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Abstract
Latency sensitive services such as credit-card fraud detec-
tion and website targeted advertisement rely on Big Data
platforms which run on top of memory managed runtimes,
such as the Java Virtual Machine (JVM). These platforms,
however, suffer from unpredictable and unacceptably high
pause times due to inadequate memory management deci-
sions (e.g., allocating objects with very different lifetimes
next to each other, resulting in severe memory fragmen-
tation). This leads to frequent and long application pause
times, breaking Service Level Agreements (SLAs). This prob-
lem has been previously identified, and results show that
current memory management techniques are ill-suited for
applications that hold in memory massive amounts of long-
lived objects (which is the case for a wide spectrum of Big
Data applications).

Previous works reduce such application pauses by allocat-
ing objects in off-heap, in special allocation regions/genera-
tions, or by using ultra-low latency Garbage Collectors (GC).
However, all these solutions either require a combination of
programmer effort and knowledge, source code access, off-
line profiling (with clear negative impacts on programmer’s
productivity), or impose a significant impact on application
throughput and/or memory to reduce application pauses.

We propose ROLP, a Runtime Object Lifetime Profiler that
profiles application code at runtime and helps pretenuring
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GC algorithms allocating objects with similar lifetimes close
to each other so that the overall fragmentation, GC effort,
and application pauses are reduced. ROLP is implemented
for the OpenJDK 8 and was evaluated with a recently pro-
posed open-source pretenuring collector (NG2C). Results
show long tail latencies reductions of up to 51% for Lucene,
85% for GraphChi, and 69% for Cassandra. This is achieved
with negligible throughput (< 6%) and memory overhead,
with no programmer effort, and no source code access.

CCSConcepts • Software and its engineering→Mem-
ory management; Garbage collection; Runtime envi-
ronments;

Keywords Big Data, Garbage Collection, Pretenuring, Tail
Latency, Profiling

1 Introduction
Big Data applications suffer from unpredictable and unac-
ceptably high pause times due to bad memory management
(Garbage Collection) decisions. This is the case of credit-
card fraud detection or website targeted advertisement, for
example, among others. These systems rely on latency sensi-
tive Big Data platforms (such as graph-based computing or
in-memory databases) to answer requests within a limited
amount of time (usually specified in Service Level Agree-
ments, SLAs). Such pauses in these platforms delay applica-
tion requests which can easily break SLAs.
This latency problem has been previously identified [11,

19, 20] and results from a combination of factors. First, Big
Data platforms keep in memory large volumes of data. Sec-
ond, current Garbage Collector (GC) algorithms highly rely
on object copying to compact memory. Third, object copy-
ing is bound to the physical memory bandwidth which has
been increasing more slowly when compared to the number
of cores and size of the memory available in current com-
modity hardware [3, 10, 13], resulting in memory bandwidth
being the bottleneck for many parallel applications. In sum,
although the widely accepted hypothesis that most objects
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die young [26, 39] is still valid for most platforms, the over-
head that results from handling the minority of objects that
live longer is not negligible and thus, these objects need to
be handled differently. This problem has been described as
a mismatch between the generational hypothesis and the
epochal hypothesis [33].
Recent works (more details in Sections 2 and 9) try to

alleviate this high latency problem by taking advantage of
programmer’s knowledge. To do so, proposed techniques
resort to modifying code through: i) manual refactoring of
the application code [21], ii) adding code annotations[11, 33],
or iii) static bytecode rewriting [9, 34]. The modified code
reduces the GC effort by either using off-heap memory,1
or by redirecting allocations to scope limited allocation re-
gions2 or generations, leading to reduced GC effort to collect
memory. However, these works have several drawbacks as
they require: i) the programmer to change application code,
and to know the internals of GC to understand how it can
be alleviated; ii) source code access, which can be difficult if
libraries or code inside the Java Development Kit needs to
be modified; and iii) workloads to be stable and known be-
forehand, since different workloads might lead to completely
different GC overheads.

Our work shares the same main goal with many previous
works (reduce application pauses). However, we propose a
number of additional goals that allow our solution to avoid
the drawbacks present in previous solutions. In other words,
our solution: i) requires no programmer knowledge and ef-
fort; ii) it works without any access to application source
code, and iii) it copes with unknown/dynamic workloads.
In addition, ROLP has no significant negative impact on
throughput or on memory usage, and it works as a simple
JVM command line flag.

Long application pauses caused by GC are mainly due to
copying objects during object promotion and compaction.
To reduce such copies, objects with different lifetimes should
be allocated in different spaces, thus reducing fragmenta-
tion. To identify such objects with different lifetimes, we
propose ROLP, an object lifetime profiler running inside the
JVM that tracks object allocation and collection. The profiler
has one main goal, to estimate the lifetime of objects based
on their allocation context. Using this information, we take
advantage the following hypothesis: if a high percentage
of objects allocated through a particular allocation context
are long-lived, then it is expected that future objects allo-
cated through the same allocation context will also live for
a long time. In other words, this hypothesis states that an
object’s allocation context can be used as an indicator of its
lifetime [5]. According to our experience, indicators such as
the object type do not provide accurate information due to

1Off-heap is a manually managed backing store made available by the JVM.
2Objects’ reachability is limited by the scope of allocation.

the intensive use of factory methods, common in object ori-
ented languages, that allocate objects used for very different
use-cases (with different lifetimes).

Profiling information produced by ROLP makes it possible
to instruct the JVM to allocate long-lived objects close to each
other, in a separate space, thus avoiding the cost of copying
them multiple times (which leads to long application pauses).
ROLP is targeted for long-running cloud applications that
hold massive amounts of objects in memory for a long time,
and have low latency requirements. Target applications and
motivation for this work is further explored in Section 2.

ROLP is implemented in the OpenJDK 8 HotSpot JVM, one
of the most widely used industrial JVMs. To take advantage
of the profiling information, ROLP is integrated with NG2C
[11], a pretenuring GC (based on Garbage First [16]) that
can allocate objects in different allocation spaces. Note that
any other collector that supports multiple allocation spaces
can also be used.

To the best of our knowledge, ROLP is the first object life-
time profiler that can categorize objects in multiple classes
of estimated lifetime, implemented in a production JVMwith
negligible performance overhead. ROLP supports any ap-
plication that runs on top of the JVM (i.e., it is not limited
to the Java language) and users can benefit from reduced
application pauses with no programmer effort or any need
for off-line profiling. ROLP builds upon NG2C by providing
automatic lifetime information that is used by NG2C to allo-
cate objects in different memory locations (according to the
estimated lifetime). ROLP also provides package filters that
can be used to reduce the performance overhead introduced
by profiling code in large applications. These package filters
are easier and less error-prone to use when compared to
hand-placed annotations necessary to use NG2C. As shown
in the evaluation section (Section 8), when compared to other
approaches, ROLP can be used to greatly reduce application
pause times.

2 Motivation
This section presents the long pause time problem in current
runtime systems, its importance, and why it cannot be solved
using current GC algorithms and systems.

2.1 Tail Latency introduced by Garbage Collection
Partitioning allocated objects by their estimated lifetime
is a fundamental design aspect in current GC design [25].
However, due to the high cost of estimating the lifetime of
objects, most collectors simply rely on the weak generational
hypothesis [39] that states that most objects die young, and
therefore, allocate all objects in the same space and pay the
cost of promoting the minority of objects that live longer
than most objects.

While this design works well for applications that follow
the generational hypothesis, it leads to long tail latencies for
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applications that handle many middle to long-lived objects
(as it happens with many Big Data applications [10]). Such la-
tencies come from long copy times (compacting live objects)
that are bound to hardware memory bandwidth. In addition,
these copy times will become longer and longer as the num-
ber of cores and memory capacity is increasing faster than
memory bandwidth in current commodity hardware [10].
Recently proposed GC works [11, 14, 33] try to reduce

the overhead of estimating the lifetime of objects. After in-
tegrating this new information into the GC, a better object
partition by lifetime is possible, leading to reduced fragmen-
tation and thus, reduced latency. However, these techniques
are heavy, error-prone, require source code changes, are lim-
ited to simple workflows, or can only profile code during
code warm-up. This topic is discussed in Section 9.

2.2 Trading Throughput and Memory for Latency
Other GC implementations such as C4 [37], Shenandoah
[18], and ZGC 3 solve the latency problem by performing all
GC tasks almost fully concurrent with the mutator (applica-
tion threads). These collectors still require copying massive
amounts of objects but most copies are done concurrently
with the mutator. Thus, these GCs incur very short pauses;
however, the drawback is the application throughput over-
head that is caused by the heavy use of both read and write
barriers, and the increased memory usage (see results in
Section 8.5).
On the one hand, current GC algorithms, which heavily

rely on object copying to compact memory inflict unpre-
dictable and unacceptably long tail latencies on applications.
This situation will not improve as memory bandwidth is a
scarce resource, even more with the fast developments on
the number of cores and memory capacity. On the other
hand, concurrent GCs reduce overall GC latency but at a
high throughput and memory cost.
The work now presented, ROLP, is a new solution in

the Throughput-Memory-Latency trade-off as it reduces the
overall latency, with special focus on long tail latency, and
inflicts a negligible impact on throughput and memory us-
age. We envision that this solution is mostly beneficial for
long-running cloud platforms that are latency sensitive, as
it happens with many Big Data applications. There are addi-
tional use-cases for ROLP such as detecting memory leaks
in applications by reporting object lifetime statistics per al-
location context. Nevertheless, we will not explore use-cases
in this paper however.

3 Object Lifetime Profiling
ROLP is built to answer one simple question: how long will
an object live, based on its allocation context. To answer
this question, we must first define the notion of time and
allocation context. On one hand, time is measured in GC

3http://openjdk.java.net/projects/zgc

cycles, i.e., the GC cycle is the unit of time. Thus, the age of
an object is the number of GCs that an object has survived.
On the other hand, ROLP defines an allocation context as a
tuple of: i) an allocation site identifier, which identifies the
line of code where the object is allocated, and ii) a thread
stack state, which describes the state of the execution stack
upon allocation.

3.1 Solution Overview
ROLP uses different techniques to answer the proposed ques-
tion. First, upon allocation, all objects are marked in their
header with an allocation context that identifies both the
allocation site (i.e., line of code) and the thread stack state.
As detailed below, ROLP takes advantage of profiling code in-
stalled during Just-In-Time (JIT) compilation to accomplish
this task. To know the age of objects, ROLP tracks both the
number of allocated objects, and survivor objects during GC
cycles. This information (number of allocated and survivor
objects) is kept in a global Object Lifetime Distribution table
(see Fig. 1). This table maintains the number of objects with a
specific age organized by allocation context. In the following
sections, we describe these techniques in detail.

3.2 Application Code Instrumentation
ROLP only profiles very frequently executed/hot application
code. To that end, we take advantage of the JIT compilation
engine in the HotSpot JVM to identify/define hot applica-
tion code. There are two reasons why ROLP only profiles
hot code. First, installing profiling code has a cost (e.g., for
creating unique identifiers for allocation sites) and thus, it
makes sense to pay this cost only for application code that
is executed very frequently (note that only a small fraction
of the application code is usually hot). Second, since most of
the execution time is spent running hot code, not profiling
code that is not executed frequently (i.e., cold code), does
not lead to a significant loss of profiling information.

In short, the profiling code (added to the application code
during JIT) is responsible for performing the following tasks:
i) update the thread stack state (thread-local value that en-
codes the state of the execution stack) whenever a new frame
is pushed or removed from the stack; ii) increment the num-
ber of allocated objects (in the Object Lifetime Distribution
table) for the corresponding allocation context, upon object
allocation; and iii) install the allocation context in the ob-
ject header (see Fig. 2), upon object allocation. Note that, as
ROLP does not profile cold methods (i.e., non JIT compiled),
it does not record lifetime information of all objects. ROLP fo-
cuses on profiling the code that is executed more frequently
in the hope of achieving the best trade-off of profiling over-
head versus performance benefits. The next sections describe
each one of these tasks in detail.
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Figure 2. Object Header in HotSpot JVM using ROLP

3.2.1 Context of Allocation
The number of allocated objects per allocation context is
maintained in the Object Lifetime Distribution table (see
Fig. 1). As depicted, upon each object allocation, the alloca-
tion context acm+i+t is generated by combining both: i) the
allocation site identifier (asm+i), which identifies the specific
code location where the allocation is taking place (method
m, bytecode index i), and ii) the thread stack state sst, which
identifies the state of the execution stack of the thread t
(which is allocating the object). The resulting allocation con-
text is installed in the header of the newly allocated object.

3.2.2 Marking Objects with the Allocation Context
ROLP associates each allocated object with an allocation
context by storing the corresponding allocation context in
the object’s header. Note that adding more information to
application objects (for example, increasing the header size)
is undesirable as it increases the memory footprint by adding
extra bytes to every object. Therefore, ROLP reuses spare
bits that already exist in an object header.
Figure 2 presents the 64-bit object header used for each

object in the HotSpot JVM. As depicted, for each object,
ROLP installs the corresponding allocation context in the
upper 32 bits of the 64-bit header. These 32 bits are currently
only used when an object is biased locked towards a specific
thread,4 and using them does not compromise the semantics
of biased locks. Given that ROLP installs an allocation con-
text upon an object allocation, if the object becomes biased
locked, the profiling information will get overwritten. In
addition, biased locking is controlled by the JVM using a spe-
cific bit in an object header (bit number 3). Thus, if the object
4Biased Locking is a locking technique available for the HotSpot JVM which
allows locking an object towards a specific thread [17].

is biased locked (i.e., if bit number 3 is set) or if the allocation
context is corrupted (i.e., it does not correspond to any entry
in the Object Lifetime Distribution table), the object is simply
discarded for profiling purposes. Profiling information can
be mistakenly used if the upper 32 bits were used recently
for biased locking and the OLD table contains an allocation
context which matches the same 32 bits. This is a very rare
scenario as the upper 32 bits of the object header (which
store the pointer to the thread that owns the biased lock)
must match the same exact 32 bit of an allocation context.
Using the space dedicated to biased locks means that

ROLP looses some profiling information. However, through
our experience and based on previous evaluation results, we
argue that: i) the number of biased locked objects in Big Data
applications is not significant; ii) data objects are usually
not used as locks (and therefore are not biased locked); iii)
not profiling control (non-data) objects does not lead to a
significant loss of important information since these control
objects are usually small both in size and number.

3.2.3 Allocation Context Tracking
As already mentioned, the allocation context is a tuple of: i)
allocation site identifier that identifies a specific line of code,
and ii) thread stack state. The later is necessary to distin-
guish two object allocations that, although using the same
allocation site identifier (i.e., the same code location), use
different call paths to reach the allocation site. This is a very
common scenario when object allocation and initialization
is delegated to libraries or frameworks.
ROLP uses arithmetic operations (sum and subtraction)

to incrementally update the 16 bit thread stack state of each
thread. Thus, before each method call, the thread-local stack
state is incremented with a unique method call identifier.
The same value is subtracted when the execution exits the
method.

This technique relies on the following. First, for allocation
tracking purposes, it suffices that the thread stack state dif-
ferentiates two different call paths. Hence, the order of the
method calls that compose each call path is not required to
be contained in the thread stack state. Second, this state must
be incrementally maintained as the application execution
goes through the call path and enters and leaves methods.
However, adding two arithmetic operations for each me-

thod call can lead to throughput penalties as method calls
are very common in high level languages. To cope with this
problem, ROLP is able to dynamically turn on and off the
execution stack tracking for eachmethod call. Hence, method
call profiling code is only enabled for method calls that can
differentiate call paths leading to the same allocation site.
This process is discussed in Section 5.

Finally, it is also possible to have collisions in the thread
stack state, i.e., if two or more different call paths lead to the
same execution stack state. This problem is greatly reduced
by two factors. First, we only profile hot code, thus greatly
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  public java.lang.Object mB(); 
    Code:
       0: aload_0       
       1: invokevirtual   #3     // Method mA:()Ljava/lang/Object;
       4: astore_1      
       5: aload_1       
       6: areturn

 1.   public Object mB() { 
 2.       Object o = mA(); 
 3.       return o; 
 4.   } 

Java ByteCode

 1.   mov RX PTR(asmB+1) 
 2.   mov RY [RX] 
 3.   test RY 
 4.   je 6 
 5.   add [TLS + context_offset],  RY 
 6.   call mA 
 7.   test RY 
 8.   je 10 
 9.   sub [TLS + context_offset],  RY 

Jitted code for Invokevirtual

Figure 3. Method Call Code Sample: from Java (left) to Bytecode (middle) to x86 Assembly (right)

reducing the number of method calls that can contribute to
a collision. Second, a collision would only be harmful if the
allocation site is the same for the values that are colliding.
Execution stack states that collide in different allocation sites
are not a problem (i.e., they correspond to different lines in
the Object Lifetime Distribution table). Nevertheless, we
show in Section 8.3 that conflicts are very rare.

3.2.4 Code Profiling Example
We now analyze a snippet of code and see how ROLP installs
the profiling code. Figure 3 presents a simple snippet of Java
code (left), the result of its compilation to Bytecode using the
Java compiler javac (center), and the x86 Assembly code for
the invokevirtual instruction produced by the OpenJDK
HotSpot Opto JIT compiler (right), which also contains the
profiling code introduced by ROLP. Both the Bytecode and
the Assembly code presented in this figure are simplified
for clarity reasons. We do not present an example with the
new instruction as it is more complex and would require
more space to illustrate with almost no benefit compared to
analyzing the invokevirtual Assembly code. We now an-
alyze the Assembly code generated for the invokevirtual
instruction (right side of Figure 3).

Looking at the generated Assembly code, lines 1 to 5 and
7 to 9 correspond to profiling instructions introduced by
ROLP(lines in bold). These instructions are meant to incre-
ment (lines 1 to 5) and to decrement (lines 7 to 9) the thread
stack state by the specific amount that was calculated for this
specific line of code (asmB+1). The increment or decrement
Assembly instructions (add and sub) are executed on the
condition that the value of asmB+1 is non-zero (note the test
and je Assembly instructions in lines 3, 4, 7, and 8).

This conditional execution of the thread stack state update,
enables ROLP to turn on and off the profiling of method calls.
By doing so, ROLP avoids the execution of the add and sub
instructions which are costly as they may require loading
and storing values to main memory (if the values are not
cached). In other words, ROLP introduces a not so expensive
short branch to avoid an expensive memory access. These
instructions need to read and write to the current execution
stack state which is stored context_offset bytes away from
the Thread Local Storage (TLS, which is kept in a special
register). Other than these two instructions (add and sub),

only the mov instruction in line 2 requires memory access
(which is much slower compared to operations performed
using only registers or cached values). However, even for
this instruction, which is necessary to load into memory the
value that is added to the thread stack state, we try to keep
it in cache by storing it right next to the compiled code in
memory. Thus, when the method’s Assembly code is loaded
before it is executed, the value of asmB+1 will most likely be
cached in the CPU.

3.3 Updating the Object Lifetime Distribution Table
The information regarding the number of objects allocated
per allocation context and age, is kept in the global Object
Lifetime Distribution table (see Fig. 1). Besides being updated
upon object allocation (to increment the number of objects
with age zero), this table is also updated during GC cycles
to update the number of objects that survived a GC cycle.
In particular, let’s assume an object allocated in the alloca-
tion context acm+i+t with age ageo that survives a GC cycle.
The Object Lifetime Distribution table will be updated to:
i) decrement the number in the cell corresponding to row
acm+i+t and column ageo (one object less with age ageo); ii) in-
crement the number in the cell corresponding to row acm+i+t
and column ageo+1 (one object more with age ageo+1).
This process is also depicted in Figure 1. In short, with

ROLP, GC worker threads that are copying survivor objects
will look into an object’s header (see Fig. 2) and extract the
allocation context and the age of the object (field maintained
and updated by the collector). If the object is biased locked or
if the allocation context is not present in the Object Lifetime
Distribution table, the object is not considered for profiling
purposes. Otherwise, the worker thread will update the table.
By the end of each GC cycle, the global table presented
in Figure 1 contains the number of objects organized by
allocation context and age.

4 Inferring Object Lifetimes
In order to infer the lifetime of objects allocated through
a particular allocation context, e.g., acx, ROLP periodically
analyzes the number and age of the objects allocated through
acx. This operation is performed for every allocation context
once every 16 GC cycles. This value is used because it is
the maximum age of objects in HotSpot (considering that
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the age bits in an object’s header is only 4 bits long), after
which, the age of the object does not increase more. In order
to ensure freshness, the Object Lifetime Distribution table is
cleared after inferring the lifetime of all allocation contexts.

To estimate the lifetime of objects allocated through acx, a
curve (Cx) plotting the number and age of (objects allocated
through acx) is created (Fig. 4, left side). The resulting curve
is most often very similar to a triangular shape (similar to
the triangular distributions previously reported by Jones
and Ryder [26]), whose maximum shows at which age most
objects die. Hence, by determining the maximum of Cx, it is
possible to infer with high confidence the estimated lifetime
of objects allocated through acx.

It is possible, however, that a single curve (Cx+1, for exam-
ple) shows not only one, but multiple triangular-like shapes
(Fig. 4, right side). Such a curve shows that the objects al-
located through the allocation context acx+1 may live for
different spans of time. In such a situation, we consider that
we found a context conflict, which is possible if the same
allocation site is being reached through multiple call paths.
In the following section, we discuss how we deal with these
allocation context conflicts.

5 Allocation Context Conflicts
Tracking the thread stack state is potentially harmful for the
performance of an application as such tracking introduces a
considerable amount of profiling effort. Therefore, a trade-
off needs to be found. In one hand, not tracking the thread
stack state means that ROLP would fail to solve allocation
context conflicts (i.e., distinguish allocations that share the
same allocation site but use different call paths); on the other
hand, updating the thread stack state on every method call
(and return) introduces undesired throughput overheads.

The sweet spot for this trade-off problem is achievable
by identifying the minimum set of method calls that allows
ROLP to distinguish different call paths leading to the same

allocation site. With such a minimum set of method calls,
called S, it is sufficient to profile only the method calls in the
set to solve all allocation context conflicts. In other words,
ROLP only has to update the execution stack state when
the methods calls in S are executed, thus avoiding conflicts
with the minimum amount of throughput overhead. Figure
5 presents an example of two different thread stacks (call
paths) that lead to the same allocation site and also shows
(in red) the conflicting frame. In this particular example, S
must contain either the call from A to C or B to C.

Identifying such minimum set of methods calls (S) is not a
trivial task mainly due to the extreme use of polymorphism
in modern languages. Hence, it is not possible to have precise
information regarding callers and callees, at runtime, without
extreme performance overhead. Therefore, we propose a low-
overhead algorithm that iteratively finds S. The algorithm
works as follows:

1. at JVM startup, no method call is profiled (i.e., a thread’s
stack state is not updated when the thread enters or exits a
method); only allocation sites are profiled to install allocation
site identifier into object headers;

2. conflict checking is performed during object lifetime in-
ference (as described in Section 4). Whenever a conflict is de-
tected (multiple triangle shapes in the same curve), P method
calls are randomly selected to start tracking the thread-local
stack state. P stands for an implementation specific number
of method calls to profile at a time (we recommend that P
should not be higher than 20 % of the total number of jitted
method calls to avoid too much throughput overhead);

3. upon the next object lifetime inference, if the conflict
was resolved, S must be contained in P method calls. In this
case, ROLP can start to turn off method calls tracking until S
is found. If the conflict was not solved, then a new random
set of P method calls must be selected (avoiding repeated
method calls) and the process continues until all method
calls are exhausted or until the conflict is resolved.
It is possible to have multiple sets of P methods being

tracked at the same time, i.e., trying to solve multiple con-
flicts. Note, however, that P should be adjusted (reduced) as
the number of parallel conflicts may increase so as to avoid
high throughput overhead.
This algorithm presents two interesting properties. First,

it is possible to dynamically control the number of method
calls that are being tracked (or profiled) at a time while
trying to resolve conflicts. Second, the algorithm converges
in linear time to the number of jitted method calls divided
by P and multiplied by the number of GC cycles between
each conflict checking operation (16 GC cycles); this means
that it is possible to predict, on the worst-case, how long it
will take to finish (we show this experiment in Section 8).

In short, as demonstrated in the evaluation (Section 8), con-
flicts are rare. Therefore, in order to solve conflicts, ROLP uses
a low-overhead technique, as described above, opposed to
using more performance intrusive techniques.
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6 Updating Profiling Decisions
The lifetime of objects allocated through a particular allo-
cation context can change over time if, for example, the
application workload changes. To cope with these changes,
ROLP needs to continuously update its profiling decisions.
Two types of situations are specially important for object life-
time profiling: i) if the lifetime of objects allocated through
an allocation context increases, or ii) decreases.

On one hand, if the lifetime of objects allocated through al-
location context acx increases, it means that objects allocated
through acx are surviving more collections than before (and
the Object Lifetime Distribution table will evidence that).
This allows a pretenuring collector to take action and pre-
tenure objects allocated by acx to an older space which is
collected less often.
On the other hand, if the lifetime of objects allocated

through acy decreases, the only visible effect is the increase
in memory fragmentation (this information is updated by
the collector at the end of each memory tracing cycle). When
fragmentation is detected, ROLP identifies which allocation
contexts are allocating objects in the fragmented memory
regions and decrements their estimated object lifetime.

7 Implementation and Optimizations
ROLP is implemented for the OpenJDK 8 HotSpot JVM (build
25-b70). Since HotSpot is a highly optimized production JVM,
new algorithms/techniques must be implemented carefully
to prevent breaking JVM’s performance. This section de-
scribes some of ROLP’s implementation details, in particular,
the ones we believe to be important for realistically imple-
menting ROLP in a production JVM.

7.1 Integration with Pretenuring GC
ROLP is integrated with NG2C [11], a freely available re-
cently proposed pretenuring collector that allows the heap
to be divided into an arbitrary number of generations. The
motivation behind NG2C is to allocate objects with similar
lifetimes in the same generation to reduce fragmentation.

In order to integrate ROLP with NG2C, we pre-configured
NG2C to have 16 generations (the young generation, the old
generation, and other 14 generations used to hold pretenured
objects, separated by estimated lifetime). In practice, what
NG2C does is to sub-divide G1’s old generation into multiple
allocation spaces, and allow the collector to allocate applica-
tion objects into each of these allocation spaces (which are
called dynamic generations). Sixteen generations are used
as it the maximum age of an object in HotSpot.
With ROLP, we modified NG2C to use ROLP profiling

results to select a generation for allocation. Upon object allo-
cation, we instruct NG2C to look into the table that contains
lifetime estimations (which results from the analysis done in
Section 4) and to use the estimated age of an object (a number
between 0 and 15) as the number of the generation to use

(i.e., where that object will be allocated). If the estimated age
is zero, NG2C allocates the object in the young generation; if
the estimated age is "G" (0<G<15), NG2C allocates the object
in one of the dynamic generations (generation "G" in this
case). The fifteenth corresponds to the old generation.
With regards to collecting garbage, ROLP does not bring

any modification besides updating the Object Lifetime Dis-
tribution table whenever an object survives a collection. For
more details on how collection is done using multiple gener-
ations, please refer to Bruno et al. [11].

7.2 Inlining, Exceptions, and OSR
The HotSpot JVM is one of the most optimized runtimes. In
this section, we analyze some techniques used by the JVM
and how ROLP handles them.

7.2.1 Method Inlining
Method inlining is an important performance optimization
for JVM applications. It allows a call to method A to be re-
placed with its code. This can lead to significant performance
improvements as the cost of the method call is completely
avoided. There are a number of factors that control how the
JIT compiler in HotSpot deals with inline methods such as
the size of the method, and if the call is polymorphic or not
(i.e., if it can result in an invocation to different methods).

After studying this problem and analyzing both real ap-
plication code and execution logs from JIT compilation, we
realized that most methods being inlined contain very little
control flow, and are mostly simple operations that, because
of being done many times, are abstracted into a separate
method. With this observation in mind, and trying to re-
duce the number of profiled method calls (to reduce the
throughput impact of ROLP), we decided not to profile in-
lined method calls, i.e., whenever the JIT is inlining a method
call (i.e., replacing the call with the actual method implemen-
tation), we do not include any profiling code to track the
thread stack state around the method that is being inlined. In
addition, we conducted several experiments with an without
this optimization (using the benchmarks described in Sec-
tion 8) and we noticed that no conflict was left unresolved
after using this optimization.

7.2.2 Exception Handling
Exception handling is another important topic as it breaks
the assumption that after returning from a method, the
thread stack state of the executing thread will be updated
(remember that we update the thread stack state before and
after each method call). However, exceptions can break this
technique as an unhandled exception will climb the stack
until: i) there is a suitable exception handler, or ii) the appli-
cation terminates with the exception.
In practice, when an exception is thrown, the JVM will

look for a suitable exception handler to handle it. If there is
no suitable handler in the current method, the exception is
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automatically re-thrown, and is going to be catched by the
JVM stubs in the caller method. Note that when the JVM re-
throws an exception, the execution goes directly to the JVM
stub in the caller method, i.e., the profiling code installed
right after the call is not executed.
In order to fix this problem, and to avoid the thread-

local stack state being inconsistent with the execution stack,
ROLP hooks code to update the stack state whenever the
JVM decides to re-throw an unhandled exception. This way,
even if exceptions are not handled in the current method,
exiting a method through an unhandled exception will not
lead to a corruption of the stack state.

7.2.3 On Stack Replacement
On Stack Replacement (OSR) is yet another important tech-
nique used by the HotSpot JVM. This technique allows the
JVM to change how a particular method is executed (ei-
ther through interpretation or through JIT compiled code)
while the method is being executed. It is particularly useful
for JIT compiling long-running methods and for method
de-optimization. OSR can be harmful for ROLP’s thread
stack state updates because any method in the stack can go
from an interpreted method into a compiled method. Given
that ROLP only installs profiling code in compiled/jitted
code, switching implementations after entering a particular
method would corrupt the thread stack state.

To solve this problem, ROLP periodically verifies the cor-
rectness of an application threads stack state by traversing
the thread stack and computing the expected thread stack
state. This is done at the end of each GC cycle, while all ap-
plication threads are still stopped. If ROLP finds an incorrect
context state, it will correct its value, making it consistent
with the real execution stack. After testing the performance
of applications with and without this technique, we con-
cluded that its cost is negligible, and is absorbed by the cost
of the other collection tasks. ROLP could also have tack-
led this problem by patching all code locations where OSR
is triggered. However, this would require a large engineer-
ing effort and would probably lead to throughput overhead.
The proposed solution trades short-term imprecision for low
throughput overhead.

7.3 Reduce Profiler Overhead on Large Applications
Profiling large scale applications can be challenging from the
performance point of view. As shown in Section 8, even for
DaCapo benchmarks with no context conflicts, some bench-
marks experienced more than 10 % throughput overhead. In
other words, even with highly optimized produced JIT code
for profiling the application, it is not possible to reduce the
throughput to negligible values for some applications.

To further reduce the throughput overhead, ROLP allows
the definition of package-based filters to either profile or

not a package (and all its sub-packages). We found this ex-
tremely useful and effective to bound the throughput over-
head. In practice, we used this technique in the large scale
workloads (described in the Section 8) to focus the profiling
effort on packages that manage application data structures.
In addition, identifying these packages is effortless for most
programmers as even the name of the packages is, most of
the time, indicative of the purpose of the code in it (as it
happens in the platforms used to evaluate ROLP).

7.4 Shutting Down Survivor Tracking to Reduce
Application Pause Times

During ROLP’s development we realized that ROLP, after
reducing the number of objects being copied during a col-
lection, the profiling code was the new bottleneck during
a collection. After analyzing this effect, we found out that
this was due to the profiling code that extracts the allocation
context from an object’s header, and looks it up in the Ob-
ject Lifetime Distribution table. This operation is performed
for every object that survives a collection. Thus, we noticed
that, after starting to pretenure objects (using NG2C), the
dominating phase of a GC cycle was the survivor processing
phase.
Therefore, to further reduce the application pause times,

ROLP can dynamically turn off the survivor tracking code.
By doing this, it is possible to reduce even further GC pause
times. Note that ROLP only performs this optimization (i.e.,
turning off the survivor tracking code) if the workload is
stable (i.e., the profiling decisions regarding the estimated
lifetime of objects did not change in the last iteration). Ob-
viously, it is also possible to turn on the survivor tracking
code again. Currently, this code is only turned back on if the
average pause time increases over 10% (this is a configurable
value) compared to the last recorded value when the survivor
tracking code was active.

7.5 Object Lifetime Distribution Table Scalability
ROLP uses a global table (Object LifetimeDistribution) which
is accessed very frequently. In order to provide average con-
stant time for insertion and search, this data structure is
implemented as a hashtable.
Another important concern is how large is the memory

budget to hold this table in memory. In the worst-case sce-
nario, and since the allocation context is a 32 bit value, one
could end up with a table with 232 entries which would take
4 bytes * 16 columns * 232 entries (approximately 256 GB).
However, in practice, we are able to keep the size of this
table to a much lower value (as can be see in the Section 8).
The table is initialized with 216 entries, one for each pos-

sible allocation site identifier. At this point, the table occu-
pies approximately 4 MB of memory. Whenever a conflict
is detected, the table size is increased by 216 to be able to
accommodate all possible thread stack state values for the
specific allocation site where the conflict was found. Hence,
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the size of the table is 216 * (1 +N ) entries, which is equivalent
to 4 * (1 +N ) MB, where N is the number of conflicts.

7.6 Updating the Object Lifetime Distribution Table
The Object Lifetime Distribution table is updated by appli-
cation threads during object allocation, and by GC threads
during object promotion/compaction. By design, application
threads and GC threads do not update the table at the same
time. However, concurrent accesses still exist between each
type of threads (application or GC).

In order to allow fast updates by application threads, two
options were analyzed: i) have a thread-local table, which pe-
riodically is used to update the OLD table; ii) use the OLD ta-
ble with no access synchronization (risking some increment
misses). ROLP uses the latter approach for three reasons: i)
it is possible to write more efficient native code (jitted code)
because the address where the counter that needs to be in-
cremented resides is already known at JIT time; ii) it requires
less memory to hold profiling information; iii) the probability
of loosing counter increments is small as two threads would
have to match the same exact allocation context at the same
time. In other words, ROLP trades performance for slight
imprecision. According to our experience while developing
ROLP, this loss of precision is not enough to change profiling
decisions, i.e., the profiler takes the same decisions with and
without synchronized counters.

GC worker threads must also update the OLD table to ac-
count for objects that survive collections. However, opposed
to application threads, the contingency to access the global
table is higher since all worker threads may be updating
the table at the same time during a garbage collection. This
would lead to significant loss of precision if no synchroniza-
tion takes place. In order to avoid that, private tables (one
for each GC worker thread) containing only information
regarding the objects promoted/compacted by a particular
worker thread are used. All these private tables are used to
update the OLD table right after the current garbage collec-
tion finishes.

8 Evaluation
The goal of this evaluation section is twofold. First, we ana-
lyze the performance overhead introduced by profiling code.
Second, we measure the pause time reductions resulting
from ROLP’s profiling information and compare it to previ-
ous works.

Five systems/collectors available for the OpenJDKHotSpot
JVM are compared in this evaluation: i) CMS, the through-
put oriented collector; ii) G1, the current default collector;
iii) ZGC, a newly proposed fully concurrent collector; iv)
NG2C the pretenuring collector (based on G1) which uses
hand-placed code annotations to indicate estimated object
lifetimes; and v) ROLP, the runtime object lifetime profiler,
integrated with NG2C. Note that we do not show pause times

for ZGC as it is fully concurrent and we did not observe
pauses superior to 10 ms.

The evaluation was performed in a server equipped with
an Intel Xeon E5505, with 16 GB of RAM. The server runs
Linux 4.13. Each experiment runs in complete isolation for 5
times (enough to be able to detect outliers). All workloads
run for 30 minutes each. When running each experiment,
the first five minutes of execution are discarded to ensure
minimal interference from JVM loading, JIT compilation,
etc. We also ran experiments such as Cassandra (described
below) in a cluster environment but, for the purposes of this
evaluation, there is no difference between exercising a single
Cassandra instance or to use a cluster of Cassandra instances
and then look at the GC behavior in each one.

8.1 Workload Description
This section presents the workloads used to evaluate ROLP.
We prepared two groups of benchmarks: i) a set of bench-
marks from DaCapo 9.12 bach-MR1 benchmark suite, and
ii) a set of common large-scale production platforms tomimic
real Big Data workloads.

The DaCapo benchmark suite is a well known and widely
studied set of benchmarks to study the performance of JVM
implementations. Table 2 presents the used benchmarks and
their heap sizing configuration; these heap sizes were deter-
mined as the necessary amount of memory to run with the
best possible throughput, i.e., the less amount of memory to
run with the highest possible throughput.
To evaluate our solution with platforms and workloads

similar to real-world scenarios, we use the following three
platforms (see Table 1). First, we use Apache Cassandra
2.1.8 [30], a large-scale Key-Value store. Cassandra is used
with three different workloads with different read and write
request percentages. Second, we use Apache Lucene 6.1.0
[32], a high performance text search engine which we use
to index a Wikipedia dump. Third, we use GraphChi 0.2.2
[29], a large-scale graph computation engine, which we use
to run Connected Components and Page Rank on top of
a Twitter graph dump [28]. We also present the packages
that we filter for profiling. These specific packages were se-
lected because they are the ones that handle most data in
each platform. All platforms run with a memory budget of
6 GB. According to our experience, this memory budget is
high enough to avoid memory pressure, allowing both good
latencies and throughput. Increasing the memory budget
would lead to similar results (i.e., the conclusions take from
this experimental evaluation hold with higher memory bud-
gets). Reducing the memory budget would lead to higher GC
overhead as there is not enough memory to keep application
objects (working set) in memory.

8.2 Profiling Performance Overhead
This section presents ROLP’s overhead in the DaCapo bench-
mark suite. To do so, we devised two experiments: i) run each
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Platform Workload Data Packages PAS PMC #CFs NG2C OLD
Cassandra WI - 10k ops/s, 75% writes YCSB cassandra.db, 0.023 % 0.020 % 2 22 12MB
Cassandra RW - 10k ops/s, 50% writes YCSB cassandra.utils, 0.030 % 0.023 % 2 22 12MB
Cassandra RI - 10k ops/s, 25% writes YCSB cassandra.memory 0.029 % 0.025 % 2 22 12MB
Lucene 25k ops/s, 80% writes Wikipedia lucene.store 0.014 % 0.014 % 0 8 4MB
GraphChi CC - 42M vert. 1.5B edges Twitter graphchi.datablocks, 0.023 % 0.001 % 3 9 16MB
GraphChi PR - 42M vert. 1.5B edges Twitter graphchi.engine 0.021 % 0.001 % 3 9 16MB

Table 1. ROLP Big Data Benchmark Description (left) and Profiling Summary (right)

Figure 6. DaCapo Benchmark Execution Time Normalized to G1

Workload HS PMC PAS CF (# - %)
avrora 32 MB 374 69 0 - 0.04
eclipse 1 GB 1378 329 0 - 1.20
fop 512 MB 3102 829 0 - 0.02
h2 1 GB 1416 116 0 - 1.80
jython 128 MB 11801 741 0 - 1.20
luindex 256 MB 464 89 0 - 0.60
lusearch 256 MB 558 127 0 - 1.80
pmd 256 MB 3157 369 6 - 1.20
sunflow 128 MB 346 225 0 - 1.00
tomcat 512 MB 2891 436 4 - 0.60
tradebeans 512 MB 2145 227 0 - 1.20
tradesoap 512 MB 5815 254 3 - 0.60
xalan 64 MB 2037 406 0 - 1.80

Table 2. DaCapo Profiling (left) and Conflicts (right)

benchmark with different levels of profiling to measure the
impact of each type of profiling code in the benchmark’s
performance; and ii) simulate what would be the overhead
of the conflict resolution algorithm (presented in Section 5)
and how long it would take in the worst-case scenario.

Figure 6 presents the average execution time of each bench-
mark normalized to G1 (our baseline). Values above one
means it took longer than G1 took to execute. For each
benchmark, there are four columns (from left to right): i)
no-call-profiling represents the execution time with no
call profiling, i.e., only object allocation is profiled in this
experiment and therefore, the execution overhead comes

Figure 7. Worst-Case Conflict Resolution Time (ms)

only from the profiling code inserted for allocation tracking.
In other words, no profiling code in inserted for method
calls; ii) fast-call-profiling represents the execution with
all the profiling code enabled except thread stack state, i.e.,
no method call actually triggers the update of the thread
stack state (as described in Section 3.2.4). In other words, all
method calls fall through the fast profiling branch, which
does not update the thread stack state; iii) real-profiling rep-
resents real benchmark execution, with all the profiling code;
iiii) slow-call-profiling represents the worst-case possible
execution, with all profiling code, forcing all method calls to
update the thread stack state (as described in Section 3.2.4),
i.e., all method calls fall through the slow profiling branch,
which updates the thread stack state.

We found the results in Figure 6 very interesting as differ-
ent applications exercise the profiling code in different ways
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resulting in different overheads for the same profiling code
across different benchmarks. For example, for benchmarks
such as fop, allocation profiling (the first bar from the left)
leads to around 3% overhead while method call profiling
leads to almost 10% overhead (difference between the first
and second bars from the left). Other benchmarks reveal very
different behavior, e.g., the sunflow benchmark, with high
overhead for allocation profiling and almost zero overhead
for method call profiling. It is also interesting to note that
the real-profiling overhead is very close to the fast-call-
profiling meaning that very few method calls were profiled
in order to solve allocation context conflicts. The left side of
Table 2 presents the memory budget (Heap Size) used to run
each benchmark, number of profiled method calls (PMC),
the number of profiled allocation sites (PAS), and the num-
ber of conflicts found while executing each benchmark. From
these results, we confirm that conflicts are not frequent.
On the right side of Table 2 we present the number of

context conflicts and simulation results on the expected per-
centage of throughput overhead for having 20% of all method
calls being tracked (P from Section 5 is 20%). This throughput
overhead is directly proportional to P and thus, the higher
P is, the higher is the throughput overhead. P also impacts
the time to resolve conflicts. Figure 7 shows how long con-
flict resolution would take in the worst-case scenario (we
estimate this by taking the average time between two GC
cycles) for different values of P.
The low number of conflicts that most benchmarks evi-

dence (right side of Table 2) suggests that thread stack state
tracking can be used to solve allocation context conflicts
which, however, are rare. For P equals 20%, it is possible to
observe that: i) conflict resolution overhead is never above
1.8% of additional throughput overhead, and ii) conflict reso-
lution can take up to 520 seconds but for most benchmarks
it does not take more than 2 minutes. It is still possible to
reduce the duration by increasing P to higher percentages.
However, note that: i) ROLP is targeted to long running
applications and this setup time is negligible taking into con-
sideration the overall runtime; ii) during the setup time, the
JVM is performing (w.r.t pause times) exactly like G1 (i.e.,
with no profiling information, memory management resorts
to G1 with no modification).

8.3 Large-Scale Application Profiling
This section summarizes the profiling used when evaluating
ROLP with the large-scale workloads, and also compares it
to the amount of human-made code modifications necessary
for NG2C[11]. Table 1 presents a number of metrics for each
workload:PAS, percentage of allocation sites where profiling
code was actually inserted; PMC, percentage of method calls
where profiling code was actually inserted; CFs, number of
allocation context conflicts;NG2C, number of code locations
that were changed to evaluate NG2C (as previously reported

[11]); OLD, approximate memory overhead of the Object
Lifetime Distribution table (see Figure 1);
From Table 1, three important points must be retained.

Fist, looking at PAS and PMC, the percentage of profiled allo-
cation sites and method calls is small. This demonstrates that
the profiling effort is greatly reduced by only profiling hot
code locations, and by using optimizations such as avoiding
inlined methods calls. Second, looking at OLD size, the mem-
ory overhead introduced to support profiling information
does not exceed 16MB, a reasonable memory overhead con-
sidering the performance advantages that can be achieved
by leveraging the information in it. Finally, the number of
allocation context conflicts does not exceed 3, showing that,
despite using a weak hash construction (based on addition
and subtraction of hashes), it is possible to achieve a low
number of conflicts.
It is worthy to note that all the code changes done on

the applications, which are needed to use NG2C, require
either human knowledge (i.e., the programmer), or the use
of ROLP. When using ROLP, such changes are done auto-
matically, i.e., the code is profiled and changes are done with
no human intervention. ROLP additionally profiles other
code locations (which are not used for NG2C), leading to
additional improvements.

8.4 Pause Time Percentiles and Distribution
Figure 8 presents the results for application pauses across
all workloads. Pauses are presented in milliseconds and are
organized by percentiles. Note that these are pauses triggered
by GC only. Other pauses coming from I/O, OS syscalls,
among others, are not considered in this experiments so that
we can concentrate our analysis on GC-induces pauses. In
the remaining text, we name the results obtained for NG2C
with ROLP simply as ROLP.

Compared to G1 and CMS, ROLP significantly improves
application pauses for all percentiles across all workloads.
Regarding NG2C (which requires developer knowledge),
ROLP approaches the numbers provided by NG2C in all
workloads. From these results, the main conclusion to take is
that ROLP can significantly reduce long tail latencies when
compared to G1 and CMS; in addition, it can also keep up
with NG2C, but without requiring any programming effort
and knowledge. Both ROLP and NG2C produce very stable
pause times for most benchmarks, i.e., which do not increase
significantly across percentiles, presenting a close to hori-
zontal plotted line. Finally, reducing application pause time
does not mean reducing the GC throughput overhread (as
presented in the next section). This mostly comes from the
fact that the total application pause time (i.e., sum of all ap-
plication pauses) is very low when compared to the total
execution time of the application.
So far, the presented application pause times were orga-

nized by percentiles. Figure 9 presents the number of appli-
cation pauses that occur in each pause time interval. Pauses
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(a) Cassandra WI (b) Cassandra WR (c) Cassandra RI

(d) Lucene (e) GraphChi CC (f) GraphChi PR

Figure 8. Pause Time Percentiles (ms)

(a) Cassandra WI (b) Cassandra WR (c) Cassandra RI

(d) Lucene (e) GraphChi CC (f) GraphChi PR

Figure 9. Number of Application Pauses Per Duration Interval (ms)

with shorter durations appear in intervals to the left while
longer pauses appear in intervals to the right. In other words,
the less pauses to the right, the better. ROLP presents signif-
icant improvements regarding G1 and CMS, i.e., it results in
less application pauses in longer intervals, across all work-
loads. When comparing ROLP with NG2C, both solutions
present very similar pause time distribution.
In sum, ROLP allows NG2C to reduce application pauses

by automatically pretenuring objects from allocation con-
texts that tend to allocate objects with longer lifetimes.When
compared to G1 and CMS, ROLP can greatly reduce applica-
tion pauses and object copying within the heap. Once again,
we can say that when compared to NG2C, ROLP presents

equivalent performance without requiring programmer ef-
fort and knowledge.

8.5 Warmup Pauses, Throughput, and Memory
This section shows results on application warmup pause
times, throughput, and max memory usage. Note that ap-
plication warmup happens when its workload changes and
ROLP is still detecting (i.e., learning) the lifetime of objects.
Clearly, such time interval should be the minimum possible.
Thus, the goal of this section is to show: i) how the learning
curve of ROLP affects pause times during warmup and how
long does it take; ii) that ROLP does not inflict a significant
throughput overhead due to its profiling code; and iii) that
ROLP does not negatively impact the max memory usage.
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Figure 10. Cassandra WI Warmup Pause Times in ms (left) and Throughput (middle) and Max Mem. Usage norm. to G1 (right)

Figure 10, plot on the left, shows the CassandraWIwarmup
pause times for the first 600 seconds of the workload. Pause
times during the warmup phase can be divided into three
parts. The first part spans from the beginning to around 250
seconds. During this part of the execution, no information
is given to NG2C since ROLP is still gathering information
regarding objects’ lifetimes. Around second 250 (until sec-
ond 350), ROLP already performed some lifetime estimations,
and NG2C starts pretenuring application objects resulting in
reduced pause times. Finally, the third part of the warmup
starts around the second 350 when NG2C receives more in-
formation profiling information which is used to pretenure
more objects. In short, ROLP takes about 350 seconds to
stabilize the profiling information in Cassandra. In a real
production environment, in which such workloads can run
for days, 350 seconds represents a very small time to stabilize
the system given its performance benefits.

With regards to throughput and max memory usage, Fig-
ure 10 (plots in the center and in the right) shows results
normalized to G1 (i.e., G1 results represent 1 for all columns).
ROLP presents a negligible throughput decrease, less than 5%
(on average) for most workloads, compared to G1. Only for
GraphChi workloads, ROLP presents an average throughput
overhead of 6% for both PR and CC). We consider this a neg-
ligible throughput overhead considering the great reduction
in application long tail latencies. Memory usage also shows
a negligible overhead of ROLP compared to both G1 and
NG2C. Nevertheless, we are currently working on integrat-
ing previously proposed sampling techniques [27] to further
reduce the throughput overhead introduced by ROLP. As
discussed in Section 2.1, ZGC (concurrent collector) trades
fully concurrent collection by extreme throughput overhead
and higher memory usage.

9 Related Work
Profiling plays a key role in managed runtimes, either for
code optimization or memory management decisions [1, 2,
23, 24, 35, 40, 41]. We focus on getting quality profiling in-
formation to drive object pretenuring. ROLP is, to the best
of our knowledge, the first online profiler targeting the dy-
namic pretenuring of objects in Big Data applications run-
ning on HotSpot JVM, a highly optimized production JVM.
This section compares our work with state-of-art systems

for object lifetime profiling (both offline and online) and Big
Data-friendly memory management techniques.

9.1 Object Lifetime Profiling
Hertz et al. [24] introduced an algorithm where an object
lifetime is tracked based on timestamps which introduces a
300 times slowdown compared to a non-profiled run. Ricci et
al. [35] uses the same algorithm but adds new functionalities
in terms of precision and comprehensiveness (weak refer-
ences). Another system, Resurrector [40], relaxes precision
to provide faster profiling but still introduces 3 to 40 times
slowdown depending on the workload.

Blackburn et al. [6] extends the profile-based pretenuring
of Cheng’s solution [12] for Jikes RVM [1]. Blackburn et al.
reports that it is particularly useful for tight heaps (at most
15 0MB) and not suitable for heaps with Gigabytes of objects.

Harris [23] proposes a dynamic profiling technique whose
objective is to decide, at allocation time, to either pretenure
the object being allocated or not. Compared to ROLP, this
approach has one main limitation which is the fact that it
targets heaps with only two generations. As shown in the
previous section, more generations are necessary to effec-
tively split objects by estimated lifetime.

Sewe et al. [36] presents a headroom schema which drives
pretenuring based on the space left on the heap before garbage
collection is necessary. Although their solution brings advan-
tages to collection times, they push much of the overhead
to the mutator and also to the off-line process, which is not
always possible or accurate. Finally, Sewe et al.[36] do not
target large heaps or a modern garbage collector like G1.
Compared to previous offline solutions, ROLP does not re-
quire any source code modifications, no previous knowledge
on the target workload, and it targets a widely employed
industrial JVM.
However, in general, input influences the choices made

during memory management [31] motivating the need for
online profiling, which uncovers a number of new problems
such as context tracking.
Ball and Laurus [4] compute a unique number for each

possible path of a control flow graph inside a procedure. The
computation is done offline and added to the source code.
This is not suited for ROLP because modern workloads have
many possible paths inside each routine, and the technique
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can not capture the inter-procedure path needed for ROLP to
distinguish allocation sites. Bond and McKinley [8] also com-
pute a single value, but at runtime, to determine the sequence
of active stack frames in a inter-procedural way. However,
they need to maintain non-commutativity to differentiate
call sequences. This is not a requirement for ROLP and so
we can have a smaller impact on code instrumentation.

NightWatch [22] is an allocation context-aware memory
allocator that tries to maximize cache locality. NightWatch
and ROLP share the same idea of trying to capture the alloca-
tion context for profiling purposes (to detect cache locality in
the case of NightWatch, and to measure lifetime in the case
of ROLP). NightWatch is, however, optimized for large allo-
cation chunks as it iterates through the call stack to generate
an allocation context. In the case of ROLP, which targets
object oriented applications, iterating the call stack for every
object allocation is not feasible. Furthermore, runtimes (such
as the OpenJDK HotSpot JVM) tend to manage their own
heaps, meaning that there will be few but very large alloca-
tion calls to the OS with the resulting memory being used to
contain objects with potentially very different lifetimes.
Memento [14] gathers online feedback regarding object

lifetime by instrumenting allocation and installingmementos
(allocation feedback) alongside objects. By using this infor-
mation Memento starts pretenuring objects from particular
allocation sites. Compared to ROLP, it has several drawbacks.
First, it is only able to manage one tenured space, therefore
applying a binary decision that will still potentially co-locate
objects with possibly very different lifetimes, incurring in
additional compaction effort. Second, Memento instruments
all application code while it is still being interpreted. This
has two disadvantages compared to ROLP: i) all the appli-
cation code is being profiled, leading to a huge profiling
overhead (in ROLP, we only profile hot code locations); ii)
profiling stops when the code is JIT compiled, meaning that
application behavior is only tracked while the application is
starting and the code is not jitted. Third, Memento does not
track allocation contexts (i.e., call graph), which we found
to be important to properly profile complex platforms such
as Cassandra.

9.2 Big Data-friendly Memory Management
We now describe systems that employ a less transparent
approach by requiringmodifications to the heap organization
and/or the collaboration of the programmer to instrument
the code.

The work by Nguyen et al. [33, 34] reduces the number of
objects in the heap by separating data from control paths and
putting data objects in an off-heap structure. This technique
reduces the number of objects managed by the collector im-
proving the application throughput and reducing latency.
However, the programmer is responsible for identifying and
instrumenting the data path in the application code. A sim-
ilar approach is followed by Broom [21] where the heap is

split into regions [38] explicitly created by the programmer
(assumed to know which codebase creates related objects).

NG2C [11] extends G1 to support object pretenuring. How-
ever, it also needs programmer’s help to identify the genera-
tion where a new object should be allocated. Cohen et al. [15]
extends the operation of the Immix garbage collector in Jikes
RVM [7] with a new programming interface between the
application and the GC, in order to manage dominant data
structures (i.e. a data structure holding most of the objects
during the lifetime of the program) more efficiently.

10 Discussion and Conclusions
This work proposed ROLP, a runtime object lifetime profiler
which tells the collector where to allocate objects in order
to minimize fragmentation. ROLP is implemented5 for the
OpenJDK 8 HotSpot JVM and integrated with NG2C, a pre-
tenuring collector based on G1 (the current default collector
in HotSpot). Results show that ROLP can significantly reduce
pause times inflicted by the GC with very low throughput
overhead. These results confirm the hypothesis that object
lifetimes can be inferred from allocation contexts for Big
Data applications running on the JVM.
ROLP is provided as a launch time flag for the JVM and

no user effort is required. ROLP also supports package-level
filters to either profile or not profile parts of the applica-
tion code. These filters can be used to reduce the profiling
overhead on large applications. Compared to the code anno-
tations required by NG2C, which requires programmers to
guess the lifetime of objects and to understand the internals
of the JVM, these package filters are a simpler alternative,
requiring close to no knowledge about the application. Nev-
ertheless, it is possible to combine NG2C (hand-placed code
annotations), POLM2 (offline profiling), and ROLP (online
profiling) as the three techniques use the same JVM and
underlying collector.
ROLP can be easily ported to other runtimes. To do so,

however, we envision two main challenges: i) if the object
header is small (as it happens in many runtimes), profil-
ing information might be stored elsewhere; ii) the collector
might have to be modified to support pretenuring as it is
not a common feature in most collectors. Future work direc-
tions include refining the profiling heuristics and continue
research on low-overhead context hashing techniques.
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