
Dynamic Vertical Memory Scalability for
OpenJDK Cloud Applications

Rodrigo Bruno, Paulo Ferreira: INESC-ID / Instituto Superior Técnico, University of Lisbon

Ruslan Synytsky, Tetiana Fydorenchyk: Jelastic

Jia Rao: The University of Texas at Arlington

Hang Huang, Song Wu: Huazhong University of Science and Technology

ISMM 18 June @ Philadelphia, USA

Unused Resources in the Cloud

● Real data from Jelastic cloud provider
between 2014 and 2017

● More than 25 TBs of unused RAM in
2017

● Most cloud providers charge for
reserved resources

○ Users are paying for resources
that are not used!

● Cloud users are forced to overprovision
○ memory requirements not known
○ dynamic workloads

1

Jelastic Cloud Usage (real data)

‘ ‘ ‘ ‘

Unused Resources in the Cloud

● Real data from Jelastic cloud provider
between 2014 and 2017

● More than 25 TBs of unused RAM in
2017

● Most cloud providers charge for
reserved resources

○ Users are paying for resources
that are not used!

● Cloud users are forced to overprovision
○ memory requirements not known
○ dynamic workloads

1

Jelastic Cloud Usage (real data)

‘ ‘ ‘ ‘

Unused
but paid!

“Pay-as-you-Go” vs “Pay-as-you-Use”

Pay for statically-sized instances Pay for used resources

2

Pay-as-you-Go Pay-as-you-use

“Pay-as-you-Use” for JVM Applications

3

Used Committed

Reserved

● Proof-of-concept experiment, 1 instance, one task processed after startup and then idle

“Pay-as-you-Use” for JVM Applications

3

Used Committed

Reserved

● Proof-of-concept experiment, 1 instance, one task processed after startup and then idle

Problem 1: The JVM does not release RAM even if it is not being used (commited)!
Problem 2: Applications cannot scale beyond Max Heap limit!

“Pay-as-you-Use” for JVM Applications

3

Used Committed

Reserved

● Proof-of-concept experiment, 1 instance, one task processed after startup and then idle

Problem 1: The JVM does not release RAM even if it is not being used (commited)!
Problem 2: Applications cannot scale beyond Max Heap limit!

Dynamic Vertical Scalability is a requirement for
taking advantage of “Pay-as-you-Use”

Goal: vertical memory scalability for JVM apps

Improve the way the JVM fits in the virtualization stack (system-VMs and containers).

4

Goal: vertical memory scalability for JVM apps

Improve the way the JVM fits in the virtualization stack (system-VMs and containers).

Goal 1: give memory back to the host engine when it is not being used

4

Goal: vertical memory scalability for JVM apps

Improve the way the JVM fits in the virtualization stack (system-VMs and containers).

Goal 1: give memory back to the host engine when it is not being used

Goal 2: allow the JVM to grow its memory beyond the limit defined at launch time

4

Goal: vertical memory scalability for JVM apps

Improve the way the JVM fits in the virtualization stack (system-VMs and containers).

Goal 1: give memory back to the host engine when it is not being used

Goal 2: allow the JVM to grow its memory beyond the limit defined at launch time

Goal 3: negligible negative throughput or memory footprint impact

4

Goal: vertical memory scalability for JVM apps

Improve the way the JVM fits in the virtualization stack (system-VMs and containers).

Goal 1: give memory back to the host engine when it is not being used

Goal 2: allow the JVM to grow its memory beyond the limit defined at launch time

Goal 3: negligible negative throughput or memory footprint impact

Goal 4: negligible pause-time for scaling memory

4

Goal: vertical memory scalability for JVM apps

Improve the way the JVM fits in the virtualization stack (system-VMs and containers).

Goal 1: give memory back to the host engine when it is not being used

Goal 2: allow the JVM to grow its memory beyond the limit defined at launch time

Goal 3: negligible negative throughput or memory footprint impact

Goal 4: negligible pause-time for scaling memory

Goal 5: no changes to the host engine/OS

4

Can’t we use JVM tuning and/or cloud management tools?

No...

5

Can’t we use JVM tuning and/or cloud management tools?

No...

Reason 1: it is not possible to force the JVM to release memory from the outside (even a Full
GC won’t do it for some collectors such as PS).

5

Can’t we use JVM tuning and/or cloud management tools?

No...

Reason 1: it is not possible to force the JVM to release memory from the outside (even a Full
GC won’t do it for some collectors such as PS).

Reason 2: Horizontal scaling does not work if suddenly you need more memory than what you
have in a single instance. It also requires more infrastructure and sophisticated algorithms to
manage multiple instances;

5

Can’t we use JVM tuning and/or cloud management tools?

No...

Reason 1: it is not possible to force the JVM to release memory from the outside (even a Full
GC won’t do it for some collectors such as PS).

Reason 2: Horizontal scaling does not work if suddenly you need more memory than what you
have in a single instance. It also requires more infrastructure and sophisticated algorithms to
manage multiple instances;

Reason 3: Setting a very high memory limit for the JVM solves the lack of memory problem
but worsens reason 1;

5

Can’t we use JVM tuning and/or cloud management tools?

No...

Reason 1: it is not possible to force the JVM to release memory from the outside (even a Full
GC won’t do it for some collectors such as PS).

Reason 2: Horizontal scaling does not work if suddenly you need more memory than what you
have in a single instance. It also requires more infrastructure and sophisticated algorithms to
manage multiple instances;

Reason 3: Setting a very high memory limit for the JVM solves the lack of memory problem
but worsens reason 1;

Reason 4: Rebooting the JVM to adjust the memory limit takes a long time leading to service
unavailability, which is prohibitive for many applications.

5

Dynamic Vertical Memory Scaling

2-step solution:

6

Dynamic Vertical Memory Scaling

2-step solution:

Step 1:
1. dynamically increase or decrease the JVM memory limit (i.e. amount of memory available to

the application)

2. allow the cloud user to change this limit (this can also be done programmatically)

6

Dynamic Vertical Memory Scaling

2-step solution:

Step 1:
1. dynamically increase or decrease the JVM memory limit (i.e. amount of memory available to

the application)

2. allow the cloud user to change this limit (this can also be done programmatically)

Step 2:
1. JVM heap sizing strategy that sizes the heap according to the application’s used memory

2. Even if no GC is triggered, the heap size should be checked

6

Step 1: Current Max Heap Size

● We introduce a new JVM variable:
CurrentMaxHeapSize

● can be set at launch time or at runtime,
no need to guess the heap size
beforehand

● once set, the heap cannot grow
beyond its value

● Max heap size can be set to a
conservatively high value (only affects
reserved memory not committed memory)

7

Step 2: Periodic Heap Resizing Checks

● if...
○ unused heap memory is large (line 6)
○ last GC was a long ago (line 8)

● do… heap resize

● MaxOverCommittedMem and
MinTimeBetweenGCs can be set at launch
time or at runtime

● We do not implement a new heap sizing
algorithm, the JVM already has advanced
ergonomic policies

○ we “just” determine when to run it

8

Execution Memory Usage log

9

Implementation
○ Solution implemented in the OpenJDK 9 HotSpot JVM

○ CurrentMaxHeapSize , MaxOverCommittedMem , and MinTimeBetweenGCs are runtime
variables that can be set at JVM launch time or at runtime;

○ Periodic heap sizing checks are integrated in the VM control thread loop (executed nearly every
second);

○ JVM allocation path and heap growing respects CurrentMaxHeapSize

○ Two collectors supported:
■ Garbage First, most advanced GC, the new by-default
■ Parallel Scavenge, widely used parallel collector

○ We reuse the ergonomics code already added into the GC to implement the heap sizing
operation

10

Evaluation

● Compare: G1 vs VG1 (vertical G1); PS vs VPS (vertical PS)

● Benchmarks: DaCapo 9.12 and Tomcat web server (real workload)

● Host node: Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz, 32GBs DDR4 of RAM, Linux 4.9

● Host engine: Docker 17.12

● Each JVM runs in an isolated container

11

DaCapo 9.12 Benchmarks

12

Benchmark Description Iterations CMaxMem MaxOCMem MinTimeGCs

avrora AVR microcontrollers 5 32 MB 16 MB 10 sec

fop XSL-FO to PDF 200 512 MB 32 MB 10 sec

h2 JDBCbench-like in-memory 5 1024 MB 256 MB 10 sec

jython interprets the pybench 5 128 MB 32 MB 10 sec

luindex lucene indexing 100 256 MB 32 MB 10 sec

pmd searches code problems 10 256 MB 32 MB 10 sec

sunflow ray tracing 5 128 MB 16 MB 10 sec

tradebeans daytrader benchmark 5 512 MB 128 MB 10 sec

xalan XML to HTML 5 64 MB 16 MB 10 sec

Memory Scalability - JVM Heap Size (MB)

13
Lower is Better

Avg Heap
Size (MB)

Memory Scalability - JVM Heap Size (MB)

13
Lower is Better

Avg Heap
Size (MB)

High allocation rate lead to
higher improvements

Memory Scalability - Container Mem Usage (MB)

14
Lower is Better

Avg
Container
Size (MB)

Memory Scalability - Container Mem Usage (MB)

14
Lower is Better

Avg
Container
Size (MB) High allocation rate lead to

higher improvements

Execution Time (ms)

15
Lower is Better

Avg Exec
Time (ms)

Execution Time (ms)

15
Lower is Better

Avg Exec
Time (ms)

Minor Throughput Overheads
for most benchmarks

Throughput vs Memory Tradeoff

16

Throughput vs Memory Tradeoff

16

Different benchmarks have
different memory throughput

tradeoffs!

High Max Heap Limit Memory Overhead (h2 benchmark)

17

Container Mem
Usage (MB)

Max Heap Limit Multiplier (1x = 1GB)

Lower is Better

High Max Heap Limit Memory Overhead (h2 benchmark)

17

Max Heap Limit Multiplier (1x = 1GB)

Lower is Better

~20MB

Container Mem
Usage (MB)

High Max Heap Limit Memory Overhead (h2 benchmark)

17

Max Heap Limit Multiplier (1x = 1GB)

Lower is Better

~20MB

Container Mem
Usage (MB)

High Xmx is compensated
by periodic heap resizing!

Real-world Scenario Experiment

● Tomcat web server with 4-16GBs (based on real Jelastic clients’ workloads)

○ utilized mostly during the day; at night (8 hours) the server is mostly idle

○ user sessions (which occupy most of the memory) timeout after 10 min

○ monthly cost estimation using Amazon EC2 (Ohio datacenter)
■ assuming one could change the instance resources on the fly

18

Real-world Scenario Experiment (mem utilization)

19

Container Mem
Usage (MB)

Time (hours)
Lower is Better

Real-world Scenario Experiment (mem utilization)

19

Container Mem
Usage (MB)

Time (hours)
Lower is Better

Resources can be saved
during idle time!

Real-world Scenario Experiment (cost)

20

Approach During Day During Night Total Savings

4GB-JVM
23.01$

11.53$ 34.00$

4GB-VJVM 1.44$ 24.44$ 29.40%

8GB-JVM
46.03$

23.01$ 69.04$

8GB-VJVM 1.44$ 47.47$ 31.00%

16GB-JVM
92.06$

46.03$ 138.00$

16GB-VJVM 1.44$ 93.50$ 32.60%

32GB-JVM
184.12$

92.06$ 276.00$

32GB-VJVM 1.44$ 185.00$ 33.00%

Conclusion

● Vertical Memory Scalability is an enabler for the “Pay-as-you-Use” model

● It can be implemented in the JVM with
○ negligible throughput cost
○ very promising footprint reductions

● Implementation can be easily ported to other GCs

● JEPs:
○ http://openjdk.java.net/jeps/8204089
○ http://openjdk.java.net/jeps/8204088

21

http://openjdk.java.net/jeps/8204089
http://openjdk.java.net/jeps/8204088

Conclusion

● Vertical Memory Scalability is an enabler for the “Pay-as-you-Use” model

● It can be implemented in the JVM with
○ negligible throughput cost
○ very promising footprint reductions

● Implementation can be easily ported to other GCs

● Code is working in production at Jelastic

● JEPs:
○ http://openjdk.java.net/jeps/8204089
○ http://openjdk.java.net/jeps/8204088

21

Thank you for your time!
Questions?

Rodrigo Bruno
email: rodrigo.bruno@tecnico.ulisboa.pt
webpage: www.gsd.inesc-id.pt/~rbruno

github: github.com/rodrigo-bruno

http://openjdk.java.net/jeps/8204089
http://openjdk.java.net/jeps/8204088
mailto:rodrigo.bruno@tecnico.ulisboa.pt
http://www.gsd.inesc-id.pt/~rbruno
http://github.com/rodrigo-bruno/ng2c

