Systems @ ETH ziicn

™ @ ®)

Runtime Object Lifetime Profiler for
Latency Sensitive Big Data Applications

2,3)

Rodrigo Bruno!"", Duarte Patricio®, José Simao®, Luis Veiga®, Paulo Ferreira!

EuroSys 2019 @ Dresden, 25-28 March

Work done while at (2)

Big Data Application Stack

Big Data Application

ot

o

Big Data Platform

‘/”W‘ ' Spqr{(z .mongo

cassandra

openjpk B® fEm yAZUL

Big Data Application Stack

Examples of Latency Sensitive apps

e Banking applications and services
e Context-Aware Ad services

e Games
[J

Big Data Application

O

o

Big Data Platform

w
Vs’ ‘ AAAAAA ‘AZ
Q /)

N . ongo
cassandra Sp Qf’(mohs

Managed Runtime

openpk)} B® 1Em (Y AZ

Big Data Application Stack

Examples of Latency Sensitive apps
e Banking applications and services

e Context-Aware Ad services
e Games
[J
Big Data Application
o » SLAs can be easily compromised

o

Big Data Platform

W SpQJ\Z .mongo

cassandra

Managed Runtime

openpk)} B® 1Em (Y AZ

Big Data Application Stack

Examples of Latency Sensitive apps
e Banking applications and services

e Context-Aware Ad services
e Games
[J
Big Data Application
o » SLAs can be easily compromised

o

Big Data Platform

w
'iu»’ ‘ AAAAAA ‘AZ
Q /)

. » Slow Platform Response Time
S Spqr’(mongo
cassandra

Managed Runtime

Open]DK& =. == (YAZ

Big Data Application Stack

Examples of Latency Sensitive apps
e Banking applications and services

e Context-Aware Ad services
e Games
[J
Big Data Application
o » SLAs can be easily compromised
Lo
Big Data Platform ’
_/»Sﬂ%g‘ AAAAAA e Ocnoons | > Slow Platform Response Time
) : mongo
cassandra Sp ka 8
Managed Runtime ’
-------- » Application Threads are being hold
Open]DKa =. IExE (AZ

GC-induced Application Latency

Bytecode
| GC is known to have difficulties scaling to high
l number of cores and memory, mainly w.r.t.
Class Loader Latencies:
I O [ACM CSUR 2018]
O [DSN 2018]
g ; O [ISMM 2017]
Heap ' 1 Stacks ' Method Area ! Registers
5 . , O [ISMM 2015]
Runtime Data
~ O [ASPLOS 2013]
O
Code Interpreter Garbage Collector JIT Compiler
Execution Engine
Java Virtual Machine

OpenJDK HotSpot Generational GCs (Ps, cMs, G1)

Eden
Space

(3

Survivor

Spaces Young Generation
S

old
Space

Old Generation

e Two generations:
o Young and Old

e Surviving objects are copied to
o Survivor spaces and then to
o the Old generation.

OpenJDK HotSpot Generational GCs (Ps, cMs, G1)

Survivor
Spaces Young Generation
old
Space

Old Generation

e

e Two generations:
o Young and Old

e Surviving objects are copied to
o Survivor spaces and then to
o the Old generation.

OpenJDK HotSpot Generational GCs (Ps, cMs, G1)

(2 (000000

Survivor
Spaces Young Generation
old
Space

Old Generation

e Two generations:
o Young and Old

e Surviving objects are copied to
o Survivor spaces and then to
o the Old generation.

OpenJDK HotSpot Generational GCs (Ps, cMs, G1)

Eden
Space

Survivor 1)(1
Spaces Young Generation
I

Old Generation

e

e Two generations:
o Young and Old

e Surviving objects are copied to
o Survivor spaces and then to
o the Old generation.

11

OpenJDK HotSpot Generational GCs (Ps, cMs, G1)

(= (000000 OO |

Survivor @ 1
Spaces Young Generation

Old Generation

e Two generations:
o Young and Old

e Surviving objects are copied to
o Survivor spaces and then to
o the Old generation.

OpenJDK HotSpot Generational GCs (Ps, cMs, G1)

Eden
Space

Survivor
2 1 1 :
Spaces Young Generation

old
Space

Old Generation

e Two generations:
o Young and Old

e Surviving objects are copied to
o Survivor spaces and then to
o the Old generation.

13

OpenJDK HotSpot Generational GCs (Ps, cMs, G1)

(= (000000 OO |
R
4l (N EYCTO) F—

I

¥

old
Space

Old Generation

e Two generations:
o Young and Old

e Surviving objects are copied to
o Survivor spaces and then to
o the Old generation.

OpenJDK HotSpot Generational GCs (Ps, cMs, G1)

Eden
Space

Survivor > 1 1
Spaces Young Generation

Old Generation

e

e Two generations:
o Young and Old

e Surviving objects are copied to
o Survivor spaces and then to
o the Old generation.

15

OpenJDK HotSpot Generational GCs (Ps, cMs, G1)

Eden
Space

! Allocated Objects: 32
(3 Number of copies: 9
Survivor [> 1 1J [] _
Spaces Young Generation
T)

Old Generation

e

e Two generations:
o Young and Old
e Surviving objects are copied to
o Survivor spaces and then to
o the Old generation. 16

Big Data Application (simpilification)

1
2
3
4
5
6
7
8

public void runTask(enum TaskType tt) {

// Allocates memory to hold Working Set
WorkingItem[] buffer = new WorkingItem[WS SIZE];

// Loads Working Set
DataProvider.load(tt, buffer);

// Process Working Set
Result r = DataProcessor.process(tt, buffer);

// Pushes results from computation
Output.push(r);

4 threads (one per core), running ‘runTask’ method in loop
Each task consumes 500 MB of memory (Working Set size)
Eden is 2GB in size

Tasks can take different amounts of time to finish

17

Big Data Application in HotSpot GCs

Thread 1 Task A

Thread 2

Thread 3 Tagsk B

Thread 4

Task B

Task C

Task D

GC

Old Generat tion

18

Big Data Application in HotSpot GCs

Thread 1

Thread 2

Thread 3

Thread 4

Task A Task B
Task C
Tagk B
Task D
Tim(:
GC

Young generation is full and Thread 1
needs more memory to allocate WS
for Task B.

19

Big Data Application in HotSpot GCs

Thread 1

Thread 2

Thread 3

Thread 4

WS not copied

WS copied once

WS copied twice

Task A Task B
Task C
Tagk B
Task D
Time
GC

[Copies 3 WS = 1500 MB!

Old Generation

20

Big Data Application in HotSpot GCs

Thread 1

Thread 2

Thread 3

Thread 4

WS not copied

WS copied once

WS copied twice

Task A Task B Tai B
Task C Task C
Tagk B Task A | Task A Task B
Task D
Time
GC GC

Old Generation

21

Big Data Application in HotSpot GCs

WS not copied

Thread 1 Task A Task B Task B]

WS copied once
Thread 2 Task C Task C WS copied twice
Thread 3 Tagk B - Task A ‘ Task A Task B
Thread 4 Task D

Time
GC GC

!
[Copies 3 WS = 1500 MB! @

Old Generation

22

Big Data Application in HotSpot GCs

Thread 1

Thread 2

Thread 3

Thread 4

WS not copied

WS copied once

WS copied twice

Task A Task B Task B » Task A 7 Task B
Task C Task C | Task A
Tagk B - Task A ‘ Task A Task B Task C
Task D Task B Task B
Tim(:
GC GC GC

23

Big Data Application in HotSpot GCs

Thread 1

Thread 2

Thread 3

Thread 4

e Y
, WS not copied
Task A Task B Task B Task A Task B e] 3
WS copied once
\
(N\
Task C Task C Task A WS copied twice
A\ J
Tagk B Task A Task A Task B Task C
Task D Task B Task B
Time
GC GC GC

[Copies 3 WS = 1500 MB!

Old Generat tion

24

Big Data Application in HotSpot GCs

Thread 1

Thread 2

Thread 3

Thread 4

WS not copied

WS copied once

WS copied twice

Task A Task B Task B Task A Task B
Task C Task C Task A
Tagk B Task A Task A Task B Task C
Task D Task B Task B
TimZ
GC GC

/

Object copy per GC cycle: 1500 MB
Total amount of object copy: 4500 MB

<

25

Big Data Application in HotSpot GCs

WS not copied
Thread 1 Task A Task B Task B Task A Task B
WS copied once

\

4
Thread 2 Task C Task C Task A WS copied twice

A\
Thread 3 Task B Task A Task A Task B Task C
Thread 4 Task D Task B Task B

Time
GC GC GC

« N

Object copy per GC cycle: 1500 MB
Total amount of object copy: 4500 MB
Assuming average RAM bandwidth of 20GB/s (DDR4)

<

26

Big Data Application in HotSpot GCs

Thread 1

Thread 2

Thread 3

Thread 4

Task A Task B

Task C

Task B Task A

Tas

k B

Task A

Task B

Task C

Task A

Task A

Task D

Task B

Task B

Task C

Task B

WS not copied

WS copied once

WS copied twice

GC

G

C

Time

/

Object copy per GC cycle: 1500 MB
Total amount of object copy: 4500 MB

Assuming average RAM bandwidth of 20GB/s (DDR4)
4 Threads, Eden 2GB = copy 3 tasks (1500 MB) ~= 150 ms

<

27

Big Data Application in HotSpot GCs

Thread 1

Thread 2

Thread 3

Thread 4

Task A Task B

Task C

Task B Task A

Task B

Task A

Task B

Task C

Task A

Task A

Task D

Task B

Task B

Task C

Task B

WS not copied

WS copied once

WS copied twice

GC

GC

GC

Time

/

Object copy per GC cycle: 1500 MB
Total amount of object copy: 4500 MB

Assuming average RAM bandwidth of 20GB/s (DDR4)
4 Threads, Eden 2GB = copy 3 tasks (1500 MB) ~= 150 ms
8 Threads, Eden 4GB = copy 7 tasks (3500 MB) ~= 350 ms

<

28

Big Data Application in HotSpot GCs

Thread 1

Thread 2

Thread 3

Thread 4

Task A

Task B

Task C

Task B Task A

Task B

Task A

Task B

Task C

Task A

Task A

Task D

Task B

Task B

Task C

Task B

WS not copied

WS copied once

WS copied twice

GC

GC

GC

Time

/

Object copy per GC cycle: 1500 MB
Total amount of object copy: 4500 MB

Assuming average RAM bandwidth of 20GB/s (DDR4)
4 Threads, Eden 2GB = copy 3 tasks (1500 MB) ~= 150 ms
8 Threads, Eden 4GB = copy 7 tasks (3500 MB) ~= 350 ms
16 Threads, Eden 8GB = copy 15 task (7500 MB) ~= 750 ms

N

29

Big Data Application in HotSpot GCs

2000
1500
@
E
£
= 1000
>
Q.
o
(&)
O
(O]
500

Number of Threads

30

Big Data Application in HotSpot GCs

2000

1500
@
E
£

= 1000
>
Q.
o
(&)
O
O

500

Number of Threads

31

Big Data Application in HotSpot GCs

2 - 8 16

Number of Threads

32

32

How to Avoid en-masse Object Copying
e Attempt 1: Heap Resizing

Increase Young generation size giving more time for objects to die;
I Does not solve the problem, eventually the Young gen will get full and objects will be copied.

33

How to Avoid en-masse Object Copying
e Attempt 1: Heap Resizing

Increase Young generation size giving more time for objects to die;

' Does not solve the problem, eventually the Young gen will get full and objects will be copied.

e Attempt 2: Reduce Task/Working Set size

Reduces the amount of object copying since the WS is smaller;
I Increases overhead as more tasks and coordination is necessary to process smaller tasks.

34

How to Avoid en-masse Object Copying
Attempt 1: Heap Resizing

Increase Young generation size giving more time for objects to die;
I Does not solve the problem, eventually the Young gen will get full and objects will be copied.

Attempt 2: Reduce Task/Working Set size

Reduces the amount of object copying since the WS is smaller;
I Increases overhead as more tasks and coordination is necessary to process smaller tasks.

Attempt 3: Reuse data objects (object pooling)

Avoids allocating new memory for future Tasks;
' Requires major rewriting of applications combined with very unnatural Java programming style.

35

How to Avoid en-masse Object Copying

e Attempt 4: Off-heap memory
Reduces GC effort as data objects can reside in off-heap
I Objects describing data objects still reside in the GC-managed heap
I Requires manual memory management (defeats the purpose of running inside a managed heap).

36

How to Avoid en-masse Object Copying

e Attempt 4: Off-heap memory

Reduces GC effort as data objects can reside in off-heap
I Objects describing data objects still reside in the GC-managed heap
I Requires manual memory management (defeats the purpose of running inside a managed heap).

e Attempt 5: Region-based/Scope-based memory allocation
Limits object's reachability by scope/region;
I Does not allow objects to freely move between scopes. Bag-of-tasks only, no support for DB!

37

How to Avoid en-masse Object Copying

Attempt 4. Off-heap memory
Reduces GC effort as data objects can reside in off-heap
I Objects describing data objects still reside in the GC-managed heap
I Requires manual memory management (defeats the purpose of running inside a managed heap).

Attempt 5: Region-based/Scope-based memory allocation
Limits object's reachability by scope/region;
I Does not allow objects to freely move between scopes. Bag-of-tasks only, no support for DB!

Attempt 6: Completely Concurrent Collectors (C4, Shenandoah, ZGC)

Greatly reduced pause times
I High throughput overhead (~30% for Cassandra workloads)

38

How to Avoid en-masse Object Copying

a

Takeaway:
e Avoiding massive object copying is non-trivial!
e Existing solutions only alleviate the problem!

e EXxisting solutions might work in some scenarios but do not provide a

general solution.

N

4

39

Proposed Solution

Solution:
o Allocate objects with similar lifetimes close to each other
m Reducing memory fragmentation
m Reducing object promotion
o As a consequence, object copying is reduced!

40

Proposed Solution

Solution:
o Allocate objects with similar lifetimes close to each other
m Reducing memory fragmentation
m Reducing object promotion
o As a consequence, object copying is reduced!

Hypothesis:
o Obijects allocated through the same allocation context have similar lifetimes;
o Allocation context is a tuple of:
m Allocation site (line of bytecode)
m Call graph state (stack state)

41

Big Data Application (simpilification)

1
2
3
4
5
6
7
8
9
10
11
5574
13

public void runTask(enum TaskType tt) {

// Allocates memory to hold Working Set
WorkingItem[] buffer = new WorkingItem[WS SIZE];

// Loads Working Set
DataProvider.load(tt, buffer);

// Process Working Set
Result r = DataProcessor.process(tt, buffer);

// Pushes results from computation
Output.push(r);

42

Solution - NG2C + ROLP

Bytecode

Bytecode

v

Class Loader
| Heap | Stacks | | Method Area | | Registers
Runtime Data
N
Code Interpreter | Garbage Collector | | JIT Compiler
Execution Engine

Java Virtual Machine

v

Class Loader

Heap

Stacks

Method Area !

;‘ Registers

Runtime Data

Code Interpreter

JIT Compiler

Execution Engine

Java Virtual Machine

43

Solution - NG2C + ROLP

Bytecode

v

Class Loader
f Heap ' Stacks | ‘ Method Area ' Registers
Runtime Data
K
Code Interpreter | Garbage Collector | JIT Compiler
Execution Engine

Java Virtual Machine

Bytecode

v

Class Loader

—

Heap

Stacks

| Method Area | :

N-Generational GC (ISMM’17)

Runtime Object
Lifetime Profiler

f Reglsters

— X

Code Interpreter

‘

Vo

8
i
i
[

NG2C

ROLP

JIT Compiler

Execution Engine

Java Virtual Machine

44

Runtime Object Lifetime Profiler (overview)

e Profiler needs to answer a single question
o How long will objects allocated through a particular allocation context live?

Saves number of live
objects per lifetime

Object Lifetime Distribution
Estimated

Lifetime ObJSeuCrtVSi\;l'ehat
[Applica?ion W (Collector }
Execution J Allocated Object is L

Eventually Collected

45

Runtime Object Lifetime Profiler (workflow)

Method,,
BCI ‘ Bytecode
bcig bcg
bcij new
bciy bey

Thread Stack;

Frameqg

Frameypy

46

Runtime Object Lifetime Profiler (workflow)

Method,,
BCI ‘ Bytecode

bcig bcg
: asm+j
bcij new Ll
bciy bey aCm+ist
+

Thread Stack; !
SS¢
Frameg

Frameypy

47

Runtime Object Lifetime Profiler (workflow)

Method,,
BCI ’ Bytecode
bcig bcg
asm+j
bcij new L
: I . Object,
hoin fien acm+i+t Install (acm+j+t) |
+ > Header
Thread Stack;) Class
S5t i
Frameg ‘ Fieldp
Frameyy ‘ Fieldyy

48

Runtime Object Lifetime Profiler (workflow)
4 N

M_ethqdm y 64 56 48 40 32 24 16 8

BCI l Bytecode | | | | I | |

beig bco Alloc. Site ID Context State Identity Hash [|age|| |
L J

bei e asm+j Allocation Context Unused Biased-lock Loy

- : Object,
bei ben acm+i+t Install (@Cm+j+t) |
> Header
Thread Stack;) Class
SS5¢

Frameg Fieldp
Frameyy Fieldyy

49

Runtime Object Lifetime Profiler (workflow)

Method, . Object Lifetime Distribution
BCI’ Bytecode Allocation Context Age Table
bcig bcg

Increment (acmp+j+: 0)
aCm-+i+t <Zo. 7y, ... ZN>
asm+j
bcij new i
: ; Object,
bein ben acm+i+t | Install (acm+i+t) |
+ > Header
Thread Stack;) Class
SS5¢
Frameg Fieldg
Fieldy

Framey

Runtime Object Lifetime Profiler (workflow)

Method,, . Object Lifetime Distribution
BCI 1 Bytecode Allocation Context Age Table
= Decrement (acm+j+t. agep)
bcig bcg ;
Increment (acp+j+¢ 0) Increment (acp+j+t @gep+1)
acm+j+t <Zo,Z1, .., ZN> €
asm+j
bcij new m+i
: ; Object, acpm+i
bein ben acm+i+t | Install (acm+j+t) | ' b 1is) >
> Header < >
: age,
Thread Stack;) Class o<
SS¢
Frameg Fieldg s
Survivor Object,
Framey Fieldy Eden Old Space

51

Runtime Object Lifetime Profiler (conflicts)

Estimated Object Object Lifetime Distribution
Number

of Objects Lifetime Allocation Context Age Table

// f <« ac, Ko, X1 .0y Xn>
y e aCys1 <Yo, Y1 - YN
/ ! \)

Age of Objects

Runtime Object Lifetime Profiler (conflicts)

Object Lifetime Distribution

Number Estilgiac Object Number Allocation
of Objects Lifetime Allocation Context Age Table of Objects | Context Conflict
/\
<« ac, <Xo, X1, -y XN> /5\\ 5
/ E \\ . Cx+1
acCy, <Xo, Yi, .., YN> > / _ /\
; >)\ >
Age of Objects Age of Objects

53

Runtime Object Lifetime Profiler (conflicts)

Estimated Object
Lifetime

Number
of Objects

Age of Objects

Object Lifetime Distribution

Allocation Context Age Table
ac, <X0, X1, e XN>
acy, 1 <Yo, Y1, s YN>

Number Allocation
of Objects Context Conflict
/ \ i Cx+1
>
Age of Objects
Method A ‘ ’ Method B ‘
T1(as.:a) T2(asp+s)

‘ Method C l

T2(ascsc)

Method D \

54

Runtime Object Lifetime Profiler (context tracking)

Method calls are wrapped with context tracking code (update thread stack state)
Context tracking is very expensive

o Only method calls that can resolve conflicts are profiled (next slide)

o Jitted code can dynamically enable or disable profiling

55

Runtime Object Lifetime Profiler (context tracking)

e Method calls are wrapped with context tracking code (update thread stack state)
e Context tracking is very expensive

o Only method calls that can resolve conflicts are profiled

o Jitted code can dynamically enable or disable profiling

ava ‘ eCode | itted code for Invokevirtua
J ByteCode | Jitted code for Invokevirtual
1 pu%lic Object mB() { public java.lang.Object mB(); 1. mov RX PTR(asmpB+1)
2. bject 0 = mA(); Code: 2. mov RY [RX
3. returno; \\ 0: aload_0 3. test RY[:
4.} > 1:invokevirtual #3 //Method mA:()Ljava/lang/Object; ——F——> |4 je6
4: astore_1 5. add [TLS + context_offset], RY
5: aload_1 6. callmA
6: areturn 7. test RY
8. je10
9. sub [TLS + context_offset], RY

56

Runtime Object Lifetime Profiler (context tracking)

Method calls are wrapped with context tracking code (update thread stack state)
Context tracking is very expensive

o Only method calls that can resolve conflicts are profiled
o Jitted code can dynamically enable or disable profiling

[ByteCode [

Jitted code for Invokevirtual}

o
]
Java
1. public Object mB() {
2. Object 0 = mA();
3. returno; e
4. }

public java.lang.Object mB();
Code:
0: aload_0O

—> 1:invokevirtual #3 // Method mA:()Ljava/lang/Object;

4: astore_1
5: aload_1

6: areturn

ORI ~EOCIERIG Vi

mov RX PTR(as;g+1)
mov RY [RX]

test RY

je6

add [TLS + context_offset], RY

callmA
test RY
je 10

sub [TLS + context_offset], RY

|

Method call profiling can be
dynamically turned on or off!

57

Runtime Object Lifetime Profiler (implementation)

ROLP is implemented on OpenJDK HotSpot 8
o Industrial JVM

ROLP is integrated with NG2C

ROLP is meant to be running in production workloads
o Several of implementation/performance optimizations

Avoid inlined methods

Properly Handling Exceptions

Properly Handling On-Stack Replacement

Reducing Profiling Overhead for very large applications
Shutdown survivor tracking code to reduce overhead

Improving the scalability of the Object Lifetime Distribution table

58

Runtime Object Lifetime Profiler (evaluation)

Evaluate ROLP’s performance compared to:
o G1 - best solution in OpendDK, current default GC (ISMM’04)
o NG2C - multi-generational GC (ISMM’17) - requires programmer effort and knowledge
o CMS - concurrent mark-sweep - throughput oriented

Big Data Platforms & Workloads:
o Cassandra (Key-Value Store)
m YCSB: Write-Intensive (75% writes), Read-Write (50% writes), Read-Intensive (75% reads)
o Lucene (In-Memory Indexing Tool)
m Read/Write transactions on Wikipedia dump (33M documents): Write-intensive (80% writes)
o GraphChi (Graph Processing Engine)
m Twitter graph dump (42M vertexes, 1.5B edges): PageRank, Connected Components
o Environment:
m Intel Xeon E5505, 16GB RAM
m Heap/Young Size: 12/2GB

59

Runtime Objec't Lifetime PrOfiler (pausetime percentiles)

900

ms

400
350
300
250

€N 150

E 100

50

T T T T T T
|ROLP —+—
NG2C ——
I~ Gl
- CMS

[bbbt

S maao

1
S0y, oy, %,

(a) Cassandra WI

1 1 1
99 99 99 W,
Stk 9,) 999[/7

T T T T T

PO

1 e ¢ | 1
50{/7 900_) 9907 §99r

(d) Lucene

1 1
9 99 W
ho %%y, g,

350 T T T T T T T
ROLP —+—
NG2C ——
300 Gl B
CcMs
250 - .
200 8
150 o 4
e
100 < 1 i i i i i
5007 90,,) 99[,7 99 %, 9 99% 99 999{/7 Wofs;
(b) Cassandra WR
4000 ROII_P T T T T T T
3500 [RiG2C —s— : : .
3000 + Gl ‘ SOaE e EERERREE
2500 [0 : . : : e
2000 |- reeieeien : T ST R T SR PRI
1500 i : e et
. = = = : - s]
500 | 4

¥ * . J

S 9 9 9 9 9
% P S g, g, 9.99907 Wore,

(e) GraphChi CC

[Lower is Better]

350 T T T T T T T
ROLP —+—
300 ING2C —=— 4
Gl
250 |-CMS 4
200 - s
150 -
100 -
e
50 1 1 1 1 1 1 1
S0) S0, 9, 99 99 99 W
th th th -9, h A 9907 .90, 907 °’sz
(c) Cassandra RI
2500 T T T T T T T
ROLP ——
NG2C —*—
2000 UGy -
CcMS
1500 —
1000 &
500 .
0 - ; 1

50[/_) 90[/7 99{/_) 99_ 9{/7

9 9 I,
9-99% 9-999% Ors,

(f) GraphChi PR

60

Runtime Objec't Lifetime PI’Ofi|el' (pausetime percentiles)

900

ms

400
350
300
250

€N 150

E 100

50

T T

bbbt

——F

i i i i i

50[f

1
90[4

9 9 99 9 7
9(/7 9 907 .QQU7 9 99907 O’S(

(a) Cassandra WI

—

i

1 A 1 L
5007 90[/_) Qg{h §99[‘

1 1
9 99 W
5 .9907 .999177 O/-S[

(d) Lucene

350

300

250

200

150

T T T T T T T
ROLP ——
ING2C ——

100

4000
3500
3000
2500
2000
1500
1000

500

s i i i i i
5007 90,,) 9, ,7 99 %, 9 99% 99 99907 Wofs;
(b) Cassandra WR
T T T T T T T
|ROLP —+— i
NG2C —=— = :
L G1 ; , :) , _
| cMs - i
50% 90,,7 9907 99 %) 99[/7 9 99907 WO,S{
(e) GraphChi CC

[Lower is Better]

350 T T T T T T T
ROLP —+—
300 ING2C —=— B
Gl
250 ~CMS B S
200 | 0 4
68%)
150 o o]
100 -
PR
50 1 ' | 1 1 1 1 1
50[,7 90[/7 9907 99 %, 99 9907 9% 999[/7 Wofs,
(c) Cassandra RI
2500 T T T T T T T
ROLP: ———
NG2C ——
2000 Gl -
CMS :
1500 - o -
85%
1000
500 -
0 + 1

500_> 90[/7 99{/_) 99 % 99 99%

9 W
9.999% O’S(

(f) GraphChi PR

61

pauses (ms)

pauses (ms)

Runtime Objec't Lifetime PrOfiler (pausetime distribution)

64
32
16

= N & @

T
ROLP C— |
NG2C EXZZZR

cMs

1 1

512
256
128
64
32
16

- N B

|

S0 200 S0, VJOOO > o, 0
(a) Cassandra WI
T T T T T
: ~ROLP |
NG2C &5
Gl 2
cMs :

L L

L 1

VSO

T]00 < 500

(d) Lucene

N 1000 = 1000

64
32
16

- N &

256
128
64
32
16

- N & ©

T
""ROLP 1

_ NG2C B2z |

cMs

1 d I L 1

S5 NS Sl NS0y Slop, o,

(b) Cassandra WR

T

T

T T T T T T
ROLP 1
" 'NG2C EZZZZR
Gl
CMS

1 1 d L L it

S5 S5 V]00 T500 v1(700 A1000

(e) GraphChi CC

Left and Lower is Better]

256
128
64
32
16

- N & ©

128
64
32
16

- N & ®

ﬂ§

T
ROLP
NG2C EZZZZR 7

cMs

1

TQS

SSo Slop S0y Slog, og,

(c) Cassandra RI

T . T " L D LS

ikl

T R

ROLP

NG2C Bz
Gl

CMS .

i

V25

S5 Sl S%0p Slog, >, o0

(f) GraphChi PR

62

1.8
16
1.4
1.2

0.8
0.6
0.4
0.2

Runtime Objec't Lifetime PrOfiler (throughput & memory)

ROLP :INGZC m CMS

(LU

"I/,q Q/ (U Cer, /OQ Ce
e

Throughput normalized to G1

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

Max Memory normalized to G1

[Lower is Better]

I T
| ROLP | :' NG?.C, m .C.MS ZGC w——— ... i
i L ' i
W Ry Ly A
R CG/?@ R

63

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

Runtime Objec't Lifetime PrOfiler (throughput & memory)

i
Eitoa — ."‘.G?C. m .CM_S, it TP)
|—E i

Throughput normalized to G1

Up to 6%

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

I T
| ROLP | :' NG.Z.C, m .CMS ZGC w——— ... i
i L ‘ i
W, Ry Ly A
R CG/?@ R

Max Memory normalized to G1

Up to 2%

[Lower is Better]

64

Conclusions

Systems @ ETH ziicn

Big Data applications suffer from high long tail latencies
Taking advantage of the proposed hypothesis leads to great reductions in pause times
o More detailed results in the paper
ROLP can significantly reduce application pauses with
o Negligible throughput and memory overhead
o No code access necessary
o No programmer effort
ROLP + NG2C is a JVM drop-in replacement

65

Conclusions

Systems @ ETH ziicn

e Big Data applications suffer from high long tail latencies
e Taking advantage of the proposed hypothesis leads to great reductions in pause times
o More detailed results in the paper
e ROLP can significantly reduce application pauses with
o Negligible throughput and memory overhead
o No code access necessary
o No programmer effort
e ROLP + NG2C is a JVM drop-in replacement

Thank you for your time. Questions?

Rodrigo Bruno

email: rodrigo.bruno@inf.ethz.ch
webpage: rodrigo-bruno.github.io
code: github.com/rodrigo-bruno/rolp

66

mailto:rodrigo.bruno@inf.ethz.ch
https://github.com/rodrigo-bruno
http://github.com/rodrigo-bruno/rolp

