
NG2C: Pretenuring Garbage Collector with 
Dynamic Generations for HotSpot Big Data Apps

Rodrigo Bruno*, Luís Picciochi Oliveira+, Paulo Ferreira*
rodrigo.bruno@tecnico.ulisboa.pt, luis.oliveira@feedzai.com, paulo.ferreira@inesc-id.pt 

*INESC-ID - Instituto Superior Técnico, University of Lisbon, Portugal
+Feedzai, Lisbon, Portugal

ISMM’17@Barcelona

mailto:rodrigo.bruno@tecnico.ulisboa.pt
mailto:luis.oliveira@feedzai.com
mailto:paulo.ferreira@inesc-id.pt
mailto:rodrigo.bruno@tecnico.ulisboa.pt


2

OpenJDK HotSpot Generational GCs (PS, CMS, G1)

● Two generations: 
○ Young and Old

● Surviving objects are copied to
○ Survivor spaces and then to
○ the Old generation.



2

OpenJDK HotSpot Generational GCs



2

OpenJDK HotSpot Generational GCs

Before GC cycle 1



2

OpenJDK HotSpot Generational GCs

After GC cycle 1



2

OpenJDK HotSpot Generational GCs

Before GC cycle 2



2

OpenJDK HotSpot Generational GCs

After GC cycle 2



2

OpenJDK HotSpot Generational GCs

Before GC cycle 3



2

OpenJDK HotSpot Generational GCs

After GC cycle 3



2

OpenJDK HotSpot Generational GCs

After GC cycle 3

Allocated Objects: 32
Number of copies: 9



3

Big Data Application (simplification)

● 4 threads (one per core), running ‘runTask’ method in loop
● Each task consumes 500 MB of memory (Working Set size)
● Eden is 2GB in size
● Tasks can take different amounts of time to finish



4

Big Data Application in HotSpot GCs

WS not copied

WS copied once

WS copied twice



Big Data Application in HotSpot GCs

4

Copies 3 WS = 1500 MB!

WS not copied

WS copied once

WS copied twice



Big Data Application in HotSpot GCs

4

WS not copied

WS copied once

WS copied twice



Big Data Application in HotSpot GCs

4

Copies 3 WS = 1500 MB!

WS not copied

WS copied once

WS copied twice



Big Data Application in HotSpot GCs

4

WS not copied

WS copied once

WS copied twice



Big Data Application in HotSpot GCs

4

Copies 3 WS = 1500 MB!

WS not copied

WS copied once

WS copied twice



Big Data Application in HotSpot GCs

Object copy per GC cycle: 1500 MB
Total amount of object copy: 4500 MB

4

WS not copied

WS copied once

WS copied twice



Big Data Application in HotSpot GCs

Object copy per GC cycle: 1500 MB
Total amount of object copy: 4500 MB

Assuming average RAM bandwidth of 10GB/s (DDR3)

4

WS not copied

WS copied once

WS copied twice



Object copy per GC cycle: 1500 MB
Total amount of object copy: 4500 MB

Assuming average RAM bandwidth of 10GB/s (DDR3)
4 Threads, Eden 2GB = copy 3 tasks (1500 MB) ~= 150 ms

Big Data Application in HotSpot GCs

4

WS not copied

WS copied once

WS copied twice



Big Data Application in HotSpot GCs

Object copy per GC cycle: 1500 MB
Total amount of object copy: 4500 MB

Assuming average RAM bandwidth of 10GB/s (DDR3)
4 Threads, Eden 2GB = copy 3 tasks (1500 MB) ~= 150 ms
8 Threads, Eden 4GB = copy 7 tasks (3500 MB) ~= 350 ms

4

WS not copied

WS copied once

WS copied twice



Big Data Application in HotSpot GCs

Object copy per GC cycle: 1500 MB
Total amount of object copy: 4500 MB

Assuming average RAM bandwidth of 10GB/s (DDR3)
4 Threads, Eden 2GB = copy 3 tasks (1500 MB) ~= 150 ms
8 Threads, Eden 4GB = copy 7 tasks (3500 MB) ~= 350 ms

16 Threads, Eden 8GB = copy 15 task (7500 MB) ~= 750 ms
4

WS not copied

WS copied once

WS copied twice



Big Data Application in HotSpot GCs

Object copy per GC cycle: 1500 MB
Total amount of object copy: 4500 MB

Assuming average RAM bandwidth of 10GB/s (DDR3)
4 Threads, Eden 2GB = copy 3 tasks (1500 MB) ~= 150 ms
8 Threads, Eden 4GB = copy 7 tasks (3500 MB) ~= 350 ms

16 Threads, Eden 8GB = copy 15 task (7500 MB) ~= 750 ms

Long Pauses!
Not Scalable!

4

WS not copied

WS copied once

WS copied twice



Big Data Application in HotSpot GCs

Object copy per GC cycle: 1500 MB
Total amount of object copy: 4500 MB

Assuming average RAM bandwidth of 10GB/s (DDR3)
4 Threads, Eden 2GB = copy 3 tasks (1500 MB) ~= 150 ms
8 Threads, Eden 4GB = copy 7 tasks (3500 MB) ~= 350 ms

16 Threads, Eden 8GB = copy 15 task (7500 MB) ~= 750 ms

Long Pauses!
Not Scalable!

4

WS not copied

WS copied once

WS copied twice

Goal: Reduce Application Pauses 
caused by Object Copying
(no negative impact on throughput; no programmer effort)



How to Avoid en-masse Object Copying
● Attempt 1: Heap Resizing

✓ Increase Young generation size;
✓ Gives more time for objects to die;

! Does not solve the problem, eventually the Young gen will get full and objects will be copied.

● Attempt 2: Reduce Task/Working Set size
✓ Reduces the amount of object copying since the WS is smaller;

! Increases overhead as more tasks and coordination is necessary to process smaller tasks.

● Attempt 3: Reuse data objects
✓ Avoids allocating new memory for future Tasks;
✓ Limits GC effort;

! Requires major rewriting of applications combined with very unnatural Java programming style.

● Attempt 4: Off-heap memory
✓ Reduces GC effort as data objects can reside in off-heap

! Objects describing data objects still reside in the GC-managed heap
! Requires manual memory management (defeats the purpose of running inside a managed heap).

● Attempt 5: Region-based/Scope-based memory allocation
✓ Limits object's reachability by scope/region;
✓ Limits GC effort as objects are automatically collected once the scope/region is discarded;

! Requires major rewriting of existing applications;
! Does not allow objects to freely move between scopes. Fits only to bag of tasks model.

5



How to Avoid en-masse Object Copying
● Attempt 1: Heap Resizing

✓ Increase Young generation size;
✓ Gives more time for objects to die;

! Does not solve the problem, eventually the Young gen will get full and objects will be copied.

● Attempt 2: Reduce Task/Working Set size
✓ Reduces the amount of object copying since the WS is smaller;

! Increases overhead as more tasks and coordination is necessary to process smaller tasks.

● Attempt 3: Reuse data objects
✓ Avoids allocating new memory for future Tasks;
✓ Limits GC effort;

! Requires major rewriting of applications combined with very unnatural Java programming style.

● Attempt 4: Off-heap memory
✓ Reduces GC effort as data objects can reside in off-heap

! Objects describing data objects still reside in the GC-managed heap
! Requires manual memory management (defeats the purpose of running inside a managed heap).

● Attempt 5: Region-based/Scope-based memory allocation
✓ Limits object's reachability by scope/region;
✓ Limits GC effort as objects are automatically collected once the scope/region is discarded;

! Requires major rewriting of existing applications;
! Does not allow objects to freely move between scopes. Fits only to bag of tasks model.

Takeaway: 

● Avoiding massive object copying is non-trivial!

● Existing solutions only alleviate the problem!

● Existing solutions might work in some scenarios but do 
not provide a general solution.

5



Proposed Solution: NG2C
● Goals:

○ reduce en-masse object copying
■ From object promotion
■ From object compaction

○ avoid memory and/or throughput negative impact
○ require minimal programmer knowledge and effort.

● Overview:

○ Objects are pretenured/allocated into different dynamic generations
○ Dynamic generations

● Memory segments that can be created and discarded at runtime
● Hold objects with similar lifetimes

6



Proposed Solution: NG2C
● Goals:

○ reduce en-masse object copying
■ From object promotion
■ From object compaction

○ avoid memory and/or throughput negative impact
○ require minimal programmer knowledge and effort.

● Overview:

○ Objects are pretenured/allocated into different dynamic generations
○ Dynamic generations

● Memory segments that can be created and discarded at runtime
● Hold objects with similar lifetimes

6

In short: allocate objects close to each 
other as long as they have similar lifetimes



Outline
● NG2C - Pretenuring GC with Dynamic Generations

○ Pretenuring into Dynamic Generations
○ Application Example
○ Memory Collection

● Implementation

● Evaluation
○ Environment & Workloads
○ Programmer Effort
○ GC Pause Times
○ Throughput

● Conclusions

● Future Work

7



NG2C - Pretenuring into Dynamic Generations

● NG2C combines:
○ Pretenuring: allocation of objects in older spaces;
○ Dynamic Generations: memory segments that hold objects with similar 

lifetimes. Dynamic generations can be created and destroyed at runtime.

● Pretenuring avoids costly promotion
○ Because objects are not copied around

● Dynamic generations are effortlessly collected
○ Because most objects die approximately at the same time

■ I.e., no compaction needed

● NG2C provides a simple API that can be used 
○ to select which objects should be pretenured

■ By using a special annotation
○ into which dynamic generation

■ By controlling the current target generation (per-thread)
8



NG2C - Application Example

9

WS not copied

WS copied once

WS copied twice



NG2C - Application Example

9

WS not copied

WS copied once

WS copied twice



NG2C - Application Example

9

WS not copied

WS copied once

WS copied twice



NG2C - Application Example

9

Each WS is allocated in a 
specific generation according 
to task type

WS not copied

WS copied once

WS copied twice



NG2C - Application Example

10



NG2C - Application Example

Creates new generation for 
each task type

10



NG2C - Application Example

Selects the correct Dynamic 
Generation for allocating 

data for this task.

10

Creates new generation for 
each task type



NG2C - Application Example

Informs NG2C that this allocation 
should go into the current 

generation.
10

Selects the correct Dynamic 
Generation for allocating 

data for this task.

Creates new generation for 
each task type



NG2C - Application Example

Informs NG2C that this allocation 
should go into the current 

generation.
10

We provide a tool that helps the programmer to 
identify where and how to instrument the code.

Selects the correct Dynamic 
Generation for allocating 

data for this task.

Creates new generation for 
each task type



NG2C - Memory Collection

● NG2C memory collection algorithms are inherited from
○ Garbage First (Detlefs, 2004)

● Types of GC cycles:
○ Minor GC (inherited from G1): Young generation is collected. Surviving objects 

are moved to survivor spaces or to the Old generation.

○ Mixed GC (adapted from G1): besides collecting the Young generation, a 
Mixed GC might also collect memory from other generations, including dynamic 
generations. Survivor objects are moved to the Old generation.

○ Full GC (adapted from G1): collects all generations. Survivors are moved to the 
Old generation. Should be avoided at all cost.

● Concurrent Marking:
○ Traverses the heap marking reachable objects
○ Collects unreachable memory blocks

■ Most efficient way of collecting dynamic generations 11



Implementation

● Implemented for the OpenJDK 8 HotSpot JVM
○ Not a toy implementation

● Built on top of G1, the new by-default collector;

● Extends JVM to allow object allocation and collection in any generation:
○ Code interpretation
○ Code JIT
○ TLAB management
○ Heap Region management
○ Remembered Set management
○ …

● Approx. 2000 LOC

12



Evaluation

● Evaluate NG2C’s performance compared to:
○ CMS and G1 - popular OpenJDK GCs
○ C4 - Zing GC

● Big Data Platforms & Workloads:
○ Cassandra (Key-Value Store)

● Feedzai (credit-card transaction validation)
○ Real world based workload (mixes reads and writes)

● Synthetic workloads (YCSB)
○ Write-Intensive (75% writes), Read-Intensive (75% reads)

○ Lucene (In-Memory Indexing Tool)
● Read/Write transactions on Wikipedia dump (33M documents)

○ Write-intensive (80% writes)
○ GraphChi (Graph Processing Engine)

● Twitter graph dump (42M vertexes, 1.5B edges) processing
○ PageRank
○ Connected Components

13



Evaluation

● Evaluate NG2C’s performance compared to:
○ CMS and G1 - popular OpenJDK GCs
○ C4 - Zing GC

● Platforms & Workloads:
○ Cassandra (Key-Value Store)

● Feedzai (credit-card transaction validation)
○ Real world based workload (mixes reads and writes)

● Synthetic workloads (YCSB)
○ Write-Intensive (75% writes), Read-Intensive (75% reads)

○ Lucene (In-Memory Indexing Tool)
● Read/Write transactions on Wikipedia dump (33M documents)

○ Write-intensive (80% writes)
○ GraphChi (Graph Processing Engine)

● Twitter graph dump (42M vertexes, 1.5B edges) processing
○ PageRank
○ Connected Components

Evaluation Uses:
- Real world platforms (Cassandra, Lucene)
- Real data (Lucene, GraphChi)
- Real Workloads (Feedzai)

13



Evaluation - Environment

Platform Workload CPU RAM OS Heap Size Young Size

Cassandra Feedzai Intel Xeon E5-2680 64GB CentOS 6.7 30GB 4GB

Cassandra RI,WI Intel Xeon E5505 16GB Linux 3.13 12GB 2GB

Lucene RW AMD Opteron 6168 128GB Linux 3.16 120GB 2GB

GraphChi PR,CC AMD Opteron 6168 128GB Linux 3.16 120GB 6GB

14



2

Evaluation - Pause Times (Cassandra)

Feedzai

Read-Intensive

Write-Intensive



2

Evaluation - Pause Times (Lucene and GraphChi)

Lucene

GraphChi CC

GraphChi PR



Evaluation - Throughput (Cassandra) - 10 min sample

Read-Intensive

Write-Intensive

Read-Write

More results in the paper
17



Evaluation - Programmer Effort

● Code changes to use NG2C:
○ Cassandra

■ 11 code locations with @Gen
■ 11 code locations NG2C API calls

○ Lucene
■ 8 code locations with @Gen

○ GraphChi
■ 9 code locations with @Gen

● Code changes suggested by the Object Lifetime Recorder (OLR)
○ We profiled each platform for 10 mins

■ Enough for the workload to stabilize

18

More details in the paper 



Conclusions

● NG2C provides a realistic approach to improve Big Data application memory 
management in HotSpot
○ It decreases pause times by avoiding object copying
○ It requires minimal programmer effort and knowledge
○ It does not compromise throughput

● Results are very encouraging

● NG2C is implemented for HotSpot 8
○ Code is available at github.com/rodrigo-bruno/ng2c

19

http://github.com/rodrigo-bruno/ng2c


Future Work

● Improve Object Lifetime Recorder and automatically rewrite bytecode at load time to 
incorporate NG2C API calls and annotation
○ Completely replaces programmer effort and knowledge
○ Work is being peer-reviewed

● Provide in-JVM support for dynamic generations and pretenuring
○ JVM must internally estimate the appropriate generation for each alloc. site
○ JVM must dynamically change the target generation for each alloc. site
○ Work in progress

■ Current prototype leads to up to 6% performance degradation for 
Cassandra

■ There are still several performance improvements to be done

20



Thank you for your time.
Questions?

Rodrigo Bruno
email: rodrigo.bruno@tecnico.ulisboa.pt
webpage: www.gsd.inesc-id.pt/~rbruno
ng2c’s github: github.com/rodrigo-bruno/ng2c

mailto:rodrigo.bruno@tecnico.ulisboa.pt
http://www.gsd.inesc-id.pt/~rbruno
http://github.com/rodrigo-bruno/ng2c


2

NG2C - Object Lifetime Recorder


