
using arbitrary and dynamic topologies. Data is delivered continuously along edges in
the graph. MillWhell, similarly to the previous approaches, provides fault tolerance
at the framework level (i.e., the programmer does not have to deal with faults, the
framework automatically handles them).

2.1.3. Processing Platforms Memory Profile. The reader might notice that all processing
platforms discussed so far can be reduced to a model where an arbitrary set of nodes
perform some computation (task), and data flows (in and out) among computing nodes.
Therefore, since most processing platforms can be reduced to a common representa-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:8 R. Bruno et al.

Fig. 4. Processing Platform Working Sets

tion, most of the problems of a specific platform will apply to the other processing
platforms.

The memory profile for processing platforms is very characteristic. Each task usu-
ally has a Working Set (WS) which is loaded into memory (the WS can vary in size
according to each platform and application), and is used to read and write through-
out the execution of the task (see Figure 3). Each WS is specific to a single task and
therefore, is considered garbage after the task is finished. If multiple tasks run in par-
allel, multiple WSs will be present in memory at the same time. Finally, each task can
have different execution times, resulting in different WSs being present in memory for
different amounts of time (Figure 4 illustrates this situation). If a GC is triggered, all
WSs currently being used (represented as yellow boxes in Figure 4) will be handled
by the collector, and, as discussed in Section 5, all data within is going to be moved
to other memory location, producing a severe throughput degradation and high appli-
cation latencies. White boxes represent WSs that are not currently being used, and
therefore are ignored by the collector.

The practical effect of this problem is present in many platforms. These platforms
suffer from high GC interference, hindering application throughput and/or latency. For
example, in a platform with multiple tasks, each with dependencies from other tasks,
GC can turn nodes into computation stragglers. Other consequence is the increased
latency, result of long GC pauses. In Section 4, these problems are further discussed:
why processing platforms’ memory profile stresses memory management, leading to
throughput and latency scalability problems.

Programmers try to reduce the GC interference by using a number of techniques
such as: i) delaying collections as much as possible, ii) using pools of objects that can
be reused multiple times (to reduce object allocations), and iii) serializing multiple
objects into very large arrays of bytes. These solutions, as discussed in Section 4, have
very limited success.

2.2. Storage Platforms
A storage platform, in the most generic way, is a system that provides read and write
operations to some managed storage. The platform can orchestrate a number of nodes
to store data. Each node provides volatile but fast storage, and persistent but slow
storage. Read and write operations may obey a variety of consistency models [Lamport
1978] (this topic, however, is not in the scope of this work). In this section, the most
relevant types of storage platforms are briefly analyzed. The goal is to understand how
these platforms work and, most importantly, their memory profile.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:9

2.2.1. Distributed File Systems. A Distributed File System (DFS) is a storage system
in which files/objects are accessed using similar interfaces and semantics to local file
systems. Therefore, DFSs normally provide an hierarchical file organization which can
be accessed using basic file system primitives such as open, close, read, and write. It is
often the case that DFSs can be mounted on the local file system.

The Hadoop Distributed File System (HDFS) is a very popular example of a Big Data
DFS. Inspired by the Google File System [Ghemawat et al. 2003], HDFS aims at pro-
viding an efficient approach to access large-scale volumes of data. It uses a centralized
entity which stores metadata and many data nodes to store all the files. HDFS, which
integrates with Hadoop MapReduce, also employs several important performance op-
timizations that do not fall within the scope of this document.

2.2.2. Graph Databases. A graph database is a king of storage platform that provides
a graph management interface for accessing graphs stored within it [Robinson et al.
2013]. With the evolution of data, many companies soon started to represent their ap-
plication domains using graphs, which, for some applications such as social networks,
gives a much more intuitive representation than other data models. Additionally, these
systems provide efficient graph computing/search engines which enable applications to
perform queries or even modify the graph in a very efficient and scalable way. Several
graph databases have been developed, but only two representative examples are ad-
dressed in this section.

Titan2 is a distributed graph database featuring scalable graph storing and querying
over multi-node clusters. Titan is a very versatile solution as it can use several storage
back-ends, for example Cassandra (see Section 2.2.3), and exports several high level
APIs. Titan is often used with Gremlin3, a graph traversal language.

Another example of a graph database is Neo4J [Van Bruggen 2014]. As opposed to
Titan, Neo4J is a centralized graph databases that offers applications a set of primi-
tives to build and manage graphs.

2.2.3. Key-Value and Table Stores. The last two types of Big Data storage platform to
consider are key-value stores and table stores. For the sake of simplicity, within this
section, it is assumed that the only difference between both types of storage platform
is the way data is presented to the application (i.e., the interface): as a distributed
key-value store, (similar to a Distributed Hash Table), or as a table store (in which
information is formatted in rows and columns). Additionally, only two representative
platforms are discussed: Cassandra [Lakshman and Malik 2010], and HBase [George
2011] (based Google’s BigTable [Chang et al. 2008]). There are many other platforms
(such as Dynamo [DeCandia et al. 2007] , OracleDB4, MongoDB [Chodorow 2013],
etc.) but those are not addressed since the principles behind all these solutions are
very similar.

HBase is a distributed table-oriented database. It is inspired by Google’s BigTable
and runs on top of Hadoop MapReduce and HDFS. HBase provides strictly consistent
data access and automatic sharding of data. HBase uses tables to store objects in rows
and columns. To be more precise, applications store data into tables which consist of
rows and column families containing columns. Each row can then include different
sets of columns and each column is indexed with a user-provided key and is grouped
into column families. Also, all table cells are versioned and their content is stored as
byte arrays.

2Titan’s web page can be accessed at http://thinkaurelius.github.io/titan/.
3Gremlin’s web page can be accessed at https://github.com/tinkerpop/gremlin/wiki.
4OracleDB’s web page can be found at https://www.oracle.com/database/index.html

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:10 R. Bruno et al.

Fig. 5. Typical Storage Platform

Fig. 6. Storage Platform Caches

Apache’s Cassandra is a distributed key-value store. It is designed scale to very
large amounts of data, distributed across many nodes. while providing a highly avail-
able service with no central point of failure (as opposed to HBase, Cassandra has no
centralized master entity). The major difference between Cassandra and HBase lies on
the data model provided by both solutions. Cassandra provides a distributed key-value
store in which where columns (or values) can associated to specific keys. In Cassandra,
one cannot nest column families but can specify consistency requirements per query
(which is not possible in HBase). Moreover, Cassandra is write-oriented (i.e., the plat-
form is optimized for write intensive workloads) whereas HBase is designed for read
intensive workloads.

2.2.4. Storage Platforms Memory Profile. In general, storage platforms take advantage of
fast/hot storage to keep caches of recently read or written objects while all remaining
objects are stored in slow/cold storage (see Figure 5).

Similarly to processing platforms, storage platforms have a very specific memory
profile. These platforms tend to cache as much objects in hot storage (usually DRAM)

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:11

as possible in order to provide fast data access, and to consolidate writes. For example,
in Cassandra, the result of write operations is cached in large tables in memory in
the hope that future read or write operations will use/overwrite the same result thus
avoiding a slower access to disk (this is commonly known as write consolidation). Mul-
tiple caches can coexist in memory at the same time, and may have different eviction
policies (usually limited by the available memory). According to the authors’ experi-
ence, caching data in memory to avoid slow disk accesses and to consolidate writes is
a frequent technique across many storage platforms.

By aggressively caching data, storage platforms keep many live (reachable) objects
in memory, leading to severe GC effort to keep all objects in memory (this problem is
further discussed in Section 5). This produces the same problem discussed in Section
2.1.3, i.e., during a collection, all objects belonging to all active caches will be han-
dled by the collector (they are moved to other memory location). Figure 6 illustrates
this problem; active caches upon collection (represented in yellow) will be moved to
other memory location (caches represented in white are not being used anymore and
therefore are not considered by the collector). In this scenario, GC will lead to long ap-
plications pauses, directly increasing the platform latency (for example, read or write
operation latency in Cassandra) and reducing throughput. In Section 4, these prob-
lems are further discussed: why storage platforms’ memory profile stresses memory
management, leading to latency and throughput scalability problems.

Naive solutions such as: i) severely limiting the size of the memory heap, and ii) re-
ducing the number of requests to handle per second will not only reduce the through-
put but will not solve the problem (i.e., it will only soften its effects).

3. MEMORY MANAGEMENT BACKGROUND
Memory management (both automatic and manual) is the process of managing mem-
ory. In particular, there are two special concerns regarding memory management: i)
provide memory when requested (memory allocation), and ii) free unused memory for
future reuse (memory deallocation). This is a classical problem in every Operating
System (OS) [Tanenbaum 2007]. Nevertheless, memory management is also a funda-
mental problem for the JVM since it has to automatically manage memory, which is
previously allocated by some underlying OS, and is necessary for the end-user appli-
cation to run (it acts as an intermediary management system between the underlying
OS and the application).

3.1. Background Concepts
Before delving further on how memory is managed by the JVM, it is important to
provide some background concepts and explain how memory is structured in a Java
application. The first important concept to introduce is the heap. From the JVM point
of view, a heap is a contiguous array (or set of arrays) of memory positions which may
be occupied or free. These memory positions are used to store objects. An object is a
contiguous set of memory positions allocated for the end-user application to use. An
object is divided into fields (or slots) which contains a reference or some other scalar
non-reference type (an integer, for example). A reference is either a pointer to a heap
object or the distinguished value, null.

In most applications, many objects populate the heap. Therefore, the heap is often
characterized as a directed graph where nodes are application objects and edges are
references from other objects (or from a root). A root is a reference held by the JVM
that points to an object inside the object graph. There are several root references and
the objects pointed by these references are named root objects. Examples of root objects
include global variables, and variables held in CPU registers.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:12 R. Bruno et al.

Fig. 7. Java Memory Heap (left) and the corresponding Java Object Graph (right)

Objects in the object graph can be identified as reachable (or live) or unreachable (or
dead). An object is said to be live if there is a path of objects (such that a reference from
one to the other exists) starting from any root object that reaches the object. On the
other hand, if there is no path from any root object to the object, the object is considered
dead and its memory should be collected for future reuse.

Figure 7 presents the concepts introduced in this section. On the left, a Java heap
is presented as a continuous array of memory positions with objects. Each objects con-
tains several fields with scalar or reference types. The corresponding object graph is
presented on the right. Reachable (live) objects are represented in green while un-
reachable (dead) objects are represented in red.

Following the terminology introduced by [Dijkstra et al. 1978], a garbage-collected
Java program is composed by two elements: i) a mutator, and ii) a collector. The mu-
tator represents the user application which mutates the heap by allocating objects
and mutating these objects (changing references and fields). On the other hand, the
collector represents the garbage collector code which manages memory.

3.2. Garbage Collection in the JVM
The task of managing memory in a JVM is handled by the garbage collector (GC),
which is responsible for several tasks: i) allocate memory for new objects, ii) ensure
that all live objects are kept in memory, and iii) collect memory used by objects that
are no longer alive (garbage). The GC is therefore a set of algorithms that hide most
memory management issues from higher level languages that run on top of the JVM
(e.g. Java, Groovy, Scala, etc.). The use of automatic memory management via GC was
a choice taken by Java creators [Gosling 2000] right from the beginning and it is not in
the scope of this work neither to motivate the use of GC, nor to present its advantages
or disadvantages regarding explicit memory management (for this discussion, please
refer to [Jones et al. 2011]).

It is important to notice, however, that the GC does not solve all memory problems.
For example, nothing prevents the application from: i) keeping references to data that

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:13

is not going to be used ever again, or ii) allocating objects indefinitely (and keeping
references to all of them) until the JVM runs out of memory. In such scenarios, there
are no unreachable objects and therefore, the GC cannot free any memory, resulting in
an out of memory error that eventually shuts down the application.

3.3. GC Properties
There are many GC algorithms, with different implementations, many of which using
different approaches to collect dead objects. To better understand the desirable prop-
erties and trade offs of each GC algorithm, it is important to point out the most critical
properties/factors that can be considered when comparing the performance of different
GC algorithms:

— Safety. A safe collector never reclaims the storage of live objects;
— Throughput. Throughput is a performance measure for user applications. The goal

for every GC is not to decrease the application throughput but to increase it if possible
(compared to not using automatic memory management);

— Completeness. A complete collector is one such that all garbage is eventually re-
claimed. This is a special concern for reference counting approaches (described in
4.2), which, by design, are not complete;

— Promptness. High promptness means that the collector takes little time to reclaim
garbage (once such garbage is created). On the other hand, low promptness charac-
terizes GCs that take a long time to reclaim garbage (after such garbage is created);

— Pause time. How much time the application must stop to let the GC execute. The
time that the application is stopped is called pause time. For the duration of the
pause time, no application task can be running;

— Space overhead. The amount of space required to perform GC. For example, copy-
ing collectors usually need more memory (to perform a clean copy) than compacting
collectors (which only moves the object to the beginning of the heap);

— Scalability. A GC is considered scalable if an increase in the number of objects in
memory does not compromise or lead to a significant performance decrease in any of
the previous metrics.

4. CLASSIC GARBAGE COLLECTION ALGORITHMS
Having described the basic concepts concerning general GC, this section is dedicated to
study the local GC problem, i.e., memory management performed on a single process’
address space. The study of distributed memory management, distributed garbage col-
lection, is out of the scope of this paper.

The study starts by presenting the most commonly used algorithms for allocat-
ing memory. Then the three main families of collectors (reference counting, tracing,
and partitioned/hybrid) are presented, followed by a discussion of typical GC design
choices.

4.1. Memory Allocation
The two main aspects of memory management, memory allocation and memory recla-
mation, are tightly linked in a sense that the way memory is reclaimed places con-
straints on how it is allocated and vice-versa. While a memory allocator needs a col-
lector to identify free memory positions, the collector may also need the allocator to
provide free memory to enable some GC operation (see Section 4.5 for more details).

Sequential allocation is the first and most simple allocation algorithm. It uses a
large free chunk of memory from the heap. Only two pointers need to be maintained
between allocations: a free pointer (which limits the last allocated fraction of the heap),
and a limit pointer (which points to the last usable memory position). When an alloca-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:14 R. Bruno et al.

tion takes place, the free pointer is incremented by the number of requested blocks. If
there are not enough blocks between the free pointer and the limit pointer, an error is
reported and the allocation fails. This algorithm is also called bump pointer allocation
because of the way it ”bumps” the free pointer.

Despite its simplicity, the algorithm is efficient and provides good locality [Blackburn
et al. 2004]. However, as time goes by, some objects become unreachable while others
are still reachable. This results in many small allocated blocks interleaved with many
unallocated blocks, i.e., high fragmentation.

The alternative to sequential allocation is free-list allocation. In a basic free-list
allocation algorithm, a single data structure (a list) holds the size and location of all
the free memory blocks. When some memory is requested, the allocator goes through
the list, searching for a block of memory that fits the requested size, and respecting an
allocation policy. Typical allocation policies are one of the following:

— first-fit, the simplest approach. The allocator stops searching the list when it finds a
block with at least the required number of memory blocks. The allocator might split
the free chunk in two if the chunk is larger than required;

— next-fit, a variant of the first-fit algorithm. It starts searching for a block of suitable
size where the last search ended. If the allocator reaches the end of the list, it restarts
the search from the beginning of the list.

— best-fit finds the free block whose size if the closest to the request. The idea is to
minimize memory waste and avoid splitting large memory blocks unnecessarily. This
is the policy behind the well know Buddy [Knowlton 1965] allocation algorithm.

Even with free-list allocation, the user might notice that the time it takes to allocate
memory is linear with the size of the memory (heap). If the size of the memory grows
significantly, the time needed to allocate some blocks will become prohibitive. To cope
with this problem, there are some optimizations. The first optimization consists on
using balanced binary trees to improve worst-case behaviour from linear to logarithmic
in the size of the heap. Hence, instead of going through all elements of a list, the
allocator can traverse the tree searching for the block with the requested size. This
technique is also known as fast fit allocation [Stephenson 1983].

The second optimization comes from the fact that much of the time consumed by a
free-list allocator is still spent searching for free blocks of appropriate size. Therefore,
using multiple free-lists, whose members are grouped by size, can speed allocation. By
using enough lists with appropriate block ranges it is possible to achieve allocation in
almost constant time.

So far, the described techniques and algorithms manage the whole heap, i.e., if some
memory needs to be allocated, the allocator must preserve the integrity of all allocation
data structures by using atomic operations or locks. In a highly threaded environment,
this is a serious bottleneck. The common solution to cope with this problem is to give
each thread is own allocation area, the thread local allocation buffer (TLAB) [Jones and
King 2005; Gay and Steensgaard 2000]. This way, each thread can allocate memory
from its TLAB independently. Threads may always request new TLABs from the heap
if the current TLAB runs out of memory. Only interactions with the global memory
pool (heap) are synchronized (e.g., if some object does not fit the TLAB, it must be
allocated directly on the heap). Dimpsey [Dimpsey et al. 2000] measured substantial
performance improvements in a multi-threaded Java system using a TLAB for each
thread. It was also possible to conclude that TLABs tend to absorb almost all allocation
of small objects. Most accesses to the heap turned out to be requests for new TLABs.
TLABs can be used for sequential allocation or free-list allocation.

Having described how current GC implementations handle memory allocation, the
next sections are focused on how memory is reclaimed.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:15

4.2. Reference Counting Algorithms
As the name suggests, reference counting algorithms (first introduced by [Collins
1960]) literally count references to objects. Such algorithms are based on the follow-
ing invariant: an object is considered alive if and only if the number of references to
the object is greater than zero (note that these algorithms erroneously consider ob-
jects included in cycles of garbage as live objects). Therefore, to be able to know if an
object is alive or not, reference counting algorithms keep a reference counter for each
object. Reference counting is considered direct GC (as opposed to indirect GC which is
discussed next) since it identifies garbage, i.e., objects with no incoming references.

ALGORITHM 1: Reference Counting
1 Procedure Allocate(objType)
2 object = allocateObject(objType)
3 resetCounter(object)
4 return object

1 (atomic) Procedure Mutate(parent, slot, newChild)
2 AddReference (newChild)
3 DelReference (parent.slot)
4 parent.slot = newChild

1 Procedure AddReference(object)
2 incrementCounter(object)

1 Procedure DelReference(object)
2 decrementCounter(object)
3 if getCounter(object) == 0 then
4 for each child in childRefs(object) do
5 DelReference (child)
6 end
7 free(object)
8 end

Algorithm 1 presents a simple implementation of a reference counting algorithm. It
is important to note that the Mutate operation must be atomic, i.e., there should not
be multiple interspersed calls to this operation, otherwise race conditions could occur,
resulting in erroneous updates of reference counters.

Contrary to reference tracing algorithms (see Section 4.3), reference counting algo-
rithms provide some interesting properties: i) the GC overhead is distributed through-
out the computation, i.e., is does not depend on the size of the heap, but, instead, on
the amount of work done by the mutator; ii) garbage can be collected almost instan-
taneously (as the collector knows instantly when the number of incoming references
reaches zero); and iii) it preservers cache locality (by not traversing the object graph
and therefore destroying the application working set cache locality).

These advantages come with two problems: i) high overhead of maintaining track
of a counter for each object (which incur into synchronized operations whenever it
needs to be updated); and ii) reference counting is not complete, i.e., not all garbage is
collected (particularly, cyclic garbage).

To cope with the first problem, [Blackburn and McKinley 2003] propose a useful
taxonomy of solutions:

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:16 R. Bruno et al.

— deferred reference counting, delay the identification of garbage to specific periodic
checkpoints. This way, some synchronization steps are avoided;

— coalescing, a technique based on the hint that many reference count adjustments
are temporary and therefore, can be ignored (for example, GC operations on local
variables). With coalescing, only the first and the last state of an object filed should be
considered. Reference counting increments or decrements should only be considered
at specific checkpoints, thus safely discarding many other intermediary states;

— buffered reference counting, in which all reference count increments and decrements
are buffered for later processing.

All these three approaches try to reduce some of the synchronization overhead in-
herent to updating global reference counters. To deal with the second problem (com-
pleteness), the most widely used solution is to perform trial deletion. Trial deletion is
a technique that requires a backtracking algorithm to visit objects that are suspected
to contain cyclic garbage. The main idea behind the algorithm (described in [Paz et al.
2007]) is to check if cyclic garbage is uncovered when some reference is deleted. If the
reference count of the object whose reference is deleted reaches zero, it exposes the
existence of cyclic garbage.

4.3. Reference Tracing Algorithms
Reference tracing algorithms rely on traversing the object graph and marking reach-
able objects. Reference tracing is quite straightforward; objects that are marked dur-
ing reference tracing are considered alive. All memory positions that are not marked,
are considered to be garbage and will be freed. Hence reference tracing is considered
indirect GC, i.e., it does not detect garbage but live objects instead. Typical implemen-
tations of reference tracing collectors are also known as mark-and-sweep collectors
[McCarthy 1960].

Algorithm 2 present a basic implementation of a mark-and-sweep collector.
This mark-and-sweep algorithm, despite its simplicity, has some problems regard-

ing the need to stop the mutator from changing the object graph during GC (this is
discussed in more detail on Section 4.5). To cope with this problem, a second mark-
and-sweep implementation, which uses the tricolour abstraction [Dijkstra et al. 1978],
is used. This approach, also called tri-color marking, provides a state for each object in
the object graph. Hence, each object can be in one of the following states:

— white, object not reached, the initial state for all objects;
— black, object that has no outgoing references to white objects. Objects in this state

are not candidates for collection;
— gray, object that still has references to white objects. Gray objects are not considered

for collection (eventually, they will turn black).

Tri-color marking starts by placing all root objects in the gray set (set of gray objects)
and all remaining objects in the white set (set of white objects). The algorithm then
proceeds as follows: while there are objects in the gray set, pick one object (from the
gray set), move it to the black set (turning it into a black object), and place all objects
that it references in the gray set (turning objects into gray objects). In the end, objects
in the black set are considered alive. All other objects (white objects) can be garbage-
collected. Using the aforementioned steps, the algorithm keeps the following invariant:
no black object points directly to a white object.

By using a state for each object, the collector can remember which objects were al-
ready verified and therefore, it can run incrementally or even concurrently with the
mutator. However, care must be taken to track situations where the mutator writes

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:17

ALGORITHM 2: Mark and Sweep
1 Procedure MarkRoots()
2 for each object in roots do
3 if ! isMarked(object) then
4 setMarked(object)
5 push(objStack)
6 Mark ()
7 end
8 end

1 Procedure Mark()
2 while ! isEmpty(objStack) do
3 object = pop(objStack)
4 for each child in childRefs(object) do
5 if ! isMarked(object) then
6 setMarked(child)
7 push(objStack, child)
8 end
9 end

10 end

1 Procedure Sweep(heapStart, heapEnd)
2 curr = nextObject(heapStart)
3 while curr < heapEnd do
4 if isMarked(curr) then
5 unsetMarked(curr)
6 else
7 free(curr)
8 curr = nextObject(curr)
9 end

a reference coming from a black object towards a white object (this would break the
algorithm invariant).

A final remark about this algorithm is that, although sweeping needs to search the
whole heap (for collecting white objects), this task can be delayed and performed by
the allocator [Hughes 1982] (this technique is called lazy-sweeping).

4.4. Computational Complexity of Memory Collection Algorithms
After analyzing the two classic algorithms to collect memory, it is important to analyze
how each algorithm behaves in large scale environments. In particular, two dimensions
should be considered: i) number of live objects, and ii) mutator speed (e.g., the speed at
which the mutator dirties memory).

4.4.1. Number of Live Objects. From Algorithms 1 and 2, it can be concluded that ref-
erence counting algorithms do not depend on the number of live objects while tracing
algorithms do. In other words, the complexity of reference counting algorithms on the
the number of live objects is constant while the complexity of tracing algorithms on the
number of live objects is linear. This simply comes from the design of each algorithm.
While one needs to traverse through the object graph, the other does not (reference
counting).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:18 R. Bruno et al.

4.4.2. Mutator Speed. From the algorithms’ description, it can be concluded that refer-
ence counting algorithms do depend on the mutator speed while tracing algorithms do
not. Hence, the complexity of reference counting algorithms on the mutator speed is
linear while the complexity of tracing algorithms is constant on the mutator speed.

In sum, both algorithms depend linearly on some important metric (either mutator
speed, or size of the number of live objects). This leads to a clear trade-off where there
is no algorithm that is superior on both metrics; therefore, the appropriate algorithm
must be selected according to the target application/workload.

Since memory management algorithms always resort to one of the two presented
algorithms (reference tracing or reference counting), recent memory management al-
gorithms’ complexity can be obtained by identifying the classic algorithm running un-
derneath.

4.5. Design Choices
Both approaches for GC, tracing and reference counting, can be designed and opti-
mized for different situations. For example, in a multi-core architecture, one would
want to take advantage of multiple cores to split the GC task among several cores
(to achieve higher performance). Another interesting and challenging scenario is to
run the GC concurrently with the application (mutator). In a multi-core architecture,
mutator threads can run concurrently with collector threads, therefore increasing the
responsiveness and decreasing the application pause times. Yet another possible opti-
mization is to periodically clean (by copying or compacting) areas of memory with low
live data or high fragmentation.

To sum up, each of the previously presented approaches to GC (tracing or counting)
can be customized according to several design choices:

— Serial versus Parallel — The collection task can be executed by one or several
threads. For example, in reference tracing, traversing an object be can done in a
serial mode (single thread) or in a parallel mode (multiple threads). It is clear that a
parallel implementation of either reference tracing or reference counting can harness
multiple execution flows on available CPU cores but it also requires a more careful
implementation due to complex concurrency issues;

— Concurrent versus Incremental versus Stop-the-World — Stop-the-World GC means
that most of the GC work is done when no mutator task is running. This means that
all application threads are stopped periodically to enable GC to run. To minimize the
time the application is stopped (pause time), one could implement an incremental
GC, in which the collection is done in steps, per memory page, per sub-heap, per
sub-graph. If the goal is to mitigate application pauses, it is possible to implement a
concurrent GC, where both mutator and collector run at the same time.
It is important to notice some trade-offs regarding GC implementations. Stop-the-
World implementations are the simplest because there is no need to synchronize
mutator and collector threads. Yet, it is the best option for a throughput oriented ap-
plications because it does the collection in only one step and lets the application run
at full speed the rest of the time. The same is not true for incremental or concurrent
GCs. These are targeted to applications with low latency requirements. As the collec-
tion is done in steps, it might require more time to collect all garbage. The necessary
synchronization between mutator and collector threads is also a source of overhead
compared to Stop-the-World implementations. The use of read barriers [Baker 1978]
and/or write barriers [Nettles et al. 1992] are common approaches to synchronize
mutator access to objects being collected. In both approaches, some mutator’s reads
and/or writes are checked for conflicts before the operation takes effect.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:19

— Compaction versus Copying versus Non-Moving — The last design decision is about
whether or not to move live objects in order to reduce fragmentation. Fragmentation
occurs when objects die and free space appears between live objects. The problem is
that, with time, most free memory is split into very small fragments. This leads to
three serious problems: i) locality is reduced, i.e., objects used by the application are
scattered through all the heap; ii) objects, which cannot fit inside memory fragments
cannot be allocated unless more memory is requested by the application; iii) the total
amount of memory used by the application is high (since fragments between live
objects force the application to allocate more memory to keep creating objects).
To solve the fragmentation problem, two typical solutions can be employed: i) com-
paction, and ii) copying. Both techniques require live objects to be moved and grouped
to reduce fragmentation. Compaction is frequently used to move all live objects to the
start of some memory segment (for example, a memory page); copying, on the other
hand moves live objects from one memory segment to another. Although requiring
more memory, copying allows the application to group objects from multiple memory
pages (with few live objects) into a single page. Pages from where objects were copied
can be freed. The same does not occur with compaction, where multiple pages with
few live objects can still coexist.
The decision of when to apply compaction or copying is also an interesting research
problem (that falls outside the scope of this work). Typical solutions involve measur-
ing the percentage of: i) fragmentation, ii) live objects, and iii) memory usage for each
memory segment. Only if there is few live objects or high fragmentation, the cost of
copying or compacting will compensate the overhead of moving live objects [Soman
et al. 2008].

4.6. Partitioned/Hybrid Algorithms
So far, only monolithic approaches to GC have been described, i.e., the whole heap is
collected using one GC algorithm only. However, nothing prevents heap partitioning
into multiple partitions/sub-heaps and apply different GC approaches. The motivation
behind these hybrid algorithms resides in the fact that, different objects might have
different properties that could be explored using different GC approaches.

The idea of heap partitioning was first explored by [Bishop 1977]. With time, several
partitioning models have been proposed:

— partitioning by mobility, where objects are distinguished based on their mobility, i.e.,
objects that can be moved and objects that can not be moved or are very costly to
move;

— partitioning by size, where objects of certain dimensions are placed in a separate
object space, to prevent or minimize fragmentation;

— partitioning for space, where objects are placed in different memory spaces so that
the overhead applying GC techniques such as copying can be reduced. To this end,
each memory space can be processed separately;

— partitioning by kind, where objects can be segregated by some property, such as type.
This can offer some benefits as properties can be assessed using the object’s memory
address (thus avoiding loading the object’s header from memory);

— partitioning for yield, the most well-known and widely used partitioning technique,
where objects are segregated to exploit their life cycles (i.e., group objects by their
estimated life time). Studies have confirmed that Java object’s lifetime follows a bi-
modal distribution [Jones and Ryder 2006; 2008] and that most objects die young
[Ungar 1984];

— partitioning by thread, where objects are allocated in thread-local heaps, similar
to a TLAB [Jones and King 2005; Gay and Steensgaard 2000]. Such object place-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:20 R. Bruno et al.

ment leads to high concurrency improvements since only one mutator thread must
be stopped at each time to collect garbage;

For the remainder of this section, a deeper look is taken at the most used type of
heap partitioning, generational GC [Lieberman and Hewitt 1983], where partitioning
considers the age of the object. As already discussed before, Java objects’ life time tends
to be split between long lived objects and short lived objects. Using this property, it is
possible to split objects according to their life cycle and use different sub-heaps (or
generations) for long and short lived objects. The age of an object can be simply the
number of collections the object has survived.

Considering that short lived objects turn into garbage very soon, the young gener-
ation (sub-heap where short-lived objects are allocated) will most likely be occupied
with very few live objects very quickly. On the other hand, the old generation will take
much longer to accumulate garbage. Using this knowledge, generational GCs are able
to reduce the application’s pause time by collecting more often the young generation
(which is usually small) and less often collecting the old generation (which is usually
large).

Generational collection can also improve throughput by avoiding processing long-
lived objects too often. However, there are costs to pay. First, any old generation
garbage will take longer to be reclaimed. Second, cycles comprising objects in multiple
generations might not be reclaimed directly (as each GC cannot determine if refer-
ences going to other generations are part of a cycle). Third, generational GCs impose a
bookkeeping overhead on mutators in order to track references that span generations,
an overhead hoped to be small compared to the benefits. For example, in a scenario
with only two generations (young and old), these references are typically coming from
old to young generation and therefore are part of the young generation root set (also
called remember set), necessary to allow the young generation to be collected. These
references can be maintained by using a write barrier [Ungar and Jackson 1988; Moon
1984; Appel 1989] or indirect pointers [Lieberman and Hewitt 1983].

To deal with the possible high pause time incoming from collecting old generations,
which might be large, [Hudson and Moss 1992] propose a new approach, the train
algorithm. In this algorithm the mature object space is divided into cars (memory seg-
ments) of fixed memory size. GC collects at most one car each time it runs. Additionally,
objects are moved (from one car to another) in order to cluster related objects (i.e., with
similar lifetimes). When some car is empty, it can be recycled. This way, using the train
algorithm, the application pause time drops significantly because only a fraction of the
old generation is reclaimed at a time. Splitting objects into cars, however, introduces
some complexity to track inter-car references.

5. GARBAGE COLLECTION ALGORITHMS FOR BIG DATA ENVIRONMENTS
So far, the two classic approaches to collect garbage (reference counting and tracing)
have been addressed. These algorithms, however, show several problems which limit
the scalability of today’s Big Data platforms.

Starting with reference counting algorithms, there are two main problems. First,
these algorithms are not complete and therefore need extra techniques to collect cycles
of garbage (such as trial deletion). Trial deletion, comes at a very high cost in terms
of computational cost (reducing application’s throughput) since it has to simulate the
deletion of a possibly large number of objects. The larger the object graph is, the longer
trial deletion can take. Second, there must be write barriers on all reference modifi-
cation instruction (to account for new and deleted references). This obviously incurs
into major application throughput penalties since, after each write, the application is

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:21

Table I. Object Copying in Copying Collectors

Number of Cores Total Working Set Size (GB) Object Copy Time (ms)
4 2 300
8 4 700

16 8 1500
32 16 3100
64 32 6300

128 64 12700

stopped and the GC steps in to fix reference counters. Even if optimization techniques
are utilized, throughput is still largely penalized [Jones et al. 2011].

For these two reasons (which impose a severe impact on application throughput),
reference counting algorithms are not used in most production JVMs such as the Open-
JDK HotSpot JVM (the most widely used JVM implementation).

Tracing algorithms, on the other hand, are the most used type of GC algorithms
nowadays. Implementations such as the Concurrent Mark Sweep (CMS), a widely used
production GC available in HotSpot, combine a set of techniques to optimize the GC
process. CMS, in particular, is a generational collector (i.e., the heap is partitioned
for yield). There are two generations: young and old. The fist (young generation) is
where all new objects are allocated. A parallel copy collector periodically traverses the
young generation and copies objects of a certain age (implementation specific) to the
old generation. The old generation uses a parallel, concurrent, and non-moving Mark
Sweep collector to reclaim objects residing in the old generation. This collector has
been shown to offer acceptable performance (throughput and pause time) for many
applications with not very demanding throughput and pause time requirements.

However, when it comes to most Big Data platforms, with massive amounts of objects
in memory and with high throughput and pause time requirements to cope with, CMS
can be a limiting factor mainly because of three major problems.

First, tracing algorithms (and therefore CMS as well), have to traverse the whole
heap to identify garbage. This becomes a problem if the number of live objects grows to
very large numbers. In such scenarios, the process of tracing the heap (which is concur-
rent with application threads) can take so long that eventually memory is exhausted
and therefore a full collection (that collects the whole heap) is triggered. These collec-
tion cycles can take dozens or even hundreds of seconds to collect all objects in memory
[Gidra et al. 2013]. This obviously has a severe impact on throughput and pause time
for the running applications.

Secondly, the other problem is directly related to the memory profiles analyzed in
Sections 2.1.3 and 2.2.4. This problem is not directly linked to CMS, but instead, is
present in any copy collector. As previously stated, both processing and storage plat-
forms can keep many live objects in memory: working sets in the case of processing
platforms, and database table caches in the case of storage platforms. Also remem-
ber that all these objects (belonging to caches and working sets) are allocated in the
young generation which, when full, is collected. During this process, all live objects are
copied to the old generation. This copying process is slow and is limited to the memory
bandwidth available on the hardware. Therefore, and since processing platforms keep
their active working sets alive (usually one per task/core) and storage platforms keep
their caches alive (usually one per table/database), many live objects will be copied
within the heap, leading to frequent and length full collections (reducing the applica-
tion throughput and increasing the application pause time). In other words, the well
established assumption that most objects die young is not true for a wide range of Big
Data platforms [Bruno et al. 2017; Nguyen et al. 2015; Cohen and Petrank 2015].

Consider the following instantiation of this problem. Assume that a particular pro-
cessing or storage platform uses a number of cores/threads to handle working sets of

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:22 R. Bruno et al.

500 MB in size. Also, imagine that the young generation is sized to be able to contain
all the working sets (so as to minimize the number of young generation collections).
Finally assume that each working set might take different amounts of time to process
and that DDR 3 memory is used (which has 10 GB/s of memory bandwidth). Table I
presents the estimated copy times (i.e., the amount of time during a GC cycle that is
spent copying objects in memory). As the number of cores increases, the total size of
the working set increases, leading to increased object copy times (since every time a
GC cycle occurs, all the working set will be copied around in memory).

As the results suggest, object copying time escalates very quickly, leading to unaf-
fordable application pause times. This is a direct consequence the lack of scalability in
memory bandwidth compared to the scalability seen in the number of cores and size of
the memory. In other words, the number of cores and size of the memory grows faster
than the memory bandwidth. This is a serious problem since almost all industrial col-
lectors rely on object copying (which is limited to the amount of available network
bandwidth).

To further aggravate this problem, there is no simple solution:

— Heap Resizing - does not solve the problem because, eventually, the heap will become
full, and therefore, the collector will stop the application and copy all live objects. In
other words, increasing the size of the heap only pushes the problem further away
but does not solve it;

— Reduce Working Set Size - the size of the working set can be reduced down in or-
der to make objects die faster (i.e., threads process and discard tasks faster). This
can effectively reduce the amount of copying in the heap but it will bring over-
heads related to synchronization and coordination to manage massive amounts of
fine-grained tasks/working sets.

— Reuse Data Objects - it is also possible to reuse data objects to avoid creating new
ones to hold new data. This dramatically reduces the speed at which the application
allocates objects and therefore, less collections are triggered. The main problem with
this approach is that it forces programmers to use a very unnatural programming
style, opposed to the normal object oriented programming style of allocating new
objects whenever necessary;

— Using Off-Heap Memory - using Off-Heap memory is a way to allocate objects out-
side the GC-managed heap (only some runtime environments support this feature).
This effectively reduce the GC-overhead but forces programmers to employ manual
memory management, which is error prone and completely obviates the benefits of
running on top of a managed runtime environment.

The third problem is fragmentation in the old generation. As objects with longer
life-cycles5 live, objects with shorter life-cycles (but already in the old generation) will
become unreachable. This results in a highly fragmented old generation which leads
to decreased locality and can even lead to situations where no more memory can be
allocated (although there is enough free space) because of fragmentation.

To conclude, current collectors provided by production JVMs still present scalability
challenges that need to be addressed. For this reason, several relevant solutions have
been published to try to alleviate these problems. In the next sections, several of such
solutions are presented and analyzed in detail. The analysis is divided into throughput
oriented, and pause time oriented solutions, since most of these solutions are focused
on improving or have the largest impact on one of these metrics.

5An object’s life-cycle is a term used hereafter to refer to the moment of creation and collection of a particular
object or set of objects. Thus, objects with similar life-cycles are created and collected approximately at the
same time.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:23

5.1. Throughput Oriented Memory Management
Several improvements have been proposed for reducing the negative impact that GC
has on applications’ throughput. This section studies some of the most recent and rel-
evant GC solutions that try to increase the application throughput by removing the
overhead introduced by automatic memory management (i.e., GC).

5.1.1. Broom. Broom [Gog et al. 2015] proposes the use of region-based memory man-
agement as a way to reduce the cost of managing massive amounts of objects usually
created by Big Data processing platforms.

The authors want to take advantage of the fact that many objects created by process-
ing platforms (Naiad, for this specific work) have very similar life-cycles. By knowing
this, Broom enables platform developers to group all these objects whose life-cycles are
similar in separate regions. These regions could be easily collected (including all the
objects within) whenever the objects within these regions are not necessary anymore.
In other words, and relating to the concepts introduced in Section 2.1, Broom stores
objects of different working sets in different regions; after a task is complete, the work-
ing set is discarded and the region is freed (knowing that all objects within will not be
used again).

Three types of regions are proposed: transferable regions, task-scoped regions, and
temporary regions. Transferable regions are used to store objects that persist across
tasks and can be used by different tasks across time. Task-scoped regions are meant
to store objects belonging to a single task. Finally, temporary regions are used to store
temporary objects; these objects cannot persist across method boundaries.

To avoid complex reference management between regions, Broom does not allow
references from: i) objects inside temporary regions to objects inside task-scoped, ii)
objects inside temporary regions to objects inside transferable regions, and iii) objects
inside task-scoped regions to transferable regions. This way, objects that live for longer
periods of time never reference objects with smaller life-times and therefore, no region
is kept alive because of other region.

Using Broom prototype implemented for the Mono (a Common Language Runtime
for Linux), the authors were able to reduce the task runtime of Naiad for up to 34%.

Despite the positive resuts, Broom presents some limitations: i) the programmer
must have a very clear understanding of the objects’ lifecycles in order to be able to
group them properly into regions; ii) this is even aggravated by the fact that inter-
object references are limited (objects from temporary regions cannot reference task-
scoped regions, for example); iii) Broom is only a prototype used for Naiad, i.e., it only
works with Naiad, meaning that it cannot be used with other Big Data platforms.

5.1.2. FACADE. FACADE [Nguyen et al. 2015] is a compiler framework for Big Data
platforms. The proposed system takes as input any Big Data platform byte code and
modifies the code to use native memory (off-heap) instead of the GC-managed memory
(on-heap). Native memory or off-heap is a way to access memory that is not managed
by the GC. When using native memory, the programmer is responsible for allocating
and deallocating memory (much like in a C/C++ application). The idea behind FA-
CADE is that all the native memory code (potentially hard to code and to debug) is
automatically generated and replaces regular Java code.

Using the transformed byte code, the platform is able to reduce the number of objects
in the GC-managed heap memory, thus reducing the GC effort to keep these objects in
the managed heap, leading to an increase in the application throughput. Relating to
the concepts explained in Section 2.1, FACADE is pushing objects belonging to working
sets to native memory (i.e., out of the reach of the GC).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:24 R. Bruno et al.

The problem of avoiding GC by pushing objects into off-heap is that the programmer
must explicitly collect all memory. In other words, FACADE must be able to collect all
objects that are allocated in native memory. In order to solve this problem, FACADE
requires the programmer to specify when a new working set must be created and when
a working set can be collected (note that FACADE does not allow the existence of
multiple separate working sets at a time). Therefore, this system is mostly appropriate
for iteration-based processing platforms, whose working sets are discarded by the end
of each task/iteration.

The authors successfully used FACADE to transform the byte code of seven Big Data
applications across three Big Data platforms: GraphChi [Kyrola et al. 2012], Hyracks
[Borkar et al. 2011], and GPS [Salihoglu and Widom 2013]. Results showed that the
execution time can be reduced by up to 48 times.

The main drawback presented by this solution is its limitation regarding the range of
workloads that can be used. Since FACADE only allows one working set (per-thread)
at a time, it does not support non-iterative workloads such as the ones typically as-
sociated with storage platforms. In storage platforms, working sets (caches) are not
bound to a single thread (while on processing platforms, processing tasks usually are)
thus making it very difficult to use FACADE. Another related problem is the way FA-
CADE requires programmers to identify when working sets start and finish. Between
these two code locations, FACADE intercepts all allocations and places them in off-
heap, meaning that programmers must remove all non-data objects from within these
boundaries (working sets’ start and finish). A final comment on FACADE’s evaluation
is that it is done using the Parallel Scavenge GC, an obsolete and unrealistic GC for
Big Data platforms. Current GCs used in realistic OpenJDK production settings are
usually CMS or G1. If evaluated against these collectors, FACADE would show smaller
(but realistic) throughput improvements.

5.1.3. Deca. Deca [Lu et al. 2016] is an extended/modified version of Spark which
tries to reduce the GC overhead present in Spark because of its massive creation of
objects with very different lifetimes (i.e., some groups of objects may have a very short
lifetime while other groups of objects might live for a long period of time). The authors
propose a lifetime-based memory management so that objects are grouped according
to their estimated lifetime.

Using this approach, objects created by the platform (which will potentially live
for a long period of time) are serialized into large buffers thus avoiding continuous
GC marking and tracing. By keeping the bulk of the data maintained in memory (by
Spark) inside large buffers, Deca is able to reduce the GC marking and tracing over-
head and therefore it is able to increase the platform throughput.

As with previous systems (such as FACADE), one problem of maintaining serialized
versions of objects is how to keep their memory consistent while efficiently reading and
writing to it. Deca solves this problem by pre-allocating large arrays where objects will
fit into. To determine the size of these arrays, Deca estimates the size of each data
object (actually it uses an upper bound of the size).

In practice, Deca is in a way similar to FACADE. Despite the fact that the first
only works for Spark and the second works for any iterative workflow platform, both
of them try to hide massive amounts of data objects from the GC in a way to avoid
the GC overhead associated with keeping these objects in memory (namely the trac-
ing overhead). Relating to the concepts introduced in Sections 2.1.3 and 2.2.4, Deca
is pushing the working sets and intermediate data (similar to the caches present in
storage platforms) into large buffers, away from the collector.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:25

The authors were able to improve Spark throughput by reducing its execution time
by up to 42 times, using workloads such as Connected Components, Page Rank, Word
Count, among others.

Deca is, however, specific to a single processing system, Spark. In other words Deca
cannot be used in other platforms. In addition, the technique used to modify Spark
(allocating objects in large arrays) is often unpractical as object allocations happen in
so many code locations (making it harder to change from heap allocations into array
allocations), and therefore requiring a major rewriting the platform.

5.1.4. NumaGiC. NumaGiC [Gidra et al. 2015] presents several developments to im-
prove GC performance in cache-coherent Non-Uniform Memory Access (NUMA) en-
vironments. The authors propose several mechanisms to reduce the amount of inter
NUMA node reference tracing performed by GC threads. By improving reference trac-
ing locality (i.e., only trace references local to the current NUMA node where the GC
thread runs), NumaGiC is able to improve applications’ throughput.

With this collector, objects are placed in specific NUMA nodes not only upon alloca-
tion but also upon copying (after a collection). The most appropriate NUMA node to
place the object is determined using several policies:

— new objects are placed in the same NUMA node where the mutator thread that cre-
ates the object is running;

— the roots of a GC thread are chosen to be located mostly on the NUMA node where
the GC thread is running;

— objects that survive a young collection are copied to the same NUMA node where the
GC thread (that handles the object copying) is running;

— upon heap compaction, NumaGiC tries to maintain objects in the same NUMA node.

With these policies, it is still possible to end up with an unbalanced distribution of
objects, i.e., some NUMA nodes can end up having most objects allocated in it. To solve
this problem, GC threads running on different NUMA nodes steal work from other
GC threads. If a GC thread finds a reference to an object residing in a remote NUMA
node, it notifies the remote GC thread (running on the corresponding NUMA node) to
process that object.

NumaGiC is implemented on the OpenJDK HotSpot 7 JVM as an extension of the
existing Parallel Scavenge GC (wihch is similar to CMS but is not concurrent). The au-
thors compared their new collector with NAPS [Gidra et al. 2013] (NUMA-aware Paral-
lel Scavenge) using platforms such as Spark and Neo4J, and improved the throughput
of those platforms by up to 45%. Nevertheless, it would be very interesting to confirm
that the benefits obtained with Parallel Scavenge can also be obtained with concurrent
GC (which is the most realistic setup nowadays) such as CMS or G1.

5.1.5. Data Structure Aware Garbage Collector. DSA [Cohen and Petrank 2015] is a col-
lector which tries to benefit from the fact that particular objects are inside a data
structure to improve collector’s performance and therefore, alleviate the GC overhead
on the platform’s throughput. The motivation behind DSA is that: i) there are many
Big Data platforms which are data structure oriented (mainly storage platforms), and
ii) a collector able to distinguish objects that are inside a data structure (and therefore
are alive) would avoid handling (tracing for example) these objects in the hope that a
large portion of the overhead caused by the collector would be eliminated.

The programmer is required to explicitly tell DSA: i) which classes are part of a data
structure, and ii) when objects belonging to a data structure should be collected. If the
programmer fails to report the deletion of an object or reports false information, the
correctness of the collector is not compromised, the only consequence is a degradation
in the performance of DSA to collect such objects.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:26 R. Bruno et al.

Objects belonging to a data structure are allocated in a separate heap area, away
from other regular objects. According to the authors, this also provides locality for the
objects inside the data structure (that are collocated in the same heap area). From
the collector point of view, objects belonging to a data structure are considered as root
objects. Tracing is improved by having most data structure objects in the same heap
area (benefits from locality).

Relating this work with concepts introduced in Section 2.2.4, DSA is pushing caches
into a separate heap to improve locality and therefore improve the performance of the
collector and platform.

DSA is implemented on JikesRVM [Alpern et al. 2000] (a research JVM) and it was
tested with KittyCache, SPECjbb2005, and HSQLDB. DSA improved throughput up
to 20% using KittyCache, 6% using SPECjbb2005 and 32% using HSQLDB.

However, DSA is implemented in a research JVM and not a production JVM, which
difficults comparing its results with other approaches available. Furthermore, DSA re-
quires the programmer to inform the JVM: i) of all the classes that should go into a
separate space (data structure space), and ii) whenever an object inside a data struc-
ture is removed. This requires a lot of effort from the programmer. An additional prob-
lem is that some objects belonging to a data structure class might never go into a data
structure (i.e., can be temporary objects). This breaks the main goal of the paper and
DSA has no apparent way of preventing this.

5.2. Pause Time Oriented Memory Management
Having discussed several throughput oriented systems, GC solutions whose main goal
is to reduce the application latency introduced by automatic memory management (i.e.,
GC) are now presented.

5.2.1. Taurus. Taurus [Maas et al. 2016] presents a holistic language runtime system
for coordinating Big Data platforms running across multiple physical nodes. The au-
thors point out that these platforms run distributed on multiple physical nodes and
that each node uses a managed runtime environment such as a JVM to run a Big Data
platform on top of it. However, each runtime is not aware of the existence of others
working for the same platform (and possibly running the same application).

This lack of communication between runtime environments leads to individual
runtime-level decisions that optimize the performance of the local runtime but that are
not coordinated, leading to undesirable scenarios if the whole platform performance is
not considered. For example, if a JVM starts a new collection while other JVMs are
already running collections, although it might be beneficial for the performance of the
local node to start a collection, it might lead to significant platform level latencies be-
cause many JVMs are paused for collection at the same time.

Taurus solves this problem by presenting an Holistic Runtime System. This system
makes platform-level decisions for the entire/global (cluster-wise) platform. Therefore,
and reusing the previous example, using Taurus, JVMs are periodically requested to
start a collection at different times therefore minimizing the number of JVM pauses
for collection at any time.

Using Taurus, application developers can supply policies (written in a special DSL)
to guide Taurus on how to perform runtime-level actions such as garbage collection.
This solution is based on the OpenJDK HotSpot JVM and represents a JVM drop-in
replacement. The authors were able to reduce Cassandra read latency by around 50%
and write latency by 75% (both results for the 99.99 percentile).

The obvious limitation of Taurus is the assumption that there are always enough
spare resources to replace the nodes that need to go under maintenance. This is not ob-
vious if multiple nodes require maintenance at the same time or if maintenance takes

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:27

too long. In such situations, for example, during fast workload changes, the number
of nodes that need to go under maintenance can easily go over the number of spare
resources, resulting in high application latencies.

5.2.2. Garbage First. Garbage First [Detlefs et al. 2004] (G1) is the most recent collec-
tor available in the OpenJDK HotSpot JVM, being the next default collector in Open-
JDK 9. G1 represents an evolution regarding CMS with the goal of being able to reduce
the application pause time while keeping an acceptable throughput. Its main idea is
to divide the heap into small regions that can be collected (if needed) in order to max-
imize the amount of collected garbage while staying below the max acceptable pause
time. By doing so, G1 also eliminates the need for full collections (which were known
to lead to unacceptably long pause times in CMS).

As with CMS, G1 is generational (i.e., the heap is divided into young and old genera-
tions) and, therefore, each heap region can be either in the young generation or in the
old generation. There are also three types of collections:

— minor collections, only regions belonging to the young generation can be collected;
— mixed collections, all regions belonging to young generation are collected and some

regions from the old generations are also collected (this process is described further
below);

— full collections, all regions belonging to both generations are collected;

One of the main benefits of having the heap divided into regions is the possibility to
perform mixed collections, where the collector selectively collects regions from the old
generation and collects them. This keeps the heap from being fragmented and without
free space.

Regions belonging to the old generation are selected for a mixed collection according
to their amount of live data. Regions with less live data will be the first to be selected
to be included in a mixed collection (hence the name Garbage First). This serves two
purposes: i) collecting regions with less live data is faster than collecting regions with
more live data (since less objects need to be copied to other regions), thus improving the
performance of the collector; ii) since the collector has a maximum acceptable pause
time for a collection (which is a user-defined constant), regions which are faster to
collect are also easier to collect while still being able to respect the limit pause time.

G1 relies on periodic concurrent marking cycles (a concurrent marking cycle tra-
verses the heap marking each live object) to estimate the amount of live objects in
each region. This information, together with other statistics build over time regarding,
for example, previous collections, is used to estimate the time needed to collect each
region. With this information, the collector constructs a set of regions to collect that
maximizes the amount of garbage collected but still does not exceed the maximum
desirable pause time.

The authors show that G1 is able to respect a soft real-time pause time goal and that
it was not possible to obtain such pause times with CMS. Two well known benchmarks
were used: telco6 and SPECjbb.7

Although representing a major improvement regarding previous production GCs
(Parallel Scavenge and CMS), G1 suffers from very long GC pauses when Big Data
platforms create large portions of objects with long lifecycles; for example: i) the cre-
ation of a working set (when a task starts) in a processing platform, and ii) the creation
of caches in a storage platform. In both situations, GC pauses are very long due to ob-

6The telco benchmark can be found at http://speleotrove.com/decimal/telco.html.
7SPECjbb benchmark suite can be found at https://www.spec.org/jbb2015/.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:28 R. Bruno et al.

ject copying between heap spaces and go over the maximum desirable pause time set
by the user.

5.2.3. Continuously Concurrent Compacting Collector. Continuously Concurrent Compact-
ing Collector [Tene et al. 2011] (C4) is a collector developed by Azul Systems. This is
a tracing and generational collector such as G1 and CMS are, but it is also distinct
from previous collectors by supporting concurrent compaction (which is not supported
neither by G1 nor CMS). In other words, C4 does not require stop-the-world pauses to
collect garbage (note that G1 and CMS do require stop-the world pauses, during which
all application threads are stopped, to collect garbage).

The C4 garbage collection algorithm is both concurrent (GC threads work while ap-
plication threads are still active and changing the object graph) and collaborative (ap-
plication threads can help GC threads doing some work, if needed). The GC algorithm
relies on three phases:

— Marking, during this phase, GC threads traverse the object graph, marking each live
object. This phase is very similar to concurrent tracing already present in G1 and
CMS;

— Relocation, where live objects are moved to a free space (also known as compaction).
During this phase, all live objects, marked in the marking phase, are relocated. This
process is concurrent (GC threads work concurrently with application threads) and
collaborative (in the sense that application threads help moving an object if they try
to access it before the object is in its new location).

— Remapping is the final phase where references still pointing to the old location, where
an object was moved from, are updated. This phase is also concurrent and collabora-
tive (application threads trying to access an object that was moved out will get the
new address of the object and automatically update the reference to point to its new
address).

By relying on these three phases, which are concurrent and mostly collaborative, ap-
plication threads are stopped for a very short period of time to correct some reference or
help moving an object, but there will never be a stop-the-world pause that stops all ap-
plication threads for a long period of time. This, however, comes at the price of heavily
relying on barrier/trap handling that can reduce the overall application throughput.

To evaluate C4, the authors used several benchmarks from the SPECjbb2005 bench-
mark suite. Using transactional oriented workloads (from SPECjbb2005 benchmarks)
C4 showed to reduce the worst case pause time by up to two orders of magnitude when
compared to CMS.

C4’s latency benefits eventually come at the cost of reduced overall throughput or
increased resource utilization due to the extreme use of barrier/trap handling. Fur-
thermore, long GC pauses can still occur if the memory allocation rate is above the
speed at which the concurrent collector can free memory (for example, during work-
load shifts).

5.2.4. N-Generational Garbage Collector. N-Generational Garbage Collector [Bruno et al.
2017] (NG2C) presents the idea of extending the well established 2-generational heap
layout (with young and old generation) into an N-generational heap layout, i.e., going
from using only two generations into using N generations. By using an arbitrary num-
ber of generations and by being able to allocate objects directly into any generation,
objects with different life-cycles can live into separate generations. This eliminates the
need for object promotion (copying objects with longer life-cycles to another genera-
tion, the old generation) and compactions (copying objects with long life-cycles within
the old generation to free space), the two sources of pause time in current generational
collectors.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:29

The motivation behind this work comes from the observation of the following prob-
lem: in all previous GCs, objects with different life-cycles are allocated in the same gen-
eration (young generation). With time, some objects become unreachable while others
are still alive. Upon collection, reachable objects must be copied into the old genera-
tion. This copy process results in long pauses time as it depends on the memory band-
width available in the hardware. This problem is magnified in Big Data platforms,
where massive amounts of objects live for quite some time (from the GC perspective).
In other words (and relating to the concepts introduced in Sections 2.1.3 and 2.2.4),
most objects belonging to working sets and caches (that have long life-cycles) will be
copied into the old generation, producing unacceptable application pause times. A sim-
ilar problem occurs inside the old generation when some of the objects have longer
life-cycles than others that have already been promoted into the old generation. These
objects with longer life-cycles are copied within the old generation to compact the heap.

To solve these problems, the authors of NG2C propose the extension of the 2-
generational heap layout, which is not fit for Big Data platforms, into an N-
generational heap layout. By using an arbitrary number of generations, objects with
different life-cycles (for example, all objects included in a working set or cache) can be
allocated and live in a separate generation. Thus, once the working set or the cache is
no longer needed, all objects within it will no longer be reachable and therefore that
particular generation (and all the objects within it) can be collected with almost no
pause time.

In order to identify objects with different life-cycles (objects included in working
sets and caches), programmers’ help is required. Thus, programmers must annotate
the object allocation specifying in which generation the object should live. With this
information, NG2C is able to allocate objects in different generations, thus avoiding
the pause times resulting from promotion (copying objects from the young to the old
generation) and from compaction (copying objects within the old generation). Note that
non-annotated object allocations are still allocated in the young generation and are
promoted to the old generation upon collection.

NG2C is implemented on the OpenJDK 8 HotSpot JVM as an extension of the G1
collector. This means that, by default, all objects are allocated in the young genera-
tion and that, if they have a long life-cycle, will be promoted to the old generation.
Annotated objects will be automatically handled by the new functionality introduced
by NG2C.

The authors evaluated NG2C using three Big Data platforms: Cassandra, GraphChi,
and Lucene (an in-memory text search index). For each platform, data based on real
workloads was used. The results show that NG2C is able to reduce the worst observ-
able pause time by up to 95% for Cassandra, 85% for Lucene, and 96% for GraphChi.

Despite the good results, NG2C forces programmers to annotate object allocations
and to keep track of which data structures are kept in which generation. Similarly to
FACADE, authors argue that Big Data platform developers are well aware of the plat-
forms’ objects’ lifecycles but it can still be considered a limiting factor to new program-
mers. Nevertheless, the authors developed a tool that helps programmers preparing
the code to use the new collector by providing hints of where and how to change the
code.

5.3. Memory Management Algorithm Comparison
To conclude this study, Table II summarizes all the presented solutions. The table
is divided into several columns, each of which concerning a different feature of each
solution:

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:30 R. Bruno et al.

Table II. Taxonomy of Big Data Memory Management Algorithms

Algorithm Black/White Box Developer Effort Target Platform Main Goal
Broom [Gog et al. 2015] white high processing (Naiad) throughput
FACADE [Nguyen et al. 2015] black low iterative processing throughput
Deca [Lu et al. 2016] black high processing (Spark) throughput
NumaGiC [Gidra et al. 2015] white none processing,storage throughput
DSA [Cohen and Petrank 2015] white medium processing,storage throughput
Taurus [Maas et al. 2016] black low processing,storage latency
G1 [Detlefs et al. 2004] white none processing,storage latency
C4 [Tene et al. 2011] white none processing,storage latency
NG2C [Bruno et al. 2017] white low processing,storage latency

— (black/white) Box, a black box algorithm is one that does not interfere with the GC
algorithm itself. In other words, this algorithm does not change the GC although it
might produce effects it (such as alleviate its work). A white box solution is one that
changes the GC implementation for improving it;

— (none/low/medium/high) Developer Effort, measures the effort needed to apply the
algorithm to existing an Big Data platform. If no effort is required, for example in G1,
it means that the developer does not have to change the platform to take advantage
of the benefits offered by, for example, G1;

— (processing/storage) Target Platform, the platform type where this algorithm is
designed to run into;

— (throughput/latency) Main Goal, if the algorithm’s main goal is to improve through-
put or latency.

From Table II it is possible to observe that FACADE, Deca, and Taurus provide a
block box solution, i.e., these algorithms do not change or replace any GC algorithm,
they only alleviate the amount of work given to the GC.

Regarding the developer effort, most algorithms require some developer effort (only
NumaGiC, G1, and C4 do not need platform modifications). These modifications can be
seen as a serious drawback since it requires specialized knowledge that only platform
developers might have. Algorithms which require high developer effort (Broom and
Deca) can be very difficult to use due to high implementation costs.

Broom, FACADE, and Deca, are optimized only for a specific processing platform or
subset of platforms while all other platforms are designed to work with both processing
and storage platforms.

As described in the previous sections, each algorithm has most impact on either
throughput or latency. Most of these algorithms have, nevertheless, a positive impact
(although lower) on the other metric.

In order to use any of these algorithms in a real world scenario, two main consider-
ations must be taken into account. First, black box solutions means that there will be
an additional component that works between the application and the runtime environ-
ment (JVM), for example to instrument code, or to intercept code calls. On the other
hand, white box solutions mean that the runtime environment will be changed, i.e., a
new specific runtime version must be used. The second consideration is the amount of
developer effort required. Solutions such as C4 and G1 are simply drop-ins, meaning
that no extra effort is required (except for some configuration parameters). Then, for
each other solution, some degree of programmer effort is required to change the target
application.

A comparative performance analysis can not be easily done mainly because of two
problems. First, different algorithms might work on different platforms or even differ-
ent runtime environments, making it impossible to test both algorithms in the same
environment. Second, some algorithms do not have an open source implementation,

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:31

meaning that one would have to implement the algorithm from scratch in order to
evaluate it. Nevertheless, this study describes these algorithms and present the re-
sults claimed by the authors. Moreover, the goal of this work is not to give precise
measurements for each algorithm but to describe and point out existing design prob-
lems.

To conclude, the authors consider both the developer effort and the target platform
as the two most important factors when considering an algorithm to improve either
throughput or latency. Algorithms should have low or no associated developer effort to
facilitate its introduction into Big Data platforms and should be as generic as possible
so that the algorithm can be applied to a wide range of platforms and workloads. In
particular, Broom, FACADE, and Deca are only applicable to a sub-set of processing
platforms. NimaGiC is applicable to both processing and storage platforms and with
no developer effort but only solves problems related to memory accesses in NUMA
processors. DSA requires a considerable amount of developer effort. With regards to
latency oriented solutions, all four solutions are applicable to both processing and stor-
age platforms and require low (Taurus and NG2C) or no (G1, C4) user effort.

6. OPEN RESEARCH PROBLEMS ON BIG DATA MEMORY MANAGEMENT
Throughout this work, many memory management scalability issues were presented.
Some of these issues/challenges, however, remain untackled, possibly leading to limi-
tations on application performance and scalability. This section provides insights into
possible new research opportunities to solve existing problems.

6.1. Tracing Millions of Live Objects
As discussed in Section 4.3, tracing collectors need to trace through the application
graph in order to mark live objects. Although this is a good idea for applications that
generate a lot of objects that become unreachable very soon, it is usually a severe
performance issue for large-scale systems such as databases or memory caches that
hold massive amounts of objects in memory. For these applications, the collector would
have to trace through enormous amounts of objects, which would take a very long time.

This long trace cycle leads to several problems. First, resources such as memory
bandwidth and processing power are used to trace objects periodically, even if these
objects did not change over time. Second, by taking a long time to finish and therefore
to identify dead objects, the application might not have free memory to work even if
there are dead objects that, if reclaimed, would free enough memory for the application
to work.

In sum, research on how to efficiently trace objects is required. In particular, the
amount of tracing should not depend on the number of live objects because applications
might cache massive amounts of objects in memory.

6.2. Application Cache-friendly Memory Management
Concurrent tracing is now present in almost all recent collectors but it presents prob-
lems in cache-locality. Since tracing threads run concurrently with application threads,
application cache locality is ruined every time a collector thread starts to trace ob-
jects. When application threads take over, the cache contains no longer the records of
its previous iteration, leading to small bumps in performance every time threads are
rescheduled. To handle this problem, it is necessary a collector that does not affect
application cache.

6.3. High-density Object Graphs
As discussed in Section 4.6, recent collectors copy objects between generations in order
to promote objects that survive multiple collections and, therefore, are expected to live

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:32 R. Bruno et al.

longer than the majority of objects. However, collectors do not take into consideration
which objects contain reference to each other when promoting them. For example, a
data structure such as a list of objects results in a set of objects where each has a
reference to the another one (the next one in the list). If these objects are very close in
memory, traversing the list is greatly improved since the number of pages that need to
be loaded is reduced. On the other hand, if each object resides in a separate page, the
number of pages to load is proportional to the number of objects in the list.

The problem with current GC implementations is that when moving objects, the col-
lector does not try to improve the density of the graph (i.e., reduce the memory distance
between objects that point to each other), being this process completely independent
of the object graph links. This results in object graphs with very low-density, where
objects that point to each other can be very far apart within the heap, with an obvious
negative performance impact.

6.4. Application-aware Memory Management
By design, the collector and the application should never interact. The application
allocates and mutates objects and the collector allocates and deallocates (collects) un-
reachable objects. This is great because the programmer does not need to deal with
low-level garbage collection concepts but, for very complex applications, which require
very predictable and precise behavior, this is a clear drawback.

In other words, advanced developers might benefit from improved APIs that interact
with the GC. This could be used, for example, to control when to collect garbage, which
type of GC to run next, or even which parts of the object graph to collect. Obviously, this
improved interface into the collector would only be used by advanced programmers. By
leveraging hints/instructions given by the programmer, the GC impact on application
performance could be reduced since it would become much more predictable and con-
trollable.

7. CONCLUSIONS
In sum, this work presented a study of current Big Data environments and platforms,
focusing on how memory is used by these environments, i.e., their memory profile. With
this information, current (classic) garbage collection algorithms were analyzed and
some scalability problems were uncovered. Several relevant and recent systems which
try to solve some of the scalability problems presented by classic garbage collection
algorithms are presented and analyzed in detail. This study on current solutions closes
by presenting a taxonomy of all the analyzed algorithms.

This work provides a powerful insight into the state-of-art of memory management
for memory managed runtime environments, which are very popular and support
many programming languages (Go, Java, C#, Python, Closure, Scala, Ruby, and others)
and can also inspire new works to improve current memory management scalability
challenges.

ACKNOWLEDGMENTS

This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2013 and through the FCT scholarship SFRH/BD/103745/2014.

REFERENCES
Rajendra Akerkar. 2013. Big data computing. CRC Press.
Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman, Reuven Lax, Sam McVeety,

Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013. MillWheel: fault-tolerant stream processing at
internet scale. Proceedings of the VLDB Endowment 6, 11 (2013), 1033–1044.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:33

Bowen Alpern, C Richard Attanasio, John J Barton, Michael G Burke, Perry Cheng, J-D Choi, Anthony
Cocchi, Stephen J Fink, David Grove, Michael Hind, and others. 2000. The Jalapeno virtual machine.
IBM Systems Journal 39, 1 (2000), 211–238.

Andrew W Appel. 1989. Simple generational garbage collection and fast allocation. Software: Practice and
Experience 19, 2 (1989), 171–183.

Henry G. Baker, Jr. 1978. List Processing in Real Time on a Serial Computer. Commun. ACM 21, 4 (April
1978), 280–294. DOI:http://dx.doi.org/10.1145/359460.359470

Peter B Bishop. 1977. Computer Systems with a Very Large Address Space and Garbage Collection. Technical
Report. DTIC Document.

S. Blackburn, P. Cheng, and K. McKinley. 2004. Oil and water? High performance garbage collection in Java
with MMTk. In Software Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on.
137–146. DOI:http://dx.doi.org/10.1109/ICSE.2004.1317436

Stephen M. Blackburn and Kathryn S. McKinley. 2003. Ulterior Reference Counting: Fast Garbage Collec-
tion Without a Long Wait. In Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-
oriented Programing, Systems, Languages, and Applications (OOPSLA ’03). ACM, New York, NY, USA,
344–358. DOI:http://dx.doi.org/10.1145/949305.949336

Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose, and Rares Vernica. 2011. Hyracks: A flexible
and extensible foundation for data-intensive computing. In 2011 IEEE 27th International Conference
on Data Engineering. IEEE, 1151–1162.

Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkaruppan, Nicolas Spiegelberg,
Hairong Kuang, Karthik Ranganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, and others.
2011. Apache Hadoop goes realtime at Facebook. In Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of data. ACM, 1071–1080.

Don Box and Ted Pattison. 2002. Essential. Net: the common language runtime. Addison-Wesley Longman
Publishing Co., Inc.

Rodrigo Bruno, Luı́s Picciochi Oliveira, and Paulo Ferreira. 2017. NG2C: Pretenuring Garbage Collection
with Dynamic Generations for HotSpot Big Data Applications. In Proceedings of the 2017 ACM SIG-
PLAN International Symposium on Memory Management (ISMM 2017). ACM, New York, NY, USA,
2–13. DOI:http://dx.doi.org/10.1145/3092255.3092272

Randal Bryant, Randy H Katz, and Edward D Lazowska. 2008. Big-Data Computing: Creating Revolution-
ary Breakthroughs in Commerce, Science and Society. (2008).

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E Gruber. 2008. Bigtable: A distributed storage system for struc-
tured data. ACM Transactions on Computer Systems (TOCS) 26, 2 (2008), 4.

Kristina Chodorow. 2013. MongoDB: the definitive guide. ” O’Reilly Media, Inc.”.
Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer. 2015. Memento Mori:

Dynamic Allocation-site-based Optimizations. In Proceedings of the 2015 International
Symposium on Memory Management (ISMM ’15). ACM, New York, NY, USA, 105–117.
DOI:http://dx.doi.org/10.1145/2754169.2754181

Nachshon Cohen and Erez Petrank. 2015. Data structure aware garbage collector. In ACM SIGPLAN No-
tices, Vol. 50. ACM, 28–40.

George E. Collins. 1960. A Method for Overlapping and Erasure of Lists. Commun. ACM 3, 12 (Dec. 1960),
655–657. DOI:http://dx.doi.org/10.1145/367487.367501

Michael Cox and David Ellsworth. 1997. Application-controlled Demand Paging for Out-of-core Visualiza-
tion. In Proceedings of the 8th Conference on Visualization ’97 (VIS ’97). IEEE Computer Society Press,
Los Alamitos, CA, USA, 235–ff. http://dl.acm.org/citation.cfm?id=266989.267068

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Com-
mun. ACM 51, 1 (2008), 107–113.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s
highly available key-value store. In ACM SIGOPS Operating Systems Review, Vol. 41. ACM, 205–220.

David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. 2004. Garbage-first garbage collection. In
Proceedings of the 4th international symposium on Memory management. ACM, 37–48.

Edsger W Dijkstra, Leslie Lamport, Alain J Martin, Carel S Scholten, and Elisabeth FM Steffens. 1978.
On-the-fly garbage collection: An exercise in cooperation. Commun. ACM 21, 11 (1978), 966–975.

R. Dimpsey, R. Arora, and K. Kuiper. 2000. Java server performance: A case study of building efficient,
scalable Jvms. IBM Systems Journal 39, 1 (2000), 151–174. DOI:http://dx.doi.org/10.1147/sj.391.0151

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A:34 R. Bruno et al.

Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. 2012. Efficient big data processing in Hadoop MapReduce.
Proceedings of the VLDB Endowment 5, 12 (2012), 2014–2015.

David Gay and Bjarne Steensgaard. 2000. Fast escape analysis and stack allocation for object-based pro-
grams. In Compiler Construction. Springer, 82–93.

Lars George. 2011. HBase: the definitive guide. ” O’Reilly Media, Inc.”.
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file system. In ACM SIGOPS

Operating Systems Review, Vol. 37. ACM, 29–43.
Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. 2013. A study of the scalability of stop-the-

world garbage collectors on multicores. In ACM SIGPLAN Notices, Vol. 48. ACM, 229–240.
Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan Nguyen. 2015. Numagic: A garbage

collector for big data on big numa machines. In ACM SIGARCH Computer Architecture News, Vol. 43.
ACM, 661–673.

Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios Vytiniotis, Ganesan Ramalingam,
Manuel Costa, Derek G Murray, Steven Hand, and Michael Isard. 2015. Broom: Sweeping out garbage
collection from big data systems. In 15th Workshop on Hot Topics in Operating Systems (HotOS XV).

James Gosling. 2000. The Java language specification. Addison-Wesley Professional.
Herodotos Herodotou and Shivnath Babu. 2011. Profiling, what-if analysis, and cost-based optimization of

MapReduce programs. Proc. of the VLDB Endowment 4, 11 (2011), 1111–1122.
Richard L Hudson and J Eliot B Moss. 1992. Incremental collection of mature objects. In Memory Manage-

ment. Springer, 388–403.
R John M Hughes. 1982. A semi-incremental garbage collection algorithm. Software: Practice and Experience

12, 11 (1982), 1081–1082.
Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007. Dryad: distributed data-

parallel programs from sequential building blocks. In ACM SIGOPS Operating Systems Review, Vol. 41.
ACM, 59–72.

Richard Jones, Antony Hosking, and Eliot Moss. 2011. The garbage collection handbook: the art of automatic
memory management. Chapman & Hall/CRC.

Richard Jones and Andy C King. 2005. A fast analysis for thread-local garbage collection with dynamic
class loading. In Source Code Analysis and Manipulation, 2005. Fifth IEEE International Workshop on.
IEEE, 129–138.

Richard Jones and Chris Ryder. 2006. Garbage collection should be lifetime aware. Implementation, Compi-
lation, Optimization of Object-Oriented Languages, Programs and Systems (ICOOOLPS’2006) (2006).

Richard E Jones and Chris Ryder. 2008. A study of Java object demographics. In Proceedings of the 7th
international symposium on Memory management. ACM, 121–130.

Kenneth C. Knowlton. 1965. A Fast Storage Allocator. Commun. ACM 8, 10 (Oct. 1965), 623–624.
DOI:http://dx.doi.org/10.1145/365628.365655

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: large-scale graph computation on just a
PC. In Presented as part of the 10th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 12). 31–46.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage system. ACM
SIGOPS Operating Systems Review 44, 2 (2010), 35–40.

Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21,
7 (1978), 558–565.

Henry Lieberman and Carl Hewitt. 1983. A real-time garbage collector based on the lifetimes of objects.
Commun. ACM 26, 6 (1983), 419–429.

Jimmy Lin and Dmitriy Ryaboy. 2013. Scaling big data mining infrastructure: the twitter experience. ACM
SIGKDD Explorations Newsletter 14, 2 (2013), 6–19.

Lu Lu, Xuanhua Shi, Yongluan Zhou, Xiong Zhang, Hai Jin, Cheng Pei, Ligang He, and Yuanzhen Geng.
2016. Lifetime-based Memory Management for Distributed Data Processing Systems. Proc. VLDB En-
dow. 9, 12 (Aug. 2016), 936–947. DOI:http://dx.doi.org/10.14778/2994509.2994513

Clifford Lynch. 2008. Big data: How do your data grow? Nature 455, 7209 (2008), 28–29.
Martin Maas, Krste Asanović, Tim Harris, and John Kubiatowicz. 2016. Taurus: A Holistic Language

Runtime System for Coordinating Distributed Managed-Language Applications. In Proceedings of the
Twenty-First International Conference on Architectural Support for Programming Languages and Oper-
ating Systems. ACM, 457–471.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

A study on Garbage Collection Algorithms for Big Data Environments A:35

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty Leiser, and Grze-
gorz Czajkowski. 2010. Pregel: a system for large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data. ACM, 135–146.

John McCarthy. 1960. Recursive Functions of Symbolic Expressions and Their Computation by Machine,
Part I. Commun. ACM 3, 4 (April 1960), 184–195. DOI:http://dx.doi.org/10.1145/367177.367199

David A Moon. 1984. Garbage collection in a large LISP system. In Proceedings of the 1984 ACM Symposium
on LISP and functional programming. ACM, 235–246.

Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martin Abadi. 2013.
Naiad: a timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 439–455.

Scott Nettles, James O’Toole, David Pierce, and Nicholas Haines. 1992. Replication-based incremental copy-
ing collection. Springer.

Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing Xu. 2015. Facade: A compiler
and runtime for (almost) object-bounded big data applications. In ACM Sigplan Notices, Vol. 50. ACM,
675–690.

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins. 2008. Pig
latin: a not-so-foreign language for data processing. In Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data. ACM, 1099–1110.

Harel Paz, David F. Bacon, Elliot K. Kolodner, Erez Petrank, and V. T. Rajan. 2007. An Efficient
On-the-fly Cycle Collection. ACM Trans. Program. Lang. Syst. 29, 4, Article 20 (Aug. 2007).
DOI:http://dx.doi.org/10.1145/1255450.1255453

Ian Robinson, Jim Webber, and Emil Eifrem. 2013. Graph databases. ” O’Reilly Media, Inc.”.
Semih Salihoglu and Jennifer Widom. 2013. GPS: a graph processing system. In Proceedings of the 25th

International Conference on Scientific and Statistical Database Management. ACM, 22.
Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010. The hadoop distributed

file system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on. IEEE,
1–10.

Sunil Soman, Chandra Krintz, and Laurent Daynès. 2008. Mtm2: Scalable memory management for multi-
tasking managed runtime environments. In ECOOP 2008–Object-Oriented Programming. Springer,
335–361.

C. J. Stephenson. 1983. New Methods for Dynamic Storage Allocation (Fast Fits). In Proceedings of the
Ninth ACM Symposium on Operating Systems Principles (SOSP ’83). ACM, New York, NY, USA, 30–32.
DOI:http://dx.doi.org/10.1145/800217.806613

Roshan Sumbaly, Jay Kreps, and Sam Shah. 2013. The big data ecosystem at linkedin. In Proceedings of the
2013 international conference on Management of data. ACM, 1125–1134.

Andrew S Tanenbaum. 2007. Modern operating systems. Prentice Hall Press.
Gil Tene, Balaji Iyengar, and Michael Wolf. 2011. C4: The continuously concurrent compacting collector.

ACM SIGPLAN Notices 46, 11 (2011), 79–88.
Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu,

Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a warehousing solution over a map-reduce frame-
work. Proceedings of the VLDB Endowment 2, 2 (2009), 1626–1629.

David Ungar. 1984. Generation scavenging: A non-disruptive high performance storage reclamation algo-
rithm. ACM Sigplan Notices 19, 5 (1984), 157–167.

David Ungar and Frank Jackson. 1988. Tenuring policies for generation-based storage reclamation. In ACM
SIGPLAN Notices, Vol. 23. ACM, 1–17.

Rik Van Bruggen. 2014. Learning Neo4j. Packt Publishing Ltd.
Tom White. 2009. Hadoop: the definitive guide: the definitive guide. ” O’Reilly Media, Inc.”.
Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, Pradeep Kumar Gunda, and Jon

Currey. 2008. DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using
a High-Level Language.. In OSDI, Vol. 8. 1–14.

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. 2010. Spark:
cluster computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing. 10–10.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January 2016.

