
NG2C: Pretenuring Garbage Collection with Dynamic
Generations for HotSpot Big Data Applications

Rodrigo Bruno
INESC-ID / Instituto Superior Técnico,

University of Lisbon, Portugal
rodrigo.bruno@tecnico.ulisboa.pt

Luı́s Picciochi Oliveira
Feedzai

Lisbon, Portugal
luis.oliveira@feedzai.com

Paulo Ferreira
INESC-ID / Instituto Superior Técnico,

University of Lisbon, Portugal
paulo.ferreira@inesc-id.pt

Abstract
Big Data applications suffer from unpredictable and unacceptably
high pause times due to Garbage Collection (GC). This is the case
in latency-sensitive applications such as on-line credit-card fraud
detection, graph-based computing for analysis on social networks,
etc. Such pauses compromise latency requirements of the whole
application stack and result from applications’ aggressive buffer-
ing/caching of data, exposing an ill-suited GC design, which as-
sumes that most objects will die young and does not consider that
applications hold large amounts of middle-lived data in memory.

To avoid such pauses, we propose NG2C, a new GC algo-
rithm that combines pretenuring with user-defined dynamic gener-
ations. By being able to allocate objects into different generations,
NG2C is able to group objects with similar lifetime profiles in the
same generation. By allocating objects with similar lifetime pro-
files close to each other, i.e. in the same generation, we avoid object
promotion (copying between generations) and heap fragmentation
(which leads to heap compactions) both responsible for most of the
duration of HotSpot GC pause times.

NG2C is implemented for the OpenJDK 8 HotSpot Java Virtual
Machine, as an extension of the Garbage First GC. We evaluate
NG2C using Cassandra, Lucene, and GraphChi with three different
GCs: Garbage First (G1), Concurrent Mark Sweep (CMS), and
NG2C. Results show that NG2C decreases the worst observable
GC pause time by up to 94.8% for Cassandra, 85.0% for Lucene
and 96.45% for GraphChi, when compared to current collectors
(G1 and CMS). In addition, NG2C has no negative impact on
application throughput or memory usage.

CCS Concepts •Software and its engineering→Garbage col-
lection

Keywords Garbage Collection, Big Data, Latency

1. Introduction
Big Data applications are now part of the application stack present
in most (if not all) large-scale systems. These applications are ex-
pected to work with high volumes of information efficiently and
often run on top of platforms such as Cassandra [34], Lucene [41],
GraphChi [33], etc. This is the case of latency-sensitive applica-

tions such as on-line credit-card fraud detection, graph-based com-
puting for analysis on social networks or the web graph, etc.

To achieve good performance, developers often resort to opti-
mization techniques to boost performance such as caching [47, 50,
56]. Caching is used to keep (in memory): i) the working set or in-
termediate results [55] (this is a common practice, for example, in
graph processing systems such as GraphChi [33] and Spark [54]),
or ii) consolidate writes in a database (for example, in-memory ta-
bles in Cassandra [34]). With caching, developers avoid costly op-
erations such as recomputing intermediate values (in the case of
GraphChi and Spark) or writing records to disk (in the case of Cas-
sandra), among others. However, while keeping more data in mem-
ory helps reducing the latency for data requests, it puts more pres-
sure on the Garbage Collection (GC) which results in long pauses
of the application [8, 45].

GC pauses are unpredictable (from the application’s perspec-
tive) and can stop the application for an unacceptably high amount
of time leading to broken Service Level Agreements (SLAs) [13,
44, 48]. The issue is even worse if the application stack contains
multiple managed heaps. If only one GC engages in a long GC
pause, the whole stack is compromised and the SLA is broken.

By analyzing applications running on the HotSpot JVM, it is
possible to conclude that the duration of GC pauses is dominated
by the number and size of objects to copy in memory during a GC
(this problem is also described in Gidra [18]). Such copies can be
triggered by object promotion (which entails several steps/copies
until the object finally arrives at the Old generation) or by a heap
compaction (to reduce fragmentation). The problem with copying
is that it is bound to the available hardware memory bandwidth.
Increasing the capacity of nodes (e.g., the number of cores) will
not reduce neither the number nor the duration of GC pauses.

Therefore, the widely accepted weak generational hypothesis
stating that most objects die young [27, 29, 53] (which is a funda-
mental design rule for current HotSpot GCs) is not suited for many
Big Data applications as the number of middle-long lived objects is
high. This mismatch between the objects’ real lifetime and the GC
assumption that most objects die young has serious consequences
for HotSpot applications with high memory utilization and tight
response time targets (i.e., SLAs to cope with).

Avoiding object copying within the heap cannot (or is extremely
hard to) be attained by tweaking the heap or GC parameters; thus,
many application developers end up to (almost) reverse engineer-
ing the GC to understand how to avoid costly GC pauses in their
applications [35] (with obvious software development productiv-
ity drawbacks). Another important difficulty is that a particular
GC/heap configuration will only work for a specific environment
(number of cores, size of memory, etc.), making a particular con-
figuration not replicable.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISMM’17, June 18, 2017, Barcelona, Spain
c© 2017 ACM. 978-1-4503-5044-0/17/06...$15.00

http://dx.doi.org/10.1145/3092255.3092272

2

Previous works [5, 10, 11, 23, 30, 38] used pretenuring to re-
duce the amount of object copying, however, with limited success
[28]. The main problem with these solutions is that simply pre-
tenuring objects to a single older space (Old generation) leads to
heap fragmentation since objects with different lifetime profiles are
promoted to the same space. NG2C, opposed to previous pretenur-
ing works, uses user-defined dynamic generations to group objects
with similar lifetime profiles. This reduces object promotion and
heap fragmentation. See Section 2 for more details.

In order to use NG2C, object allocation sites must be annotated
to indicate in which generation the object should be allocated. To
free the developer from the burden of understanding the objects’
lifetime profiles, we developed a profiler tool, Object Lifetime
Recorder (described in Section 3.5) that profiles the application and
outputs where and how the code should be changed in order to take
full advantage of NG2C (note that the application only needs to be
profiled once).

NG2C is implemented for the OpenJDK 8 HotSpot Java Virtual
Machine (JVM) as an extension of the next OpenJDK by-default
GC, Garbage First (G1). Results are very encouraging as we are
able to achieve our goal: avoid costly object copying (which oc-
curs during object promotion and compactions). NG2C decreases
the highest observable GC pauses by up to 94.8% for Cassandra,
85.0% for Lucene and 96.45% for GraphChi, when compared to
current collectors: G1 and CMS (Concurrent Mark Sweep). In ad-
dition, application throughput and memory usage are not negatively
affected by using NG2C.

To sum up, our main contributions are: i) a new GC algorithm,
NG2C, that combines an arbitrary number of dynamic generations
with pretenuring to avoid object copying and heap fragmentation,
ii) an implementation of NG2C and the Object Lifetime Recorder
(OLR) profiler tool on a production JVM, OpenJDK 8 HotSpot, and
iii) the evaluation of the performance benefits of using NG2C on
Big Data platforms (Cassandra, Lucene, GraphChi) using work-
loads and data sets based on real system utilization.

2. Related Work
NG2C proposes pretenuring combined with user-defined dynamic
generations, where objects are pretenured into different genera-
tions, according to their lifetime profile. By allocating objects in
different generations, per-lifetime profile, NG2C reduces object
promotion and heap fragmentation. Since this work combines sev-
eral well studied ideas, we dedicate this section to explaining how
our research relates to previous work.

2.1 Generational Collectors
Segregating objects by age has been studied for a long time [28]
as a way to take advantage of the weak generational hypothesis
[53]. By promoting objects that survive a number of collections
into older generations, the collector can concentrate on collecting
younger generations more often (since these are more likely to
contain more dead objects) [36]. The use of multiple generations
(compared to using a single generation) has been shown to reduce
application pauses [6, 26, 39, 49].

Opposed to previous works such as the Beltway framework [6]
and the Mature Object Space collector [25], NG2C instroduces the
concept of dynamic generations. These user-defined generations
are different from traditional generations in two ways: i) they can
be created and destroyed at runtime, ii) survivor objects are pro-
moted into the old generation. These generations are used to group
pretenured objects with similar lifetime profiles.

2.2 Pretenuring and Object Demographics
Pretenuring is also a well studied technique [5, 10, 11, 23, 30, 38].
It consists on allocating objects (that are known to live for a long

time) directly in older generations. By doing this, the overhead
associated to object promotion is avoided. The key problem to
pretenuring lies on how to estimate the lifetime profile of an object
(analyzed next).

To the best of our knowledge, no pretenuring algorithm has been
used to pretenure objects into multiple generations. If a collector
with predefined number of generations is used (for example, two
generations), pretenuring does not solve heap fragmentation, as
middle-long lived objects with different lifetime profiles might
be pretenured to the same heap location. To solve this problem
NG2C combines pretenuring with multiple generations. By being
able to pretenure into an arbitrary number (defined at runtime)
of generations, NG2C avoids fragmentation. Thus, by combining
these two techniques, object copying (which results from object
promotion and compaction) is greatly reduced.

Pretenuring is tightly coupled with object lifetime profiling,
which is used to extract object lifetime estimations, used to guide
pretenuring. Extracting objects demographic information can either
be performed dynamically [11, 23, 30] or statically [5, 10, 38]. Pro-
filing information can come from stack analysis [10], connectivity
graphs [21] and can also include other program’s traces [38].

Our proposed profiler, (presented in Section 3.5) builds upon
previous works [5, 10, 38] by resorting to stack analysis. However,
opposed to previous works, it accurately estimates in which gen-
eration an object should be allocated in. In other words, our pro-
filer answers the question of how long will the object probably live
while previous profilers only tell us if the object will probably live
enough to be considered old.

2.3 Region-based Garbage Collection
The hypothesis that many objects, allocated in the same scope,
share the same faith, i.e., have similar lifetimes has also been
leveraged by many region-based memory management algorithms
[3, 7, 16, 17, 19, 20, 22, 24, 31, 42, 51]. In such algorithms, objects
with similar lifetime profiles are allocated in scope-based regions,
which are deallocated as a whole when objects inside these regions
are no longer reachable. However, existing region-based algorithms
either require sophisticated static analysis [3, 7, 16, 17, 20, 51]
(which does not scale to large systems), heavily rely on manual
code refactoring [19, 42] (to guarantee that objects in the same
region die approximately at the same time), or support only simple
programming models [37, 42, 43] (such as parallel bag of tasks).

Other region-based collectors [15] use thread-local allocation
regions to allocate objects. This approach also does not sup-
port more complex models where most large data structures can
be maintained by multiple threads (for example, Cassandra’s in-
memory tables).

NG2C can also be seen/used as a region-based collector, in
which dynamic generations can be used as regions. However,
opposed to typical scope-based regions, NG2C supports more
complex programs such as storage platforms with minimal code
changes.

2.4 Off-heap based Solutions
There are some solutions based on off-heap memory [37, 40,
42] (i.e., allocating memory for the application outside the GC-
managed heap). While this is an effective approach to allocate and
keep data out of the range of the GC (and therefore, reducing ob-
ject copying), it has several important drawbacks: i) off-heap data
needs to be serialized to be saved in off-heap memory, and de-
serialized before being used by the application (this obviously has
performance overheads); ii) off-heap memory must be explicitly
collected by the application developer (which is error prone [9, 12]
and completely ignores the advantages of running inside a memory
managed environment); iii) the application must always have ob-

3

Figure 1. Allocation of Objects in Different Generations

jects identifying the data stored in off-heap (these so called header
objects are stored in the managed heap therefore stressing the GC).
Furthermore, as shown in Section 5, NG2C’s approach outperforms
off-heap memory.

To conclude our analysis of related work, to the best of our
knowledge, this work is the first to: i) combine multiple genera-
tions with pretenuring, and ii) to show that it reduces object copy-
ing (coming from object promotion and compaction), that affects
many HotSpot Big Data applications, thus improving applications’
performance.

Although NG2C’s observable benefit is the reduction of applica-
tion pause times, our contribution is orthogonal to other techniques
used to implement low pause time collections such as incremen-
tal (for example Immix [4] and G1 [14]) or concurrent compaction
(for example C4 [52]), and to real-time collectors (for example the
work in Fiji VM [46] and the Metronome [2] collector).

In fact, we envision that NG2C could be integrated with such
algorithms to improve the collector’s performance and reduce in-
terference in application performance.

3. Pretenuring GC with Dynamic Generations
In this section we provide a description of the proposed solution,
that combines multiple dynamic generations with pretenuring.

3.1 Heap Layout
NG2C builds upon generational collectors’s [1] idea but provides
an arbitrary number of dynamic generations. The concept of dy-
namic generation is used instead of local/private allocation region
because objects are grouped by estimated lifetime/age instead of
being grouped by the allocating thread.

The heap is always created with two static generations: Young
and Old. By default, all objects are allocated in the Young genera-
tion. Upon collection (more details in Section 3.4), live objects are
promoted to the Old generation. In other words, if no new dynamic
generations are created, NG2C’s heap layout is a 2-generational
heap layout.

At run time, any number of dynamic generations might be cre-
ated (see Section 3.2 for more details). These dynamic generations
are different from the static ones (Young and Old) in two ways: i)
they can be created and destroyed at runtime, ii) survivor objects
are promoted into the Old generation.

Objects can be pretenured into any dynamic generation and also
into the Old generation. With time, when objects become unreach-
able, the space previously allocated for a specific generation be-
comes available for other generations to use (more details in Sec-
tion 3.4). In NG2C, except for the Young, the amount of heap space
assigned to each generation is dynamic, increasing or decreasing as
the amount of objects in that particular generation increases or de-
creases, respectively. This is possible since each generation is not
implemented as a single large block of memory, but instead, as a
linked list of memory regions (more details in Section 4).

3.2 Pretenuring to Multiple Generations
NG2C is designed to profit from information regarding objects’
lifetime profiles (as described in Section 3.5, this information is

Listing 1. NG2C API
1 // Methods added in class java.lang.System:
2 public static Generation newGeneration();
3 public static Generation getGeneration();
4 public static Generation setGeneration(Generation);

Listing 2. Job Processing Code Sample
1 public void runTask() {
2 Generation gen = System.newGeneration();
3 while (running) {
4 DataChunk data = new @Gen DataChunk();
5 loadData(data);
6 doComplexProcessing(data);}}

Listing 3. Data Buffer Code Sample
1 public class Buffer {
2 byte[][] buffer;
3 Generation gen;
4 public Buffer() {
5 gen = System.newGeneration();
6 buffer = new @Gen byte[N_ROWS][ROW_SIZE];}}

provided by the OLR profiler). Thus, NG2C co-locates objects with
similar lifetime profiles in the same generation.

Since applications might have multiple threads/mutators man-
aging objects with different lifetime profiles (e.g., processing sepa-
rate jobs), each thread must be able to allocate objects in different
generations.

To efficiently support parallel allocation in multiple generations,
we bind each application thread into a specific generation using the
concept of current generation. The current generation indicates the
generation where new objects, allocated with the @Gen annotation1,
will be allocated into. In practice, when a thread is created, its
current generation is the Old generation. If the thread decides to
create a new dynamic generation, this will change the thread’s
current generation to the new one. It is also possible to get and
set the thread current generation.

More specifically, the application code can use the following
calls (see Listing 1):
• newGeneration, creates a new dynamic generation and sets

the current generation of the executing thread to the newly created
generation;
• getGeneration and setGeneration, gets and sets (re-

spectively) the current generation of the executing thread. In ad-
dition, setGeneration also returns the previous generation.

To allocate an object in the current generation, the new operator
must be annotated with @Gen. All allocation sites with no @Gen will
allocate objects into the Young generation (see Figure 1).

The code example in Listing 2 resembles a very simplified
version of graph processing systems (e.g., GraphChi). It shows a
method that runs several tasks in parallel threads. Each thread starts
by calling newGeneration, to create a new dynamic generation.

1 Starting from Java 8, the new operator can be annotated. We use this new
feature to place a special annotation that indicates that this object should go
into the thread’s current generation.

4

Then, while the task is not finished, all allocated objects using the
@Gen annotation will be allocated in the new generation.

Listing 3 shows a code example that resembles a very simplified
version of memory buffers in storage systems such as Cassandra;
it shows how to use NG2C to allocate a large data structure (e.g.,
a buffer to consolidate database writes or intermediate data) while
avoiding object copying. The constructor creates a new dynamic
generation in which the buffer is allocated (using the @Gen annota-
tion).

3.3 Memory Allocation
NG2C allows each thread to allocate objects in any generation. This
is fundamentally different from current HotSpot’s allocation strat-
egy which assumes that all newly allocated objects are placed in the
Young generation. Hence, in order to support object allocation (pre-
tenuring) into dynamic generations and into the Old generation, we
extend the allocation algorithm.

In NG2C, object allocation is separated in two paths: i) fast
allocation path, using a Thread Local Allocation Buffer (TLAB)2,
and ii) slow allocation path (very large object allocation).

Allocations through the slow path are handled in one of two
ways: inside a TLAB (if there is enough free space), or directly in
the current Allocation Region (AR)3 (outside a TLAB). Note that
for each generation, there is one AR.

The high level algorithm is depicted in Algorithms 1 and 2.
For the sake of simplicity, and without loss of generality, we keep
the algorithm description to the minimum, only keeping the most
important steps.

A call to Object Allocation starts an object allocation. If
the allocation is marked with @Gen, the allocation takes place in
the current generation which is available from the executing thread
state (otherwise the object is allocated in the Young generation).
Objects are promptly allocated from the TLAB unless there is not
enough space.

Large object allocation (objects larger than a specific fraction
of the TLAB size) goes directly to the current AR of the current
generation (or the Young generation if the allocation is not anno-
tated). If the region has enough free space to satisfy the allocation,
the object is allocated. Otherwise, a new region is requested from
the available regions’ list within the heap. If no memory is available
for a new region, a GC is triggered followed by an allocation retry.
If a GC is not able to free enough memory, an error is reported to
the application.

The pseudocode for allocations in TLABs is not shown because
of space restrictions. Nevertheless, the code between lines 7 and
16 is already representative of how allocations inside a TLAB are
conducted.

3.4 Memory Collection
In NG2C, three types of collections can take place (see Figure 2):
• minor collection: triggered when the Young generation has no

space left for allocating new objects. Collects the Young generation.
Objects that survived a number of collections (more details in
Section 4) are promoted to the Old generation;
• mixed collection: triggered when the Young generation has

no space left for allocating new objects and the total heap usage is
above a configurable threshold. Collects the Young generation plus
other memory regions from multiple generations whose amount

2 A TLAB is a Thread Local Allocation Buffer, i.e., a private buffer where
the thread can allocate memory without having to synchronize with other
threads.
3 An Allocation Region is used to satisfy allocation requests for large
objects and also for allocating TLABs. Whenever an AR is full, a new one
is selected form the list of available regions.

Algorithm 1 Memory Allocation - Object Allocation
1: procedure OBJECT ALLOCATION
2: size← size of object to allocate
3: klass← class of object to allocate
4: gen← current thread generation
5: isGen← new operator annotated with @Gen?
6: if isGen then
7: tlab← TLAB used for generation gen
8: else
9: tlab← TLAB used for Young

10: if end(tlab)− top(tlab) >= size then
11: object← init(klass, top(tlab))
12: bumpTop(tlab, size)
13: return object
14: slow path:
15: if size >= size(tlab)/8 then
16: returnALLOC IN REGION(klass, size)
17: else
18: returnALLOC IN TLAB(klass, size)

Algorithm 2 Memory Allocation - Allocation in Region
1: procedure ALLOC IN REGION(klass, size)
2: gen← current thread generation
3: isGen← new operator annotated with @Gen?
4: if isGen then
5: region← gen alloc region
6: else
7: region← Young alloc region
8: if end(region)− top(region) >= size then
9: object← init(klass, top(region))

10: bumpTop(region, size)
11: return object
12: if isGen then
13: region← new gen alloc region
14: else
15: region← new Young alloc region
16: if region not null then
17: object← init(klass, top(region))
18: bumpTop(region, size)
19: return object
20: else
21: trigger GC and retry allocation

of live data is low (more details in Section 4). Survivor objects
from any of the collected memory regions are copied to the Old
generation. Please note that, in a mixed collection, although all the
regions belonging to the Young generation are collected, regions
belonging to other generations are only collected if the percentage
of live data is below a configurable threshold (the percentage of
live data per region is gathered during a concurrent marking cycle,
described next);
• full collection: triggered when the heap is nearly full. Collects

the whole heap. In a full collection, all regions belonging to all
generations are collected. All survivor objects are copied to the Old
generation.

Note that when all regions that compose a dynamic generation
are collected, the generation is discarded. If future allocations that
target a specific dynamic generation that was previously discarded,
the target generation is re-created before the first allocation is
actually performed.

5

Figure 2. Types of collections (red represents unreachable data)

Concurrent marking cycles are triggered when the heap usage
exceeds a configurable threshold. During a marking cycle, the GC
traverses the heap and marks live objects. As the name indicates,
most of this process is done concurrently with the application.
When the marking phase ends, the GC frees all regions containing
only unreachable (i.e., unmarked) objects. For the regions that
still contain reachable content, the GC saves some statistics (used
for example in mixed collections) on how much memory can be
reclaimed if a particular region is collected.

3.5 Object Lifetime Recorder
To enable developers to take full advantage of NG2C, we developed
the Object Lifetime Recorder (OLR) profiler, a HotSpot JVM pro-
filer that records object allocation sites and lifetimes. Using OLR,
no developer’s knowledge is required to change the code in order
to take advantage of NG2C.

OLR is composed by three components (see Figure 3). First,
the Allocation Recorder (implemented as a Java Agent4) is used
to: i) notify the JVM Dumper (second component, described next)
when a collection finishes, and ii) record allocation sites. The sec-
ond component, the JVM Dumper creates incremental heap dumps5

(regarding previous heap dumps, taken upon previous collections)
whenever a collection finishes (the JVM Dumper is notified by the
Allocation Recorder when a heap dump should be taken). Com-
pared to other heap dump tools, for example, with the jmap tool,
incremental dumps are smaller in size (as they contain only mod-
ified memory positions), thus leading to shorter application stop
times for creating the heap dump.

The third component, the Object Graph Analyzer is used to pro-
cess the allocation sites and heap dumps generated during the ap-
plication profiling. Objects’ metadata (allocation timestamp, col-
lection timestamp, and allocation site) is loaded into memory and
an object graph is built. Then, the graph is processed in order to
extract and present which objects should belong in the same gener-
ation, and where these objects are allocated.

In practice, even an inexperienced developer can change the
source code of an application to take advantage of NG2C. The
developer only needs to run the application using OLR’s Allocation
Recorder and run the JVM Dumper. When the application finishes
(or after running for some time under the normal/target workload),
the developer launches the Object Graph Analyzer that outputs
where and how the code should be modified. With this information,

4 A Java Agent is a small pluggable component that can be attached to the
JVM, being able to analyze its state.
5 A heap dump is a memory snapshot (taken while the application is run-
ning) of the Java heap (where all the application objects reside). We create
incremental dumps using CRIU, a Checkpoint/Restore tool for Linux pro-
cesses.

Figure 3. Object Lifetime Recorder Profiler Architecture

even an inexperienced programmer can change the code locations
suggested by the OLR in minutes.

We measured a performance cost (throughput) of up to 4 times
when running the profiler on the systems we use in the evaluation.
However, note that the profiler only has to run once and that the
code changes proposed by the profiler lead to significant perfor-
mance improvements in production settings (as observed in Section
5). In other words, despite the fact that the profiler analyzes the
application with reduced throughput, the captured allocation and
collection patterns hold true in a production setting.

4. Implementation
NG2C is implemented on top of the Garbage First (G1) GC [14].
G1 is the most recent and advanced GC algorithm available for the
OpenJDK HotSpot JVM 8. In addition, G1 is the new default GC in
the HotSpot JVM. NG2C builds upon G1, by adding approximately
2000 LOC. NG2C is integrated with G1 in the way that applications
that do not use the @Gen annotation will run using the G1 collector
(i.e., the code introduced by NG2C is never activated). This has the
great benefit that all the effort put into developing G1 ensures that
NG2C works with the same performance to G1 for all applications.
For the rest of this section, we describe how we modified G1 for
supporting pretenuring into multiple generations.

By using G1’s as our code base, we inherit many techniques
that are already well implemented and tested. In other words, we
are using all the GC techniques already implemented in G1 (such
as heap region management, remembered sets management, safe-
points, write barriers, and concurrent marking) to support NG2C’s
implementation.

G1 uses a heap divided in equally sized memory regions. It
contains two generations, the Young and the Old. The first is divided
into three spaces [53] (Eden, and two survivor spaces, To, and
From). NG2C maintains both these generations with the exact same
structure and semantic.

Additional dynamic generations are created by allocating re-
gions from the free memory regions list (also available in G1). The
existing code in G1 looks at NG2C’s dynamic generations as part
of G1’s Old generation. This means that we reuse G1’s write barrier
and remembered set for inter-generational pointers.

NG2C’s inherits G1’s collector algorithms without almost any
change. Minor, mixed, and full collections work in the exact same
way in both NG2Cand G1. The only modification is that, in NG2C,
the collector can promote objects from dynamic generations into
the Old generation, while in G1, the collector either only promotes
from Young to Old or compacts regions belonging to the Old gen-
eration.

Most of the code introduced by NG2C, lies in the object allo-
cation path. In the next sections we describe how the new alloca-

6

tion algorithm works and how the byte code interpreter and Just-
In-Time compiler are adapted to work with it.

4.1 Parallel Memory Allocation
Contention in memory allocation is a well-known problem [17, 28];
memory allocation must be synchronized between threads so that
each memory block is used by a single thread. In G1 this is achieved
by using Thread Local Allocation Buffers (TLABs) and Allocation
Regions (ARs). Therefore, whenever a thread needs to allocate
some memory, it allocates directly from its TLAB. If the TLAB
is full, the thread must allocate memory from the current AR. This
allocation, however, will only occur after the thread acquires a lock
on that AR. If the AR does not have enough available space, a
new AR is allocated directly from the list of free regions (this
step requires even further locking to ensure that no other thread
is allocating another region).

In NG2C, we extend the use of both TLABs and ARs to mul-
tiple generations (the complete algorithm is presented in Section
3.3). Since each thread can now allocate memory in multiple gen-
erations, multiple TLABs are necessary to avoid costly memory
allocations. The TLAB to use for each allocation is decided at run-
time, based on the use of @Gen annotations (see Section 4.3 for
more details). Additionally to TLABs, NG2C also extends the use
of ARs to multiple generations. Therefore, whenever a TLAB used
for a particular generation is full, an allocation request is issued
directly to the AR of the specific generation.

By using multiple TLABs and ARs (one for each generation),
allocations are more efficient as fewer synchronization barriers
exist compared to not using (TLABs and ARs). This, however,
introduces a problem: as any thread can allocate memory in any
generation, each thread must have a TLAB in each generation (even
if that thread never allocates memory in that particular generation).
As the number of generations grow, more and more memory is
wasted for allocating TLABs that are never actually used.

To solve the aforementioned problem, NG2C never actually
allocates any memory for TLABs when we create a new generation.
Memory for each TLAB is effectively allocated only upon the
first allocation request. This way, threads will have TLABs (with
allocated memory) only for the generations that are being used (and
not for all the existing generations).

4.2 @Gen Annotations
For allocating memory in generations other than the Young gener-
ation, we considered several options: i) simply calling the JVM to
switch the generation to use for allocation; ii) add a new new op-
erator with an extra argument (target generation); iii) annotate the
new operator.

We opted for the last option for the following reasons. The first
was immediately ruled out because it is very difficult to control
which objects go into non-young generations; e.g., naı̈ve String
manipulation can easily result in many allocations that would po-
tentially go into a non-young generation. The second option (cre-
ating a new allocation operator) would force us to extend the Java
language, and the compiler.

A clear advantage of using annotations is its simplicity; how-
ever, it has one disadvantage: we must call the JVM whenever we
need to change the current target generation. However, in practice
and according to our experience, this almost never imposes a rel-
evant overhead because: i) a thread handling a particular task will
most probably only need one generation (worker threads tend to
use one generation at a time), and ii) large object allocation and
copying is much more expensive than calling the JVM to change
the target generation (therefore it pays off to allocate a large ob-
ject in the correct generation). In both cases, the cost of calling the
JVM is absorbed and the overhead becomes negligible (see Sec-

tion 5 where we show that NG2C does not decrease the application
throughput). Also note that getting and setting the current genera-
tion does not require any locking as it only changes a field in the
current thread’s internal data structure.

4.3 Code Interpreter and JIT
The OpenJDK HotSpot uses a combination of code interpretation
and Just-in-Time (JIT) compilation to achieve close to native per-
formance. Therefore, whenever a method is executed for the first
time, it is interpreted. If the same method is executed for a specific
number of times, it is then JIT compiled. This way, the JVM com-
piles (a costly operation) only the methods where there is benefit
(since executing compiled code is much faster than interpreting it).

In order to comply with such techniques in NG2C, we modify
both the interpreter and the JIT compiler to add the notion of
generations. To be more precise, we had to detect if the allocation is
annotated with @Gen and, if so, which generation is being targeted
(choose the correct TLAB).

Selecting the correct TLAB to allocate is done as follows. For
each thread, NG2C keeps a pointer to the current generation TLAB.
This pointer is only updated when the thread calls newGeneration
or setGeneration. Then, if the current allocation site is annotated
with @Gen, the current generation TLAB is used.

Detecting if the current allocation is annotated with @Gen is
done differently before (interpretative mode) and after JIT compi-
lation. Before JIT, we use a map of byte code index to annotation,
that is stored along the method metadata (this map is prepared dur-
ing class loading). Using this map, it is possible to know in constant
time if a particular byte code index is annotated with @Gen or not.
Upon JIT compilation, the decision of whether to go for the Young
generation or not is hardcoded into the compiled code. This frees
the compiled code (after JIT) from accessing the annotation map.

5. Evaluation
We now evaluate the performance of NG2C while comparing it
with G1, CMS. We also have results for C4. Although not being an
OpenJDK collector, C4 comes from a similar JVM, Zing6. Since we
only have one license available, we could not run all experiments
with it.

We use three relevant platforms that are used in large-scale
environments: i) Apache Cassandra 2.1.8 [34], a large-scale Key-
Value store, ii) Apache Lucene 6.1.0 [41], a high performance text
search engine, and iii) GraphChi 0.2.2 [33], a large-scale graph
computation engine. A complete description of each workload,
including how the source code was changed (with the help of OLR
profiler), is presented in Section 5.2.

For evaluating NG2C, we are mostly concerned on showing
that, compared with other collectors, NG2C: i) does reduce applica-
tion pause times; ii) does not have a negative effect with throughput
nor for memory utilization; iii) greatly reduces object copying; iv)
does not increase the remembered set management work.

5.1 Evaluation Setup
We evaluate NG2C in three different environments (Table 1 pro-
vides a summary of the evaluation environments). First, we use
Feedzai’s7 internal benchmark environment. This environment mir-
rors a real-world deployment and uses a Cassandra cluster to store
data. For Feedzai, it is very important to keep Cassandra’s GC
pauses as short as possible to guarantee that client SLAs are not

6 Zing is a JVM developed by Azul Systems (www.azul.com).
7 Feedzai (www.feedzai.com) is a world leader data science company that
detects fraud in omnichannel commerce. The company uses near real-
time machine learning to analyze big data to identify fraudulent payment
transactions and minimize risk in the financial industry.

7

Platform Workload CPU RAM OS Heap Size Young Gen Size LOC Changed
Cassandra Feedzai Intel Xeon E5-2680 64 GB CentOS 6.7 30 GB 4 GB 22
Cassandra WI,RW,RI Intel Xeon E5505 16 GB Linux 3.13 12 GB 2 GB 22

Lucene RW AMD Opteron 6168 128 GB Linux 3.16 120 GB 2 GB 8
GraphChi PR,CC AMD Opteron 6168 128 GB Linux 3.16 120 GB 6 GB 9

Table 1. Evaluation Environment Summary

broken by long query lantencies. The Cassandra cluster is com-
posed by 5 nodes.

Second, we use a separate node to evaluate NG2C with Cassan-
dra under three different synthetic workloads with varying number
of read and write operations (more details in Section 5.2.1): Write-
Intensive (WI), Write-Read (WR) and Read- Intensive (RI).

Given the size of the data sets used for Lucene (Wikipedia
dump) and GraphChi (Twitter graph dump), we use another sep-
arate node to evaluate NG2C. On top of Lucene we perform client
searches while continuously updating the index (read and write
transactions). For GraphChi, we use two workloads, PageRank and
Connected Components. More details in Sections 5.2.2 and 5.2.3
(for Lucene and GraphChi workloads, respectively).

Each experiment runs in complete isolation for at least 5 times
(i.e., until the results obtained become stable). Feedzai’s workload
runs for 6 hours, while all other workloads run for 30 minutes each.
When running each experiment, we never consider the first minute
of execution (in Feedzai’s benchmarks we disregard the first hour
of execution to allow other external systems to converge). This
ensures minimal interference from JVM loading, JIT compilation,
etc.

We always use fixed heap and Young generation sizes (see Table
1). We found that these sizes are enough to hold the working set in
memory and to avoid premature massive promotion of objects to
older generations (in the case of CMS and G1). Table 1 also reports
the number of lines changed after using the OLR profiler.

5.2 Workload Description
We use this section to provide a more complete description of the
workloads used to evaluate NG2C.

5.2.1 Cassandra
We use Cassandra under 4 different workloads: i) Feedzai’s work-
load (consisting of 500 read queries and 25000 write queries per
second, for the whole Cassandra cluster); ii) write intensive work-
load (2500 read queries and 7500 write queries per second); iii)
read-write workload (5000 read queries and 5000 write queries per
second); iv) read intensive workload (7500 read queries and 2500
write queries per second).

Note that Feedzai’s workload is based on representative data
from real deployments of their product (i.e., fraud detection). All
workloads besides Feedzai’s are synthetic but mirror real-world
settings (e.g., we use the YCSB benchmark tool).8 When running
Cassandra in Feedzai’s cluster, we setup the JVM with 30GB of
heap and we fix the Young generation to 4GB. Note that we tested
several heap sizes and found these ones to be particularly good for
short GC pause times.

To use NG2C we profiled Cassandra using the OLR profiler.
The code was mainly modified to allocate all objects belong-
ing to a particular Memtable9 in a separate dynamic generation.

8 The Yahoo! Cloud Serving Benchmark (YCSB) is an open-source bench-
marking tool often used to compare NoSQL database systems.
9 A Memtable table buffers recent writes in memory. When a Memtable is
full, a flush is scheduled and a new Memtable is created. The capacity of
each Memtable is proportional to the JVM heap size.

Thus, whenever a new Memtable is created or flushed, we cre-
ate a new dynamic generation. Each Memtable contains a B-Tree
(self-balancing tree data structure) with millions of objects. These
objects contain references to buffers with real data. To take ad-
vantage of NG2C, we allocate all objects and buffers belonging to
a particular Memtable in the dynamic generation created for that
specific Memtable.

In total, we changed a total of 22 code locations: i) 11 code
locations where we annotate the new operator, and ii) 11 code
locations where we create, or change generation.

5.2.2 Lucene
We use Lucene to build an in-memory text index using a Wikipedia
dump from 2012.10 The dump has 31GB and is divided in 33M doc-
uments. Each document is loaded into Lucene and can be searched.

The workload is composed by 20000 writes (document updates)
and 5000 reads (document searches) per second; note that this is a
write intensive workload which represents a worst case scenario for
GC pauses. For reads (document queries), we loop through the 500
top words in the dump ; this also represents a worst case scenario
for GC pauses.

When running Lucene, we use all available cores (48 cores), the
heap size is limited to 120GB with a 2GB Young generation size.
Again, we tested with different heap sizes and we found out that
this value is beneficial for short GC pauses.

To reduce Lucene’s GC pauses we profiled it with the OLR
profiler. The code was mainly modified to allocate documents’ data
(of the Wikipedia dump) in the Old generation. Objects created to
hold the indexes of documents will live throughout the application
lifetime; therefore, if we do not use NG2C such objects would be
copied within the heap (thus leading to long GC pauses). With
NG2C, most objects holding the index (including objects such
as Term, RAMFile and byte buffers) are allocated outside the
Young generation. To accomplish it, we changed 8 code locations
in Lucene, all of which to annotate the new operator.

5.2.3 GraphChi
When compared to the previous systems (Cassandra and Lucene),
GraphChi is a more throughput oriented system (and not latency
oriented). However, we use GraphChi for two reasons: i) we want
to demonstrate that NG2C does not decrease throughput even in
a throughput oriented system; ii) with NG2C, systems such as
GraphChi can now be used for applications providing latency ori-
ented services, besides performing throughput oriented graph com-
putations.

In our evaluation, we use two well-known algorithms: i) page
rank, and ii) connected components. Both algorithms are feed
with a 2010 twitter graph [32] consisting of 42 millions vertexes
and 1.5 billions edges. These vertexes (and the corresponding
edges) are loaded in batches into memory; similarly to Cassandra’
Memtables, GraphChi calculates a memory budget to determine
the number of edges to load into memory before the next batch.
This represents an iterative process; in each iteration a new batch
of vertexes is loaded and processed.

10 Wikipedia dumps are available at dumps.wikimedia.org

8

(a) Cassandra WI (b) Cassandra WR (c) Cassandra RI (d) Feedzai

(e) Lucene (f) GraphChi CC (g) GraphChi PR

Figure 4. Pause Time Percentiles (ms)

(a) Cassandra WI (b) Cassandra WR (c) Cassandra RI (d) Feedzai

(e) Lucene (f) GraphChi CC (g) GraphChi PR

Figure 5. Number of Application Pauses Per Duration Interval (ms)

When running GraphChi, we use all available cores (48 cores),
the heap is limited to 120GB, and the Young generation is limited
to 6GB (we measured with different sizes and we found that this
provides the shortest GC pause times in the current environment
and workload).

To take advantage of NG2C, we profiled GraphChi with the
OLR profiler. The code was mainly modified to allocate objects
representing graph vertexes (ChiVertex), edges (Edge), and inter-
nal pointers (ChiPointer) in multiple dynamic generations (one
per batch). We modified a total of 9 code locations, in which we
annotate the new operator.

5.3 GC Pause Times
Figure 4 presents the GC pause times for each GC (CMS, G1, and
NG2C) and for each percentile, for all the workloads. We do not
show pause times for C4 because it is a concurrent collector and
therefore, the application should never be paused. In practice, using
C4, we got pauses of only up to 15 milliseconds for Cassandra.

In Feedzai’s workload, GC pauses are shorter when compared
to the other Cassandra workloads. This is mainly because the hard-
ware used in Feedzai achieves better performance compared to the
one used for running the other Cassandra workloads. Still regard-
ing Feedzai’s workload, CMS shows shorter GC pauses for lower
percentiles but shows the worst results in higher percentiles (25%
worse than G1 and 47% worse than NG2C). G1 shows more sta-

ble GC pause times (when compared to CMS) as it does not lead
to long pauses in higher percentiles; NG2C shows GC pause times
very similar to CMS in lower percentiles, and it shows shorter GC
pause times for higher percentiles as well.

The other Cassandra workloads (WI, WR, and RI) differ only
in the percentage of read and writes. From the GC perspective,
more writes means that more objects are kept in memory (which
results in more object copies and therefore longer GC pauses).
This obviously applies to Cassandra because it buffers writes in
memory. This is clearly observable by comparing the GC pauses
across the three workloads (WI, WR, and RI) for CMS and G1. RI
workload shows shorter GC pauses than WR and WI, while WR
shows shorter pauses than WI but longer than RI. According to
our results, CMS is more sensitive to writes (than the other two
collectors) as it has a steep increase in the GC pause time as we
move towards write intensive workloads. G1 has a more moderate
increase in GC pause time in more intensive workloads.

Regarding NG2C, it produces a different behavior as it shows
shorter GC pauses for lower percentiles in WI, and longer pauses
for WR in higher percentiles. One factor contributes for this differ-
ence (between NG2C, and G1 and CMS): we profiled (using OLR
profiler) Cassandra under the WI workload. This means that the
read path is not as optimized as the write path. Therefore, in write
intensive workloads, NG2C is more optimized than in read inten-
sive workloads. This is also observable by measuring the difference

9

(a) Object Copy Norm. to G1 (b) Rem. Set Update Norm. to G1

Figure 6. NG2C Object Copy and Remembered Set Update

between the GC pause times in higher percentiles; as we move to-
wards write intensive workloads, the difference between NG2C and
other GCs increases.

We also have results for Cassandra with the off-heap memory
enabled for CMS and G1 (Cassandra uses off-heap memory to store
values while the keys remain in the managed heap). Using off-heap
reduces GC pause times by up to 50% in the WI workload (versus
93.8% using NG2C), around 20% in the WR workload (versus
39% using NG2C), and shows no improvement for the RI workload
(versus 61% using NG2C). In sum, using NG2C is more effective
to reduce GC pause times than using off-heap memory mainly
because Cassandra needs to keep header objects in the memory
managed heap to describe the contents stored in off-heap. In the
case of Cassandra (key-value store), keys are stored in the managed
heap and therefore contribute for long application pauses. NG2C is
able to move all key-value pairs into a specific dynamic generation
(thus avoiding pause times).

The remaining workloads (Lucene, PR, and CC) are all write
intensive. CMS shows very high GC pause times compared to the
other two GCs. G1 shows a more moderate increase in GC pause
times, when compared to CMS, but is still worse than NG2C. In
sum, NG2C clearly improves the worst observable GC pause times
by: 85% (CMS) and 38% (G1) in Lucene, 97% (CMS) and 84%
(G1) in PR, and 97% (CMS) and 82% (G1) for CC.

Figure 5 presents the average and standard deviation for the
number of pauses in different duration intervals. Results show that:
i) NG2C does not increase the number of pauses, and ii) it moves
pauses to smaller duration intervals. CMS presents the worst results
by having the most amount of pauses in longer pause intervals.

5.4 Object Copy and Remembered Set Update
We now look into how much time is spent: i) copying objects within
the heap, and ii) updating remembered set entries, upon a collec-
tion. Note that the remembered set updates is an important metric
since pretenuring can lead to high number of remembered set up-
dates because of the potential increase in the number of references
coming from older to younger spaces [28]. We only show results
for G1 and NG2C, given that CMS and C4 do not provide such
logging information. However, both metrics are similar for differ-
ent generational collectors because they mostly depend on: i) the
mutator allocation speed (dictates how fast minor collections are
triggered and how many objects are promoted), and ii) the available
hardware memory bandwidth. Both these factors are kept constant
across GCs (G1 and NG2C).

Figure 6 presents results for total object copying time and re-
membered set update time during each workload. All results are
normalized to G1. Results show that NG2C reduces objects copy-
ing between 30.6% and 89.2%. Note that, in G1, we can not dif-
ferentiate between object promotion and object compaction since
the collector collects both young and old regions at the same time
(during mixed collections).

Max Mem Usage Throughput
CMS G1 C4 CMS/OFF G1/OFF C4

Feedzai .92 1.00 - - - -
WI .96 1.01 1.73 1.07/1.08 .99/1.01 .70
WR .80 1.00 2.04 .76/.90 .93/0.73 .67
RI .73 .98 1.94 .86/1.18 .90/0.65 .71
Lucene .39 .98 - .59 .87 -
PR 1.44 1.04 - .80 .96 -
CC 1.43 1.17 - 1.03 .96 -

Table 2. Max Memory Usage and Throughput norm. to
NG2C (i.e., NG2C value is 1 for all entries)

NG2C also has a positive impact for the remembered set update
work. This means that, in NG2C, there is not an increase in the
number of inter-generational references pointing to the Young gen-
eration. This is possible because objects referenced by pretenured
objects are most likely to be pretenured as well. NG2C even re-
duces the amount of remembered set update work for most work-
loads since it reduces the amount of premature promotion in G1
(objects with short lifetimes that were allocated right before a mi-
nor collection and were prematurely promoted). This also means
that NG2C puts less pressure on the write barrier (compared to G1).

5.5 Memory Usage
In this section, we look into the max memory usage to understand
how NG2C relates to other collectors regarding heap requirements
(see Table 2). Regarding the workloads’ max heap size: Feedzai
workload has 30GB, while the other Cassandra workloads (WI,
WR, and RI) have 12GB; each Lucene and GraphChi’s workload
(PR and CC) have 120GB.

From Table 2 we can conclude that, regarding Cassandra work-
loads (i.e., Feedzai, WI, WR, and RI) all collectors (excluding C4)
have a very similar max memory usage. CMS has a slightly smaller
heap (compared to G1 and NG2C) while NG2C has a slightly larger
heap (compared to G1 and CMS). This slight increase comes from
the fact that dynamic generations are only collected upon a mixed
collection, which is only triggered when the heap usage is above a
configurable threshold. This can lead to a slight delay in the collec-
tion of some objects that are already unreachable. C4 has a consid-
erably higher memory usage since it reserves approximately 75%
(12GB) of the system’s memory, when the JVM is launched. We
were unable to extract the actual memory usage during execution.
We do not show the results for C4 with other workloads because
we only have one license (for one physical node).

Lucene max memory utilization is lower for CMS when com-
pared to G1 and NG2C. These larger heap sizes in G1 and
NG2C comes from humongous allocations. Using this technique,
very large objects are directly allocated in the Old generation. It
has the clear drawback of delaying the collection of such very large
objects. Since CMS does not have such technique (i.e., all objects
are allocated in the Eden), CMS tries to collect these large objects
upon each minor collection, leading to faster collection of such ob-
jects, thus achieving lower heap usage. Comparing G1 with NG2C,
the heap usage is similar.

Regarding GraphChi, it shows a different memory behavior
when compared to Cassandra and Lucene, as it allocates mostly
small objects. Most of these small objects (mostly data objects rep-
resenting vertexes and edges) are used in a single iteration, which
is long enough for them to be promoted into the Old generation (in
the case of CMS and G1). Since we set the maximum heap size to
120GB, the heap fills up until a concurrent marking cycle is trig-
gered. In CMS, the concurrent marking cycle is triggered a bit later
compared to G1 and NG2C (thus leading to an increase in the max

10

(a) Cassandra WI (b) Cassandra WR (c) Cassandra RI

Figure 7. Cassandra Throughput (transactions/second) - 10 minutes sample

Figure 8. Throughput vs Pause Time

heap usage). Regarding G1 and NG2C, both present similar max
heap values.

5.6 Application Throughput
We now discuss the throughput obtained for each GC and workload
(except for Feedzai). We do not show the throughput for Feedzai’s
workload because the benchmark environment (where the Cassan-
dra cluster is used) dynamically adjusts the number of transactions
per second according to external factors; e.g., the credit-card trans-
action generator produces different transactions through time, some
result on more Cassandra transactions than others, thus making
it infeasible to reproduce the same workload multiple times. The
throughput for all remaining workloads is presented in Table 2.
Throughput for Cassandra using off-heap is shown for WI, WR,
and RI workloads. All results are normalized to NG2C.

From Table 2, we conclude that NG2C outperforms CMS, G1,
and C4 (we could only obtain results for Cassandra workloads
using C4 because we only have one license) for most workloads.
Figure 7 shows the throughput evolution for Cassandra workloads.
NG2C is the solution with overall best throughput across the three
workloads. Only the CMS collector using off-heap outperforms
NG2C in the read intensive workload (by approximately 18%).

For all previous experiments, we use latency oriented GC con-
figurations, i.e., the configurations we found to enable shorter GC
pause times in higher percentiles. This, however, has the drawback
of potentially decreasing the throughput. Among the used work-
loads, the most explicit example of this throughput decrease is
Lucene running with CMS, in which a throughput oriented GC
configuration, i.e., the configuration we found to enable higher
throughput, could increase the throughput by up to 3x (when com-
pared to the throughput achieved with a latency oriented configura-
tion).

To better understand the trade-off between throughput and la-
tency, we ran the Lucene workload with 6 different Young genera-
tion sizes. We found that this parameter alone allows one to achieve
good latency (if the size is reduced) or good throughput (if the size
is increased). Other GC parameters did not have a relevant effect
and therefore we keep them fixed. We start with the configuration
used in the previous sections (2 GB). Then, we keep increasing the
size of the Young generation by 2 GB.

Figure 8 shows a plot with the relation between throughput and
GC pause time, for each GC, in which each point on each line

represents a different Young generation size. CMS shows always
longer GC pauses independently of the GC configuration. It also
shows a steep increase in the throughput, with a small increase in
the GC pause time; this shows how easy it is to dramatically re-
duce throughput when CMS is configured for latency. On the other
hand, G1 shows much shorter GC pauses than CMS at the cost
of some reduced throughput. Note that moving from latency ori-
ented to throughput oriented configurations has a small impact on
throughput, but has a larger negative impact on GC pause time.
Finally, NG2C provides the shortest GC pause times with a very
small throughput impact. In the most throughput oriented configu-
ration (point on the top of the curve), NG2C is only 5% worse than
CMS and the GC pause time is 66% better. In conclusion: i) CMS
can be difficult to configure for short GC pause time (while keep-
ing an acceptable throughput); ii) G1 leads to shorter pauses but
can damage throughput; iii) NG2C keeps up with the best through-
put achieved by CMS, while also reducing the GC pause times by
66% and 39% w.r.t. CMS and G1, respectively.

6. Conclusions and Future Work
This paper presents the design and implementation of NG2C,11 a
new HotSpot GC algorithm that avoids copying objects within the
heap by aggregating objects with similar lifetime profiles in sep-
arate generations. NG2C is built on top of G1, by modifying the
way it allocates objects and manages generations. The experimen-
tal evaluation shows that it is possible to reduce the object copying
done by current collectors (G1 and CMS) by up to 89.2%, resulting
in shorter GC pause times. We are able to reduce the worst observ-
able GC pause times in Cassandra by 94.8%, 85% for Lucene, and
96.45% for GraphChi. We also show that despite increasing the
complexity of the JVM allocation algorithm, NG2C does not pe-
nalize application throughput, the heap usage, and the remembered
set update work, when compared to current GC implementations.

We envision that the NG2C could be integrated in other JVMs
and collectors. Even concurrent collectors such as C4 could take
advantage of the ideas described in this work to reduce the amount
of object copying within the heap and therefore reduce the appli-
cation interference, possibly increasing the throughput. We are cur-
rently working on integrating the object lifetime estimation directly
into the JVM in order to allow online pretenuring into multiple gen-
erations.

7. Acknowledgments
This work was supported by national funds through Fundação para
a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013
and through the FCT scholarship SFRH/BD/103745/2014.

11 Both NG2C and the OLR profiler can be downloaded from
github.com/rodrigo-bruno/ng2c

11

References
[1] A. W. Appel. Simple Generational Garbage Collection and Fast

Allocation. Softw. Pract. Exper., 19(2):171–183, Feb. 1989. ISSN
0038-0644. doi: 10.1002/spe.4380190206.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan. Controlling Fragmentation and
Space Consumption in the Metronome, a Real-time Garbage Collector
for Java. In Proceedings of the 2003 ACM SIGPLAN Conference on
Language, Compiler, and Tool for Embedded Systems, LCTES ’03,
pages 81–92, New York, NY, USA, 2003. ACM. ISBN 1-58113-647-
1. doi: 10.1145/780732.780744.

[3] W. S. Beebee Jr and M. Rinard. An implementation of scoped mem-
ory for Real-Time Java. In International Workshop on Embedded Soft-
ware, pages 289–305. Springer, 2001.

[4] S. M. Blackburn and K. S. McKinley. Immix: A Mark-region Garbage
Collector with Space Efficiency, Fast Collection, and Mutator Perfor-
mance. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’08, pages
22–32, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-860-2.
doi: 10.1145/1375581.1375586.

[5] S. M. Blackburn, S. Singhai, M. Hertz, K. S. McKinely, and J. E. B.
Moss. Pretenuring for Java. In Proceedings of the 16th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’01, pages 342–352, New York, NY, USA,
2001. ACM. ISBN 1-58113-335-9. doi: 10.1145/504282.504307.

[6] S. M. Blackburn, R. Jones, K. S. McKinley, and J. E. B. Moss.
Beltway: Getting Around Garbage Collection Gridlock. In Pro-
ceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, PLDI ’02, pages 153–164,
New York, NY, USA, 2002. ACM. ISBN 1-58113-463-0. doi:
10.1145/512529.512548.

[7] C. Boyapati, A. Salcianu, W. Beebee, Jr., and M. Rinard. Ownership
Types for Safe Region-based Memory Management in Real-time Java.
In Proceedings of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation, PLDI ’03, pages 324–
337, New York, NY, USA, 2003. ACM. ISBN 1-58113-662-5. doi:
10.1145/781131.781168.

[8] Y. Bu, V. Borkar, G. Xu, and M. J. Carey. A Bloat-aware Design
for Big Data Applications. In Proceedings of the 2013 International
Symposium on Memory Management, ISMM ’13, pages 119–130,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2100-6. doi:
10.1145/2464157.2466485.

[9] J. Caballero, G. Grieco, M. Marron, and A. Nappa. Undangle: Early
Detection of Dangling Pointers in Use-after-free and Double-free
Vulnerabilities. In Proceedings of the 2012 International Sympo-
sium on Software Testing and Analysis, ISSTA 2012, pages 133–143,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1454-1. doi:
10.1145/2338965.2336769.

[10] P. Cheng, R. Harper, and P. Lee. Generational Stack Collection and
Profile-driven Pretenuring. In Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation,
PLDI ’98, pages 162–173, New York, NY, USA, 1998. ACM. ISBN
0-89791-987-4. doi: 10.1145/277650.277718.

[11] D. Clifford, H. Payer, M. Stanton, and B. L. Titzer. Memento Mori:
Dynamic Allocation-site-based Optimizations. In Proceedings of the
2015 International Symposium on Memory Management, ISMM ’15,
pages 105–117, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-
3589-8. doi: 10.1145/2754169.2754181.

[12] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer over-
flows: Attacks and defenses for the vulnerability of the decade. In
DARPA Information Survivability Conference and Exposition, 2000.
DISCEX’00. Proceedings, volume 2, pages 119–129. IEEE, 2000.

[13] J. Dean and L. A. Barroso. The Tail at Scale. Commun. ACM, 56(2):
74–80, Feb. 2013. ISSN 0001-0782. doi: 10.1145/2408776.2408794.

[14] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first Garbage
Collection. In Proceedings of the 4th International Symposium on
Memory Management, ISMM ’04, pages 37–48, New York, NY, USA,
2004. ACM. ISBN 1-58113-945-4. doi: 10.1145/1029873.1029879.

[15] D. Doligez and X. Leroy. A Concurrent, Generational Garbage Collec-
tor for a Multithreaded Implementation of ML. In Proceedings of the
20th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’93, pages 113–123, New York, NY, USA,
1993. ACM. ISBN 0-89791-560-7. doi: 10.1145/158511.158611.

[16] D. Gay and A. Aiken. Language Support for Regions. In Pro-
ceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, PLDI ’01, pages 70–80,
New York, NY, USA, 2001. ACM. ISBN 1-58113-414-2. doi:
10.1145/378795.378815.

[17] D. Gay and B. Steensgaard. Fast Escape Analysis and Stack Allocation
for Object-Based Programs. In Proceedings of the 9th International
Conference on Compiler Construction, CC ’00, pages 82–93, London,
UK, UK, 2000. Springer-Verlag. ISBN 3-540-67263-X.

[18] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A Study of the Scal-
ability of Stop-the-world Garbage Collectors on Multicores. In Pro-
ceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASP-
LOS ’13, pages 229–240, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-1870-9. doi: 10.1145/2451116.2451142.

[19] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytiniotis, G. Ra-
malingan, D. Murray, S. Hand, and M. Isard. Broom: Sweeping out
Garbage Collection from Big Data Systems. In Proceedings of the
15th USENIX Conference on Hot Topics in Operating Systems, HO-
TOS’15, pages 2–2, Berkeley, CA, USA, 2015. USENIX Association.

[20] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based Memory Management in Cyclone. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation, PLDI ’02, pages 282–293, New York, NY, USA,
2002. ACM. ISBN 1-58113-463-0. doi: 10.1145/512529.512563.

[21] S. Z. Guyer and K. S. McKinley. Finding Your Cronies: Static Anal-
ysis for Dynamic Object Colocation. In Proceedings of the 19th An-
nual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’04, pages 237–
250, New York, NY, USA, 2004. ACM. ISBN 1-58113-831-8. doi:
10.1145/1028976.1028996.

[22] N. Hallenberg, M. Elsman, and M. Tofte. Combining Region Inference
and Garbage Collection. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation,
PLDI ’02, pages 141–152, New York, NY, USA, 2002. ACM. ISBN
1-58113-463-0. doi: 10.1145/512529.512547.

[23] T. L. Harris. Dynamic Adaptive Pre-tenuring. In Proceed-
ings of the 2nd International Symposium on Memory Manage-
ment, ISMM ’00, pages 127–136, New York, NY, USA, 2000.
ACM. ISBN 1-58113-263-8. doi: 10.1145/362422.362476. URL
http://doi.acm.org/10.1145/362422.362476.

[24] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Experience with
Safe Manual Memory-management in Cyclone. In Proceedings of the
4th International Symposium on Memory Management, ISMM ’04,
pages 73–84, New York, NY, USA, 2004. ACM. ISBN 1-58113-945-
4. doi: 10.1145/1029873.1029883.

[25] R. L. Hudson and J. E. B. Moss. Incremental collection of mature
objects. In Memory Management, pages 388–403. Springer, 1992.

[26] R. L. Hudson, R. Morrison, J. E. B. Moss, and D. S. Munro. Garbage
Collecting the World: One Car at a Time. In Proceedings of the
12th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’97, pages 162–
175, New York, NY, USA, 1997. ACM. ISBN 0-89791-908-4. doi:
10.1145/263698.264353.

[27] R. Jones and C. Ryder. Garbage collection should be lifetime aware.
Implementation, Compilation, Optimization of Object-Oriented Lan-
guages, Programs and Systems, pages 182–196, 2006.

[28] R. Jones, A. Hosking, and E. Moss. The garbage collection handbook:
the art of automatic memory management. CRC Press, 2016.

[29] R. E. Jones and C. Ryder. A Study of Java Object Demographics. In
Proceedings of the 7th International Symposium on Memory Manage-
ment, ISMM ’08, pages 121–130, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-134-7. doi: 10.1145/1375634.1375652.

12

[30] M. Jump, S. M. Blackburn, and K. S. McKinley. Dynamic Ob-
ject Sampling for Pretenuring. In Proceedings of the 4th Interna-
tional Symposium on Memory Management, ISMM ’04, pages 152–
162, New York, NY, USA, 2004. ACM. ISBN 1-58113-945-4. doi:
10.1145/1029873.1029892.

[31] S. Kowshik, D. Dhurjati, and V. Adve. Ensuring Code Safety With-
out Runtime Checks for Real-time Control Systems. In Proceed-
ings of the 2002 International Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems, CASES ’02, pages 288–
297, New York, NY, USA, 2002. ACM. ISBN 1-58113-575-0. doi:
10.1145/581630.581678.

[32] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a So-
cial Network or a News Media? In Proceedings of the 19th Inter-
national Conference on World Wide Web, WWW ’10, pages 591–600,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-799-8. doi:
10.1145/1772690.1772751.

[33] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: Large-scale Graph
Computation on Just a PC. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’12,
pages 31–46, Berkeley, CA, USA, 2012. USENIX Association. ISBN
978-1-931971-96-6.

[34] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured
Storage System. SIGOPS Oper. Syst. Rev., 44(2):35–40, Apr. 2010.
ISSN 0163-5980. doi: 10.1145/1773912.1773922.

[35] P. Lengauer and H. Mössenböck. The Taming of the Shrew: Increas-
ing Performance by Automatic Parameter Tuning for Java Garbage
Collectors. In Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering, ICPE ’14, pages 111–122,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2733-6. doi:
10.1145/2568088.2568091.

[36] H. Lieberman and C. Hewitt. A Real-time Garbage Collector Based
on the Lifetimes of Objects. Communications of the ACM, 26(6):419–
429, June 1983. ISSN 0001-0782. doi: 10.1145/358141.358147.

[37] L. Lu, X. Shi, Y. Zhou, X. Zhang, H. Jin, C. Pei, L. He, and Y. Geng.
Lifetime-based Memory Management for Distributed Data Processing
Systems. Proc. VLDB Endow., 9(12):936–947, Aug. 2016. ISSN
2150-8097. doi: 10.14778/2994509.2994513.

[38] S. Marion, R. Jones, and C. Ryder. Decrypting the Java Gene Pool.
In Proceedings of the 6th International Symposium on Memory Man-
agement, ISMM ’07, pages 67–78, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-893-0. doi: 10.1145/1296907.1296918.

[39] S. Marlow, T. Harris, R. P. James, and S. Peyton Jones. Paral-
lel Generational-copying Garbage Collection with a Block-structured
Heap. In Proceedings of the 7th International Symposium on Memory
Management, ISMM ’08, pages 11–20, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-134-7. doi: 10.1145/1375634.1375637.

[40] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth,
and N. Nystrom. Use at Your Own Risk: The Java Unsafe API
in the Wild. In Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2015, pages 695–710, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3689-5. doi:
10.1145/2814270.2814313.

[41] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in Ac-
tion, Second Edition: Covers Apache Lucene 3.0. Manning Pub-
lications Co., Greenwich, CT, USA, 2010. ISBN 1933988177,
9781933988177.

[42] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu. FACADE:
A Compiler and Runtime for (Almost) Object-Bounded Big Data Ap-
plications. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, pages 675–690, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-2835-7. doi: 10.1145/2694344.2694345.

[43] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, and
O. Mutlu. Yak: A High-performance Big-data-friendly Garbage Col-
lector. In Proceedings of the 12th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’16, pages 349–

365, Berkeley, CA, USA, 2016. USENIX Association. ISBN 978-
1-931971-33-1.

[44] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosen-
blum. Fast Crash Recovery in RAMCloud. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 29–41, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0977-6. doi: 10.1145/2043556.2043560.

[45] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun.
Making Sense of Performance in Data Analytics Frameworks. In
Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, NSDI’15, pages 293–307, Berkeley, CA,
USA, 2015. USENIX Association. ISBN 978-1-931971-218.

[46] F. Pizlo, L. Ziarek, and J. Vitek. Real Time Java on Resource-
constrained Platforms with Fiji VM. In Proceedings of the 7th Inter-
national Workshop on Java Technologies for Real-Time and Embed-
ded Systems, JTRES ’09, pages 110–119, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-732-5. doi: 10.1145/1620405.1620421.

[47] R. Power and J. Li. Piccolo: Building Fast, Distributed Programs with
Partitioned Tables. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI’10, pages 293–
306, Berkeley, CA, USA, 2010. USENIX Association.

[48] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K.
Ousterhout. It’s Time for Low Latency. In Proceedings of the 13th
USENIX Conference on Hot Topics in Operating Systems, HotOS’13,
pages 11–11, Berkeley, CA, USA, 2011. USENIX Association.

[49] J. Seligmann and S. Grarup. Incremental mature garbage collection
using the train algorithm. In European Conference on Object-Oriented
Programming, pages 235–252. Springer, 1995.

[50] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta. M3R: In-
creased Performance for In-memory Hadoop Jobs. Proc. VLDB
Endow., 5(12):1736–1747, Aug. 2012. ISSN 2150-8097. doi:
10.14778/2367502.2367513.

[51] C. Stancu, C. Wimmer, S. Brunthaler, P. Larsen, and M. Franz. Safe
and Efficient Hybrid Memory Management for Java. In Proceedings
of the 2015 International Symposium on Memory Management, ISMM
’15, pages 81–92, New York, NY, USA, 2015. ACM. ISBN 978-1-
4503-3589-8. doi: 10.1145/2754169.2754185.

[52] G. Tene, B. Iyengar, and M. Wolf. C4: The Continuously Con-
current Compacting Collector. In Proceedings of the International
Symposium on Memory Management, ISMM ’11, pages 79–88, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0263-0. doi:
10.1145/1993478.1993491.

[53] D. Ungar. Generation Scavenging: A Non-disruptive High Perfor-
mance Storage Reclamation Algorithm. In Proceedings of the First
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-
tical Software Development Environments, SDE 1, pages 157–167,
New York, NY, USA, 1984. ACM. ISBN 0-89791-131-8. doi:
10.1145/800020.808261.

[54] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010. USENIX As-
sociation.

[55] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster Com-
puting. In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12, pages 2–2, Berkeley,
CA, USA, 2012. USENIX Association.

[56] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang.
In-Memory Big Data Management and Processing: A Sur-
vey. IEEE Transactions on Knowledge & Data Engi-
neering, 27(7):1920–1948, 2015. ISSN 1041-4347. doi:
doi.ieeecomputersociety.org/10.1109/TKDE.2015.2427795.

13

