
ALMA - GC-assisted JVM Live Migration 
for Java Server Applications

Rodrigo Bruno, Paulo Ferreira

{rodrigo.bruno,paulo.ferreira}@inesc-id.pt

INESC-ID - Instituto Superior Técnico, ULisboa

Middleware’16@Trento



2

JVM Live Migration (real scenario)



2

JVM Live Migration (real scenario)



2

JVM Live Migration (real scenario)



2

JVM Live Migration (real scenario)



2

JVM Live Migration (real scenario)



2

JVM Live Migration (real scenario)



2

JVM Live Migration (real scenario)



3

Goals

Support JVM live migration with:

✓ Low total migration time;

✓ Low application downtime;

✓ Low application throughput impact;

✓ Low resource overhead;

✓ No programmer intervention;

✓ No special hardware/OS.



4

JVM Live Migration (challenges)
! Keep migration and application down times short;

! Avoid high resource (eg. CPU, Network) overhead;

! Avoid application slowdown / performance overhead;

! Cope with fast moving / allocation intensive applications;

! Cope with low/congested network bandwidths;



Drawbacks of Current Solutions

5

ㄨ Force application throttling (Clark et. al, 2005);

ㄨ Rely on high speed networks (Huang et. al, 2007);

ㄨ Fail to determine the live Working Set (Hou et. al, 2015);

ㄨ When only a process is targeted:
○ the whole system VM is migrated (containing multiple 

processes and kernel);
○ the whole process image is migrated (including 

unreachable data).

ㄨ Force full GC before migration (Kawachiya et. al, 2007);



ALMA - Key Insights

6

● Migrate only the process (JVM)
■ avoid kernel, other processes, etc;

● Use GC to reduce the snapshot size;

● Dynamically minimize the size of the memory to migrate
■ migrate only live objects
■ only collect regions which can be collected faster than 

transmitted through the network.

This leads to small (with almost only live data) snapshots.



Presentation Overview

● GC background
● ALMA

○ Collection Set
○ Migration Workflow
○ Architecture

● Implementation
● Evaluation

○ App. Downtime
○ Total Migration Time
○ App. Throughput
○ Network Bandwidth Usage

7



GC Background

8

● Parallel Scavenge (old):
○ Spaces: Eden, Survivor, Old
○ Each space is a continuous 

memory block;
○ Young collection (only Eden and 

Survivor spaces), or 
○ Full collection (all spaces)

● G1 (most recent OpenJDK 
garbage collector):
○ Heap is divided into 

Regions (E,S,H,O)
○ Set of regions to collect: 

Collection Set (CS)



ALMA: Collection Set

9

● Amount of data included in the snapshot:

Minimize size of snapshot



ALMA: Collection Set

9

● Amount of data included in the snapshot:

● Total GCCost (time) for collecting the Collection Set (CS):

Minimize size of snapshot



ALMA: Collection Set

10

● Migration Cost (time) for migrating JVM:

Minimize size of snapshot



ALMA: Collection Set

10

● Migration Cost (time) for migrating JVM:

● GC Rate (amount of dead space collected per amount 
of time):

Minimize size of snapshot



ALMA: Collection Set

10

● Migration Cost (time) for migrating JVM:

● GC Rate (amount of dead space collected per amount
of time):

● CS is the group of regions with GC Rate inferior to the 
Network Bandwidth:

Minimize size of snapshot



ALMA: Collection Set

10

● Migration Cost (time) for migrating JVM:

● GC Rate (amount of dead space collected per amount 
of time):

● CS is the group of regions with GC Rate inferior to the 
Network Bandwidth:

Set of regions which can be collected faster than 
transmitted through the network:

- Without collection, migration cost is X
- With collection, migration cost is X’ + GCCost

X > X’ + GCCost



ALMA: Migration Workflow

11

Steps:

1. Prepare Snapshot

2. Build and Collect CS (Migr. Aware GC)

3. Return Free Mappings

4. Send Free Mappings to Coordinator

5. Checkpoint JVM

6. Send Snapshot

7. Stop JVM, incremental snapshot

8. Send final snapshot

9. Restore JVM from snapshot.



ALMA: Architecture

12

Components:

● Application: target application to migrate;

● Agent: analyzes the JVM;

● Coordinator: coordinates migration;

● Dump: takes JVM snapshots;

● Img Proxy: sends snapshot;

● Img Cache: caches snapshot;

● Restore: restores JVM from snapshots;



Implementation

13

● ALMA augmented G1 to support Migration Aware GC;

● Coordinator is implemented by extending CRIU to support 
remote migration. ALMA added two new components to CRIU:

○ Image Proxy - sends snapshot to the destination site;

○ Image Cache - caches snapshot in the destination site;

○ A patch is being iteratively refined to add both components 
to CRIU.



Evaluation

14

● Evaluate ALMA’s performance compared to:

○ CRIU - Checkpoint and Restore for Linux;

○ JAVMM (Hou et. al, 2015) - Extends Xen to migrate Java 

applications. It simply collects the young generation before 
migration;

○ ALMA-PS - Similar to JAVMM but based on CRIU.

● Environment:
○ OpenStack VMs with 4vCPUs and 4GB RAM
○ DaCapo and SpecJVM2008 benchmark suites



Evaluation

14

● Evaluate ALMA’s performance compared to:

○ CRIU - Checkpoint and Restore for Linux

○ JAVMM (Hou et. al, 2015) - Extends Xen to migrate Java 

applications. It simply collects the young generation before 
migration.

○ ALMA-PS - Similar to JAVMM but based on CRIU;

● Environment:
○ OpenStack VMs with 4vCPUs and 4GB RAM
○ DaCapo and SpecJVM2008 benchmark suites

Our Baseline



Evaluation

14

● Evaluate ALMA’s performance compared to:

○ CRIU - Checkpoint and Restore for Linux

○ JAVMM (Hou et. al, 2015) - Extends Xen to migrate Java 

applications. It simply collects the young generation before 
migration.

○ ALMA-PS - Similar to JAVMM but based on CRIU;

● Environment:
○ OpenStack VMs with 4vCPUs and 4GB RAM
○ DaCapo and SpecJVM2008 benchmark suites

Our Baseline

Targets JVM migration; Uses PS 
to reduce snapshot size



Evaluation

14

● Evaluate ALMA’s performance compared to:

○ CRIU - Checkpoint and Restore for Linux

○ JAVMM (Hou et. al, 2015) - Extends Xen to migrate Java 

applications. It simply collects the young generation before 
migration.

○ ALMA-PS - Similar to JAVMM but based on CRIU;

● Environment:
○ OpenStack VMs with 4vCPUs and 4GB RAM
○ DaCapo and SpecJVM2008 benchmark suites

Our Baseline

Targets JVM migration; Uses PS 
to reduce snapshot size

Similar to ALMA, but using PS (as in JVMM)



Evaluation

15

○ Application Downtime;

○ Total Migration Time;

○ Application Throughput;

○ Network Bandwidth Usage;

○ Migration-aware GC vs G1 GC (refer to paper)

○ ALMA with more resources (refer to paper)



Evaluation

15

○ Application Downtime;

○ Total Migration Time;

○ Application Throughput;

○ Network Bandwidth Usage;

○ Migration-aware GC vs G1 GC (refer to paper)

○ ALMA with more resources (refer to paper)

These metrics measure the 
impact of migration on 
application performance.



Evaluation - Application Downtime (seconds)

16

DaCapo

SPECjvm2008

The Smaller 
the Better!

The Smaller 
the Better!



Evaluation - Total Migration Time (seconds)

17

DaCapo

SPECjvm2008

The Smaller 
the Better!

The Smaller 
the Better!



Evaluation - Application Throughput (normalized)

18

DaCapo

SPECjvm2008

The Higher 
the Better!

The Higher 
the Better!



Evaluation - Network Bandwidth Usage (MBs)

19

DaCapo

SPECjvm2008

The Smaller 
the Better!

The Smaller 
the Better!



Conclusions

20

● ALMA offers efficient migration of Java server applications
○ by selectively avoiding garbage when it pays off

● ALMA’s implementation is based on OpenJDK and CRIU;
○ Code is available at: github.com/rodrigo-bruno/alma

● ALMA outperforms current solutions in:
○ Reducing application overhead
○ Reducing total migration time and downtime
○ Reducing network bandwidth usage

http://github.com/rodrigo-bruno/alma


Thank you for your time.
Questions?

Rodrigo Bruno
email: rodrigo.bruno@tecnico.ulisboa.pt
webpage: www.gsd.inesc-id.pt/~rbruno
alma’s github: github.com/rodrigo-bruno/alma

mailto:rodrigo.bruno@tecnico.ulisboa.pt
http://www.gsd.inesc-id.pt/~rbruno
http://github.com/rodrigo-bruno/alma

