
ALMA – GC-assisted JVM Live Migration
for Java Server Applications

Rodrigo Bruno, Paulo Ferreira
INESC-ID / Instituto Superior Técnico, University of Lisbon

{rodrigo.bruno,paulo.ferreira}@inesc-id.pt

ABSTRACT
Live migration of Java Virtual Machines (JVMs) consumes
significant amounts of time and resources, imposing relevant
application performance overhead. This problem is specially
hard when memory modified by applications changes faster
than it can be transferred through the network (to a re-
mote host). Current solutions to this problem resort to sev-
eral techniques which depend on high-speed networks and
application throttling, require lots of CPU time to com-
press memory, or need explicit assistance from the appli-
cation. We propose a novel approach, Garbage Collector
(GC) assisted JVM Live Migration for Java Server Appli-
cations (ALMA). ALMA makes a snapshot to be migrated
containing a minimal amount of application state, by tak-
ing into account the amount of reachable memory (i.e. live
data) detected by the GC. The main novelty of ALMA is
the following: ALMA analyzes the JVM heap looking for
regions in which a collection phase is advantageous w.r.t.
the network bandwidth available (i.e. it pays to collect be-
cause a significant amount of memory will not be part of the
snapshot). ALMA is implemented on OpenJDK 8 and ex-
tends CRIU (a Linux disk-based process checkpoint/restore
tool) to support process live migration over the network. We
evaluate ALMA using well-known JVM performance bench-
marks (SPECjvm2008 and DaCapo), and by comparing it
to other previous approaches. ALMA shows very good per-
formance results.

CCS Concepts
•Networks → Cloud computing; •Software and its
engineering→Virtual machines; Garbage collection;
Process management;

Keywords
Virtual Machine Migration; Garbage Collection; Garbage
First; Java Heap; OpenJDK; JVM; CRIU

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware’16, December 12-16, 2016, Trento, Italy
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4300-8/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2988336.2988341

1. INTRODUCTION
Live migration of a running Java application entails the

full transfer of its state to a remote location, where it is re-
sumed, with minimal downtime. Live migration is useful for
a number of situations, for example: replacing a crashed ser-
vice [34] (fault tolerance), replicating an application for work
distribution [42] (load balancing), application fast start-up
[26], co-locating services to reduce resource usage [9, 35]
(power saving), live service updates [19].

In this work we are interested in improving the live migra-
tion of Java server applications which do not rely on other
local processes (running on the same node). For example,
if two processes in the local node depend on each other,
one cannot be migrated if the other isn’t; in this case, a
full system virtual machine1 migration would be necessary
(to migrate both processes at the same time). However, if
the application to be migrated does not rely on other local
processes to run, we can avoid a full system-VM migration
(which migrates all the Operating System state and other
processes that might be running) and, instead, perform a
JVM migration (single process migration), which is a faster
and less resource demanding alternative to migrate the ap-
plication.

The efficiency of live migration can be measured in three
metrics: i) total migration time, i.e., the amount of time
since the migration starts until it finishes; ii) application
throughput, i.e, the difference between the normal appli-
cation throughput and the throughput experienced includ-
ing a migration (note that application downtime is not the
only factor affecting the application throughput, other fac-
tors such as application throttling or some application slow-
down after migration also affect the throughput); iii) other
resources overhead (e.g., network bandwidth, CPU). We
target these three metrics with out system called ALMA,
i.e. we aim at achieving Java application live migration
with: i) minimal total migration time, ii) minimal appli-
cation throughput impact, iii) minimal resource overhead
(mainly CPU and network bandwidth). Additionally, we
also want to avoid requiring programmer intervention/help
for the migration, special hardware and modifications to the
Operating System as all of these factors impose difficult ob-
stacles to deploying and using the system.

To fulfill such requirements, the migration engine must be
effective and efficient in several ways. To ensure a low to-
tal migration time and low resource overhead, the migration

1In this paper we differentiate a system-VM (e.g. Xen-based
or similar) from the Java Virtual Machine (JVM) using the
terms system-VM and JVM.

engine must minimize the data to transmit; this, it avoids
transmitting data that is not necessary or that can be gen-
erated at the destination node. To achieve low application
overhead (i.e., low throughput impact), the migration engine
must: i) efficiently identify the process working set, and ii)
avoid forcing the application to slowdown before or after the
migration.

Keeping an overall low performance overhead is particu-
larly challenging because the network bandwidth, which is
typically used to transfer the JVM state to a remote com-
puter, is very slow compared to the memory bandwidth
within a single system [29]. Allocation intensive applica-
tions (i.e., applications with high memory demands) are even
harder to migrate since more memory pages are constantly
being dirtied.

A common approach to this problem is to take an initial
snapshot of the underlying system-VM state while appli-
cation is running (pre-copy [44, 7]). After the snapshot is
transferred, the system-VM is suspended and an incremental
snapshot is taken (containing only the differences since the
last snapshot). This second snapshot is transferred and the
system-VM is resumed at the destination host. Previous
work try to improve this approach by using several tech-
niques such as: application throttling [7] and use of high-
speed networks [22], compress system-VM state [23], using
application assistance or looking into the application state
to reduce the amount of state to transfer [21, 19]. However,
these solutions require special hardware, or impose high ap-
plication overhead, or fail to completely determine the exact
state of the application state (i.e., determine which memory
pages are actually required to transfer) ending up transfer-
ring more data than needed, leading to longer migration
downtimes.

Using GC to reduce the amount of data to transfer has
been proposed in previous works ([21, 26]). However, they
not take full advantage of the GC information available when
performing the migration and therefore, force a heap col-
lection even if not necessary; this adds more downtime to
the application without significantly reducing the size of the
snapshot.

In this work we investigate how much improvement can
be attained by taking advantage of knowledge about the
reachability of heap objects. This technique is not exclusive
as other techniques can be combined to boost performance
(for example snapshot compression).

In ALMA we are focused on migrating applications run-
ning on top of JVMs. We assume that a system-VM is al-
ready available at the destination node, ready to receive the
JVM. By migrating only the JVM, we avoid all the Operat-
ing System state and other processes that might be running;
this contributes to a small total migration time and low re-
source usage (since all snapshots only contain information
about the JVM and application).

To minimize the size of each snapshot (that will be mi-
grated), we force a migration-aware garbage collection be-
fore taking the snapshot of the process state. In ALMA we
use the Garbage First (G1) GC, a region-based GC targeted
to be used with large heaps while maintaining low pause
times.2

We augment G1 by introducing a new GC policy to se-

2Garbage First Garbage Collector is a region-based GC. It is
the most recent GC implementation and it will be the next
default collector in OpenJDK’s HotSpot JVM.

lect which regions to collect when collecting the heap. The
goal of the new policy is to select for collection only those
regions whose amount of dead bytes divided by the GC time
(for the particular region only) is lower than the available
network bandwidth (see Section 3 for more details). This
migration-aware GC policy introduces no application over-
head since it uses only internal information already being
gathered by the G1 collector (see Section 2 for details). By
forcing a migration-aware GC before creating each applica-
tion snapshot, we minimize the amount of dead data in the
snapshot, thus substantially minimizing its size.

To implement ALMA we extended CRIU3 (a checkpoint
and restore tool for Linux processes that runs in userspace)
with a Migration Controller; this controller interacts with
the JVM and forwards its snapshots to the destination
system-VM. The migration-aware GC policy is implemented
inside the G1 GC in the Open Java Development Kit 8
(OpenJDK 8).4 All the ALMA code is publicly available
this allowing others to reuse the ALMA and perform exper-
iments with it.5

We evaluate ALMA by using well-known benchmark
suites based on real world Java applications (SPECjvm-
2008 [39] and DaCapo [3]), and by comparing it to: i) an
application-assisted approach called JAVMM [21] (a simi-
lar system we could find on the literature), ii) CRIU (writes
snapshots to disk and then migrates them by means of NFS),
and iii) ALMA-PS (our solution configured to work similarly
to JAVMM [21], more details in Section 5). The evalua-
tion results show that ALMA is able to deliver low total
migration time, low resource overhead, and low application
throughput impact. Compared to the results obtained in
JAVMM [21] and CRIU, ALMA reduces the total migration
time by 5.69 and 2.57 times, the used network bandwidth by
4.42 and 2.86 times, and the application downtime by 1.125
and 3.58 times, respectively.

In short, this work presents several contributions. First,
it provides fast live migration for Java server applications
that do not require full system-VM migration. For these
applications, migrating only the JVM is sufficient. Second,
it describes a G1 GC migration-aware policy implemented
on OpenJDK 8. This policy uses internal information about
each heap region to determine the best set of regions to col-
lect based on the available network bandwidth; Third, it
proposes JVM heap collection before each snapshot. To the
best of our knowledge, this is the first system to employ
a collection at each snapshot. This ensures that no snap-
shot contains more data than necessary (according to our
migration-aware policy). Fourth, it provides a JVM live-
migration tool that runs in user space implemented on top
of CRIU which increases, in multiple ways, the performance
of live JVM migration, compared to previous approaches.
And finally, it presents a detailed performance evaluation
comparing our solution to Hou [21], and CRIU.

The remaining of this document is organized as follows.
Section 2 gives some background on the OpenJDK’s heap,
the G1 GC approach, and CRIU (a checkpoint and restore
tool for Linux processes). Section 3 presents the design of

3CRIU is an open-source project available at criu.org
4The Open Java Development Kit is available at open-
jdk.java.net
5The code is available at: https://github.com/rodrigo-
bruno/ALMA-JMigration. Part of the developed code is
being integrated in the main CRIU repository.

Figure 1: Parallel Scavenge GC Heap

ALMA followed by some implementation details on Section
4. In Section 5, we evaluate ALMA and analyze the results
obtained. We conclude with an analysis of the current state-
of-art (Section 6), and some conclusions (Section 7).

2. BACKGROUND
This section presents several basic concepts regarding the

Java heap and the corresponding GCs; this is relevant for
the next sections describing ALMA. Additionally, we also
discuss CRIU, a Linux process checkpoint and restore tool
since it is the basis for the implementation of the Migration
Controller (presented in Section 4.2).

The Java heap is a continuous segment of memory where
all application objects are allocated. In order to remove dead
(unreachable) objects and free space for new ones, a GC is
used. Different garbage collectors take different approaches
to collect death objects and, most of the times, different
collectors also organize the heap differently [24].

We target two important GC algorithms (currently avail-
able in the OpenJDK): i) Parallel Scavenge (PS), a simple
generational GC which has two distinct memory spaces (gen-
erations), and ii) G1, a more recent generational GC which
divides the heap in equally sized regions that can belong to
any generation. Although ALMA is designed using G1 GC,
we discuss both collectors (G1 and PS) to understand their
key characteristics as they are both extensively discussed in
in the Evaluation Section.

2.1 Parallel Scavenge
The idea behind generational GC algorithms [31] (based

on the intuition that young objects die young) is not new.
Therefore, through time, many generational algorithms have
been developed ([13, 1, 38, 46, 14, 2] just to name a few).
Although most of them share the basic principle of splitting
the heap in young and old generations, the way to collect
each generation differs a lot. We consider the OpenJDK
8’s Parallel Scavenge collector because: i) it is the current
default collector (and therefore it is probably one of the most
used GC implementations), and ii) it was used in previous
work [21].

This specific collector (PS for short) uses two different
algorithms [17]: a copy collector [6] for the young generation,
and a mark-and-sweep collector [33] for the old generation
(see the PS heap layout in Figure 1).6 Both generations
are collected using multiple threads but are not concurrent
with the mutator, i.e., both require stopping the application
(forcing stop-the-world pauses).

6In generational GCs (and therefore in PS and G1, the heap
is divided in two generations: young and old. The young
generation is where all recently allocated objects live. As
objects survive collections, older objects are promoted into
the old generation.

Figure 2: Garbage First GC Heap
(each square represents a region)

The young generation is divided into three areas (see Fig-
ure 1): Eden, From, and To spaces. The Eden is where all
new objects are allocated. Once it is full, a minor collection
takes place: when such collection starts, all live data inside
the Eden space is copied to From space and all live data
inside To space is copied to the old generation. Full GCs
(i.e., all the heap is collected) are triggered when the heap
is almost full and typically entail an extra heap compaction
step.

This collector aims at achieving high throughput. How-
ever, this comes at the cost of forcing the mutator to stop
while the garbage collector is performing a minor or a full
collection. Increasing the size of the young generation will
result in less frequent GCs but will increase the per-GC
pause as the pause time is proportional to the number of
live objects (that need to be copied away from Eden space).

2.2 Garbage First
Garbage First GC [12] is generational [31] and has a spe-

cific heap organization (see Figure 2). A G1 heap is divided
into equally sized regions (the default region size for the
OpenJDK 8 is 1024 Kilobytes) which can be in one of the
following states: Eden (newly allocated objects), Survivor
(objects moved from Eden in the latest collection), Old (ob-
jects that survived at least two collections), and Humongous
(large objects). In order to maintain enough free space for
new regions (necessary to allocate new objects when current
young regions are full), periodic GCs are performed.

Similarly to other generational GCs, the G1 provides two
types of collections: i) young collections, in which only
young (eden and survivor) regions are selected to be col-
lected, and ii) mixed collection, in which both young and
old (including humongous) regions can be selected for col-
lection. Both types of collections are triggered by different
conditions (which are not relevant for now). The important
idea is that all the live data in the set of regions selected for
collection is copied to one or more regions. This results in
more compacted heap regions.

Since G1 is thought for collecting large heaps while main-
taining a low GC pause time, it must control how many
regions will be collected at each collection. To do so, it
relies on data gathered by the concurrent marking threads,
which traverse the heap and, for each region, produce statis-
tic information relevant for a possible collection of that re-
gion (e.g., predicted time to collect, number of reclaimable
objects, etc). With this information, more particularly the
time it will take to collect a particular region, the GC will
select a set of regions, named Collection Set, to collect while
keeping the GC pause lower than an user defined threshold.
This particular metric (time to collect a region) is estimated
based on several factors: number of live objects in the region,

number of cached reference updates (dirty cards), previous
collections, etc.

In ALMA, we take advantage of the information gathered
by the concurrent marking threads to select an optimized
Collection Set, according to the available network bandwidth
(see Section 3.2). Since we are harnessing information that
is already there (for GC purposes) we incur in no extra ap-
plication overhead.

Note that this information (time necessary to collect each
region, reclaimable space per region) does not exist in PS
because it uses a heap with two long generations (as illus-
trated in Figure 1) as opposed to G1 which uses a heap with
multiple regions (see Figure 2).

Regardless of the information provided by the collector,
another key important reason for using G1 in ALMA is that
G1 is being prepared to be the default GC for the next
versions of the OpenJDK.

2.3 CRIU
CRIU [25] is a checkpoint and restore tool for Linux. Us-

ing CRIU, it is possible to freeze a process and checkpoint it
to local disk as a collection of files. One can, later, use this
collection of files (snapshot) to restore the application in the
point it was frozen. CRIU is implemented in user space and
not in the Linux kernel.

CRIU supports snapshoting processes and subprocesses,
memory-mapped files, shared memory, open files, pipes, FI-
FOs, unix domain sockets, network sockets, signals, and
more are still being implemented (the system is still un-
der development). Currently, it is mostly used to support
container [16] live migration.

This tool is used by ALMA as basis for the implementa-
tion of the Migration Controller (described in Section 3.1).
To enable Java application live migrations, ALMA extends
CRIU to allow snapshot data to be transferred to the desti-
nation site (instead of being saved to local disk). By default,
CRIU supports remote migration by using an NFS share to
send the snapshot files. More details on how ALMA extends
CRIU are presented in Section 4.2.

3. JVM LIVE MIGRATION
In this section we start by giving a small introduction

to the migration workflow and how ALMA minimizes the
amount of data to transmit during the migration. Then, we
describe ALMA’s architecture, how it selects regions to col-
lect before a migration, the migration worklow, and finally,
a set of optimizations.

The JVM live migration uses the following workflow (this
workflow is described in further detail in Section 3.3): i) the
source site takes a snapshot of the JVM, and sends it to the
destination site; ii) upon reception at the destination site,
the source site stops the application and takes an incremen-
tal snapshot of the JVM and sends it to the destination site.
Although the algorithm described in Section 3.3 works with
any number of incremental snapshots, ALMAis implemented
to use only one incremental snapshot (after the initial snap-
shot). This is discussed in greater detail in Section 3.3.

To reduce the amount of data to transfer when performing
a JVM live migration while keeping a low overhead on the
application throughput, ALMA analyzes the heap to dis-
cover heap regions with a GC Rate (amount of data that
can be collected in some amount of time) that is superior
to the network bandwidth; such regions will be collected to

Figure 3: ALMA architecture.

reduce their size.

3.1 Architecture
ALMA is composed by two components, each one used

on both source and destination nodes/sites (see Figure 3):
Migration Controller, and JVMTI agent (described below).
Both destination and source sites are represented using
dashed lines. Each process is represented with a gray back-
ground. JVMTI agents are represented by dotted lines.

The Migration Controller is responsible for: i) communi-
cating with the local JVM at the source site to inform that a
migration is being prepared (this will trigger the heap anal-
ysis and collection of the chosen regions); ii) looking into the
local JVM process to save all the necessary information (in
the source site) for the process to resume at the destination
site (this includes page mappings, open files, threads, etc);
note that apart from the first snapshot, only the differen-
tials are transferred between the source and the destination
sites; iii) transfer all the gathered process state data to the
destination site; iv) bootstraping the process at the destina-
tion site, using the collected information by the Migration
Controller at the source site. More details on how the Mi-
gration Controller is implemented (including a description of
both Image Proxy, Image Cache, and CRIU) can be found
in Section 4.2.

The JVM was modified to contain a migration aware G1
GC policy. This policy is used, when a migration starts, to
determine the set of regions to consider for collection (more
details in the next section). Note that we do not change or
require any application-specific code. Only the JVM code is
modified.7

To facilitate the communication between the Migration
Controller and the JVM, we use a JVMTI agent, a simple
pluggable component that accesses the internal JVM state8.
This agent is responsible for: i) receiving requests from the
Migration Controller to prepare the heap for a snapshot,
(e.g., request to start a migration-aware GC), and ii) enu-
merating heap ranges of unused memory (that will be used
to reduce the size of the snapshot, as described in Section
3.3).

7As discussed in Section 4.1, the changes to the JVM code
are very small and therefore, are easily ported to other JVMs
using a patch, for example.
8The JVMTI documentation is accessible at
docs.oracle.com/javase/8/docs/technotes/guides/jvmti/

3.2 Heap Region Analysis
In order to reduce the amount of data to transfer,

ALMA looks into the JVM heap for memory locations which
are no longer reachable, i.e., garbage (thus containing only
dead objects). To identify dead objects, one must scan/trace
the entire heap and mark live objects, leaving dead objects
unmarked (please note that we are focused in tracing collec-
tion [33] rather than reference counting [8] collection). This
is a difficult task and many tracing GC implementations
strive to reduce its negative effect on the performance of the
application. Hence, we do not want to impose an extra over-
head by using our own marking mechanism. Therefore, we
rely on the marking operations performed by the G1 GC to
analyze the heap, i.e., we neither modify the G1 GC mark-
ing operations to collect more data nor introduce new GC
data structures.

As already said, the G1 GC (discussed in Section 2.2),
periodically marks the heap and produces several metrics
per heap region (resulting from the marking heap traversal)
that allows ALMA to draw relevant conclusions leading to a
minimal snapshot size. Two of the most important metrics
are the following: i) an estimate of the amount of space
the GC would be able to reclaim if a particular region is
collected, and ii) an estimate of the time needed to collect a
particular region.

With these estimates, ALMA decides, for each heap re-
gion, either to collect it, i.e., moving all live data to another
region, or to avoid collecting it and thus not paying the time
to do so. The set of regions selected for collection is called
Collection Set (CS for short).

Thus, the total amount of heap data to transfer (i.e., to be
included in the snapshot) is defined as the sum of the used
space (i.e., allocated space, which might include reachable
and unreachable data) of each region minus the reclaimable
space (i.e., dead objects) in the regions in CS (see Eq. 1).

Data =
∑
Heap

used(r)−
∑
CS

dead(r) (1)

Collecting a set of regions has a cost (time), which is de-
fined in Eq. 2 as the sum of the cost of collecting each region
in CS.

GCCost =
∑
CS

cost(r) (2)

We can now define the migration cost (in time) for mi-
grating all heap regions (after each region r in CS has been
collected) as the amount of data to transfer divided by the
network bandwidth (which will be used to transfer the JVM)
plus the cost of collecting the CS (see Eq. 3).

MigrationCost =
Data

NetBandwidth
+ GCCost (3)

Taking into account that we want to minimize the migra-
tion cost by properly selecting regions for the CS, we must
minimize Eq. 3. In other words, we need to maximize the
amount of reclaimable space and minimize the cost of col-
lecting it. Hence, we define the ratio GCRate (see Eq. 4)
as the amount of data reclaimed per amount of time for a
region r.

GCRate(r) =
dead(r)

cost(r)
(4)

Figure 4: ALMA’s Migration Controller Workflow

With GCRate defined, we can estimate, for each region in
the JVM heap, the GCRate and make sure that each region
which has a GCRate superior to the network bandwidth is
added to the CS. In other words, ALMA selects the regions
that can have their size reduced and, as a result, transmitted
faster than if that same region with its original size is trans-
mitted. Thus, the CS is constructed as defined in Eq. 5:
all regions whose GCRate is greater than the NetBandwidth
are selected for collection.

CS = {∀r : GCRate(r) > NetBandwidth} (5)

3.3 Migration Workflow
Having explained how the heap is analyzed and prepared

for migration, we now describe the live migration workflow;
it starts when the migration request is issued, and finishes
when the JVM is resumed at the destination site.

The flowchart in Figure 4 represents this process. To start,
we launch two instances of the Migration Controller (Start
Migration), one at each site. The controller spawned at the
source site is then responsible for asking the JVM to pre-
pare for a migration (Prepare JVM Snapshot). This request
triggers a heap analysis, which results in the construction of
the CS, which is then collected (Build and Collect CS).
The request is then answered with a list of virtual memory
ranges that contain no live data (Send Free Mappings to

Migration Controller). Note that these virtual memory
ranges can be as large as a full heap region, but can also be
smaller. This ensures that only live data is transmitted and
all other memory is skipped.

Also note that we guarantee that the virtual memory
ranges marked as containing only dead objects are consistent
with the real application state. ALMA does this by analyz-
ing the heap memory and taking the process snapshot while
the JVM is still inside the last stop-the-world pause after
collecting the CS.

The next step (still at the source site) is to snapshot the
JVM (Snapshot JVM (ignoring free mappings)). In this

step, the Migration Controller looks into the process state
and takes a snapshot of its memory, which is then forwarded
to the destination site Migration Controller (Send Snapshot

to Destination Site). This snapshot is incremental w.r.t.
the previous one (except if this is the first snapshot).

Subsequent snapshots take the same approach until upon
the last snapshot; then, the Migration Controller at the
source site notifies the controller at the destination site to
resume the JVM with all the state already forwarded (Tell
Destination Controller to Resume JVM on the source site
and Wait for JVM Snapshot from Source Controller at
the destination site). At the destination site, the Migration
Controller simply receives application snapshots (Receive
JVM Snapshot), which are kept in memory, and waits for
the resume JVM request (Resume JVM). Upon reception, it
rebuilds the JVM and the process resumes.

This algorithm works with any number of snapshots.
However, ALMA is configured by default to perform only
two snapshots: one initial snapshot when the migration
starts, and a second one (incremental with regards to the
first one) when the initial snapshot arrives at the destina-
tion site. We found that having more than two snapshots
does not reduce the application downtime (at least for the
applications used in Section 5). Limiting ALMA to only
two snapshots decreases the network bandwidth usage, and
the total migration time. In addition, it turns migration
more predictable, i.e., the Migration Controller does not
take an arbitrary number of snapshots that will result in
unpredictable total migration time and network bandwidth
usage.

3.4 Optimizations
In order to improve the efficiency of the migration engine,

ALMA employs several techniques to minimize the snapshot
size and reduce the application overhead. For the rest of
this section, we explore these optimizations: i) avoiding un-
necessary collections when GCs triggered by the application
are frequent; ii) avoid collecting regions included in previ-
ous snapshots to avoid increasing the size of the differential
snapshot.

3.4.1 Avoid Unnecessary Collections
Depending on the mutator memory consumption rate,

more or less GCs will be triggered. Applications that allo-
cate memory very fast will most likely end up being collected
much more often than applications that allocate much less
memory.

We can take advantage of this fact in two ways. First,
applications that allocate lots of memory will trigger GCs
very often and ALMA can take advantage of these GCs to
start a migration. In other words, instead of forcing a GC,
ALMA can simply wait for the next application-triggered
GC to start the snapshot cycle or start a forced GC after an
used defined migration-timeout. Second, applications that
allocate less memory will take longer to trigger a GC and
will probably hit the migration-timeout most of the time.
However, this is not a problem since these applications take
longer to dirty memory and the migration engine can easily
catch up with the memory changes.

3.4.2 Avoid GCs between Snapshots
Since G1 behaves just like a per-region copy collector (i.e.,

it copies the live content of one region to another upon col-

lection), memory might get dirtied by the collector. This is
particularly bad if the collector ends up copying live data
around the heap because it breaks the benefits of using in-
cremental snapshots.

To deal with this issue, ALMA prevents regions that had
live data in the previous snapshot to be collected. By doing
this, we prevent memory that was not filtered as garbage
in the previous snapshot from being copied by the GC (this
would create unnecessary incremental modifications between
the previous and the next snapshot). Obviously, if the heap
gets nearly full, we let the GC collect any regions. However,
at this point, it probably means that most of the heap is
dirtied anyway.

4. IMPLEMENTATION
In this section we describe some implementation details

regarding our solution. First, we present how our migration
aware GC is implemented using G1, and then we discuss the
internal architecture of the Migration Controller: its internal
components and their purpose.

4.1 Migration Aware GC
ALMA is implemented in the OpenJDK HotSpot JVM

8 by modifying its G1 collector. ALMA adds a migration
aware policy which takes advantage of the already existing
G1 data structures to perform the heap analysis. The mod-
ifications done into the JVM are small, about 50 lines of
code changed/inserted. This means that it is easy to port
this modifications to other JVMs, if needed.

The G1 GC uses, internally, data regarding each heap
region (e.g., number of free bytes, used bytes, references from
object outside the region to objects inside the region, etc).
Such data is gathered by the concurrent marking threads,
which scan the heap, marking all live objects. Based on
these information, the G1 GC is able to tell how many live
bytes reside inside a particular region. As time goes by and
regions get collected, the G1 GC is also able to estimate the
time it will take to collect a particular region. This estimate
is based on several factors: e.g., previous collections, number
of inter-region references to update, number of live objects.

Once a migration is about to start, we take advantage of
this information maintained by G1 to compute the optimal
set of memory pages to include in the snapshot. This heap
analysis is ruled by the equations described in Section 3.2. In
other words, only regions in which garbage can be collected
faster than transmitted through the network are collected.

4.2 Migration Controller
The Migration Controller component used in ALMA is im-

plemented using CRIU. We modified CRIU to: i) support
live migration through the network (original CRIU writes
the process state to disk and uses NFS to provide remote
migration), and ii) filter free mappings (reported by the
JVMTI Agent) from the snapshot. CRIU runs in userspace
and therefore, there is no need neither to modify the kernel
nor to load any extra modules. Note that CRIU already
handles the migration of process’s resources such as open
files, subprocesses, locks, etc.

The original CRIU (i.e., without our modifications) writes
locally a process snapshot to disk which can then be mi-
grated using a NFS share. In addition, the original CRIU
does not provide live migration, the user being responsible
for requesting the restoration of the process at the destina-

tion site. We have also modified CRIU to wait and react to
new process snapshots, and to restore a process as soon the
last snapshot is transferred to the destination site.

ALMA’ Migration Controller extends CRIU by adding
two new components: the Image Proxy (runs at the source
site), a component that forwards process snapshots to the
destination site, and the Image Cache (runs at the des-
tination site), a component that caches process snapshots
in memory until ALMA restores the process. Both Image
Cache and Image proxy are auxiliary components that act
as an in-memory snapshot caches. The benefits from using
such components is twofold. First, both components keep
snapshots in memory, which is much faster than writing and
reading from disk (even for SSDs). Second, since the Im-
age Proxy proactively forwards the snapshot to the Image
Cache, we can start restoring the process while CRIU is still
finishing the creation the snapshot and while the snapshot
is still being transferred; in other words, process restoration
is concurrent with the last snapshot creation.

5. EVALUATION
This section describes the evaluation of ALMA. We use

two benchmark suites, SPECjvm2008 [39] and DaCapo 9.12
[3], and evaluate ALMA against:

- CRIU (a checkpoint and restore tool for Linux pro-
cesses); this solution uses NFS to transfer snapshots from
the source site to the destination site; thus, it does not take
into consideration unused or unreachable memory and there-
fore, snapshots all memory allocated to a particular process;

- JAVMM [21], a recent system with the same goal:
migrate Java applications. We compare this system to
ALMA because they share the same goal (migrate Java ap-
plications) and also try to use garbage collection for reducing
the size of snapshots. However, authors decided to imple-
ment JAVMM through system-VM migration, as opposed to
the other evaluated systems (CRIU, ALMA-PS, and ALMA)
that only migrate a specific process (enclosing a JVM); this
naturally results in more network bandwidth usage and in-
creased total migration time given that the initial snapshot
contains the state of all processes running on the system as
well as the Linux kernel itself; for this solution, we present
the results that we extracted from Hou [21].9 This means
that we only present results regarding the downtime, net-
work utilization, and total migration time for the scimark,
derby and crypto benchmark applications. For the other
benchmark applications and other experiments, we do not
show any results since we could not perform experiments
with JAVMM;

- ALMA-PS which is the ALMA solution using the
GC and tuning proposed in JAVMM [21]; in other words,
ALMA-PS uses the Parallel Scavenge GC with 1GB for
young generation and 1GB for old generation, and forces one
minor (young) collection upon snapshot creation (settings
described in Hou [21]). We use this system to: i) isolate the
performance benefits of using JVM migration versus system-
VM migration (comparing it to JAVMM) and, ii) measure
the performance benefits of using ALMA’s migration-aware
GC policy versus using the regular not migration-aware GC
policy. Note that by using 1GB for the young generation,

9The paper authors did not provide their solution for le-
gal reasons. Having access to the source code would have
enabled us to obtain more results.

ALMA-PS ensures that all benchmarks applications’ work-
ing set fits in the young generation. This represents the best
scenario for this collector. Using less memory for the young
generation would lead to some benchmark applications hav-
ing data in the old generation, which would increase the
size of the snapshots (as this generation is not collected by
ALMA-PS).

Note that in ALMA we do not impose any configuration
parameter on G1, letting the GC automatically adapt to
the memory usage. This obviously leads to some data being
promoted into the old generation. However, for ALMA this
is not a problem since any region can be collected before
creating a snapshot (see Section 3.2 for details).

All these three solutions were executed on a local Open-
Stack10 installation, where we spawn system-VMs and per-
form the JVM migration between them (note that we could
not conduct these experiments using JAVMM since we do
not have access to it). The physical machines that host the
system-VMs are Intel Xeon @ 2.13GHz with 40GB of RAM.
Each of these physical machines (and thus the system-VMs)
are connected using a 1Gbps network. We always spawn
system-VMs in different physical nodes and we make sure
that these physical nodes are being used only for our ex-
periments. Each system-VM has 4 virtual CPUs and 2GBs
of RAM except when we run experiments with ALMA-PS,
which needs 4GBs of RAM to run (more details in Section
5.2).

With this environment setup, we approximate as much as
possible the environment used for evaluating JAVMM (for
which we present the results available in the paper [21]) and
the environment used for evaluating ALMA. The amount
of RAM and network bandwidth are the same for both
JAVMM and ALMA; the virtual CPUs used in for evaluat-
ing JAVMM are slightly faster (AMD Opteron @ 2.2 GHz)
than those used for evaluating ALMA (Intel Xeon @ 2.13
GHz). This gives a little advantage to JAVMM since the
migration engine run faster when a migration needs to be
performed.

In this section we start by characterizing the applications
included in both benchmarks w.r.t. memory utilization, and
then present the evaluation results regarding: i) application
downtime - amount of time that the application is stopped
during migration; ii) network bandwidth usage - amount
of data transferred through the network for migrating the
application; iii) total migration time - time between the mi-
gration starts and the application resumes at the destina-
tion site; iv) application throughput - throughput difference
between normal execution and execution including a migra-
tion; v) migration-aware GC performance overhead - the
overhead imposed by our migration-aware GC versus the
original G1; vi) ALMA performance with more resources
- performance results (application downtime) when more
cores and/or more network bandwidth are used.

5.1 Benchmark Description
Table 1 shows a summary of the memory characterization

for the benchmarks used in our experiments. Other applica-
tions belonging to either SPEC or DaCapo benchmark are
not presented because: i) some do not run in our JVM (as
they fail to compile, for example the compiler benchmark ap-
plication fro SPEC) or could not be migrated using CRIU

10OpenStack is a cloud computing software platform. It is
accessible at openstack.org.

Figure 5: Application Downtime (seconds) for SPEC (left) and DaCapo (right) benchmarks

Benchmark AR GR % Gbg % Yng HU
scimark 11.85 6.28 53.22 .21 481.40
derby 815.53 301.75 37.41 37.41 449.10
crypto 258.46 250.53 96.93 .57 349
compress 31.25 0.94 2.88 3.60 55.60
xml 740.94 614.98 82.72 82.38 149.30
serial 585.86 181.62 30.92 30.87 187.90
mpegaudio 86.07 66.27 76.75 86.42 24.30
avrora 1.94 1.44 74.38 75.22 22.60
h2 405.14 121.54 29.62 34.75 423.00
fop 223.66 140.20 60.23 63.33 176.00
pmd 130.63 84.91 64.57 68.45 232.30
snuflow 457.03 389.33 82.63 82.18 142.20
eclipse 9.05 4.80 53.40 57.67 107.50
tomcat 61.05 53.11 87.49 88.35 127.90
jython 794.59 659.51 82.54 82.54 178.10

Table 1: Benchmark Analysis for SPEC and DaCapo

(for example the tradebeans and tradesoap benchmark ap-
plications from DaCapo); ii) the others provide similar per-
formance results and this leads to no new conclusions (in
other words, the applications that we present are represen-
tative regarding the concerns of this evaluation).

The top rows (Table 1) refer to SPEC benchmark appli-
cations while the bottom rows refer to DaCapo benchmark
applications. For each application we present: i) allocation
rate (AR), the amount of data allocated by the application
per unit of time (MB/s); ii) garbage creation rate (GR),
i.e. the amount of dead data allocated per unit of time
(MB/s); iii) percentage of allocated heap space which is un-
reachable (% Gbg) upon a minor collection; iv) percentage
of used heap space which belongs to the young generation 11

(% Yng) upon a minor collection; v) heap usage (HU), i.e.
amount of application data in the heap (this includes both
live and dead objects) upon a minor collection.

Each one of these metrics is obtained by looking into G1
GC logs (we did not modify the logging infrastructure for
the JVM) produced by running each benchmark application.
We analyze the last GCs runs before migration starts. This
ensures that these metrics represent the state of the JVM
when the migration is performed. For example, to obtain
the allocation rate (AR), we consider the last two consecu-
tive allocation failure triggered 12 GCs before the migration

11The young generation comprehends all heap regions which
contain recently allocated objects. Objects that survive at
least two garbage collections are promoted (to the old gen-
eration) and no longer belong to the young generation.

12An allocation failure happens when no more free memory

starts. We take the heap usage after one GC and the heap
usage right before the next one and divide it by the time
elapsed between the two GCs. All values are averages of at
least 5 runs (we enforce additional runs when outliers are
detected).13 This is also true for all values presented during
the evaluation section. We found that these metrics are sta-
ble at least during the migration process. This means that:
i) the size of the application working set (i.e., the amount of
live data left after the GC runs) is stable, and ii) GCs run
periodically when the percentage of free space approaches
zero, setting the heap usage back to the working set size.

Note that all metrics in Table 1 are obtained using the
G1 GC. Other GCs might produce slightly different results
because of the different heap partitioning and different col-
lection techniques. Nevertheless, for all generational collec-
tors (i.e., collectors belonging to the same family of G1), the
conclusions taken from Table 1 also apply.

5.2 Application Downtime
In this section, we present the results obtained when mea-

suring the application downtime: time span between the mo-
ment the JVM is stopped at the source site and the JVM
starts at the destination site. In other words, the time in-
terval during which the application does not run (neither on
the source site nor on the destination site).

These results were obtained for all systems using a total
of 15 applications (presented in Table 1). For each experi-
ment we start the application at the source site, let it run
for 1 minute and then migrate the enclosing process (JVM
included) to the destination site. We found that 1 minute
is enough for all applications to warm-up and to reach their
maximal resource consumption (mainly CPU and memory).
All applications run at least five times; we show both the av-
erage and the standard deviation for these runs. More runs
are performed when outliers are detected. This procedure is
also used in the next sections.

Figure 5 shows the results for the application downtime.
For each benchmark application, results are grouped, hav-
ing one bar for system (from left to right): JAVMM, CRIU,
ALMA-PS, and ALMA. This organization of columns is also
used in subsequent figures. We note that CRIU is the mi-
gration solution with worse downtime. This is because it
snapshots all the process memory, not taking into account
unused or unreachable memory, and also because it uses
NFS to transfer all snapshots. Regarding ALMA-PS, the
measured downtime is much better than CRIU’s (except

exists to satisfy an allocation request. This event triggers a
garbage collection.

13We execute each experiment 5 times given that the results
obtained remain stable even with more runs.

Figure 6: Network Bandwidth Usage (MBs) for SPEC (left) and DaCapo (right) benchmarks

mpegaudio) but still worse than ALMA. The reasons are
the following. First, ALMA-PS initializes the young genera-
tion with the size of 1GB. This forces the process of taking a
snapshot and restoring it to handle 1GB of memory. If this
young generation size pre-condition was not imposed, tak-
ing and restoring a snapshot would handle potentially much
less memory (the actual amount of memory used by the ap-
plication). The mpegaudio application is a clear example:
it uses around 24MB of memory (Table 1). Therefore, the
overhead of handling 1GB instead of 24MB (approximately)
makes ALMA-PS perform worse than ALMA and CRIU. In
ALMA, we do not impose such young generation size pre-
condition and therefore, this overhead does not exist, i.e, we
only process the amount of memory that the application ac-
tually uses. Second, old generation garbage is not collected
by ALMA-PS, which only forces a minor (young) collection.
This way, all garbage that resides in the old generation will
be transferred to the destination site. This is specially no-
ticeable in h2 (DaCapo) and scimark (SPEC), for example.

Regarding ALMA and JAVMM (still see SPEC results
from Figure 5), ALMA achieves better results in 2 out of 3
applications. Considering that the environment in which
both systems are evaluated (JAVMM uses slightly faster
CPUs), we expect ALMA to perform even better versus
JAVMM if running in the same exact environment.

Another important difference between ALMA and
JAVMM is that ALMA runs in the same system-VM as
the application while JAVMM runs directly on the physical
machine (that hosts the system-VM containing the appli-
cation). This means that ALMA might take a little longer
to take a snapshot compared to JAVMM if the system-VM
CPU is exhausted by the application. Therefore, our envi-
ronment represents a worst case scenario for ALMA since
the CPU is exhausted by the applications.

Taking into account these application downtime results
and the benchmarks applications characterization shown in
Table 1, it is possible to draw some general conclusions. High
allocation ratio does not imply a high application downtime.
For example, the jython application has one of the highest
allocation ratio but the corresponding application downtime
is not among the highest ones. The highest downtime (and
therefore the most costly applications to migrate) are the
ones with high allocation ratio and low garbage creation
ratio; in other words, applications with higher long-lived
objects creation ratio lead to higher application downtime.
Examples of such applications are h2, scimark, and derby.
Even for these worse cases, the downtime with ALMA is less
than CRIU, ALMA-PS. ALMA and JAVMM achieve similar
downtime results for scimark and derby.

5.3 Network Bandwidth Usage
In this section we present the evaluation results of

ALMA regarding the network bandwidth usage, i.e., the
amount of data transferred through the network to migrate
an application (see Figure 6). JAVMM clearly yields the
worse results, even worse than CRIU. This is due to the
fact that JAVMM migrates a whole system-VM. Note that,
since the goal is to migrate an application from one ma-
chine to another, ALMA only migrates the application pro-
cess (including the JVM) while JAVMM migrates the whole
system-VM.

CRIU follows JAVMM as it does not remove unreachable
data from the snapshots; thus, it transfers more data than
ALMA and ALMA-PS. Comparing ALMA and ALMA-PS,
ALMA is superior in 10 out of 15 applications. The only
benchmark applications where PS achieves better results
are the following: derby, avrora, fop, pmd, and sunflow.
The common particular feature of these applications comes
is that most garbage (collected before taking the snapshot)
originates from the young generation. The better results of
ALMA-PS are due to the fact that its Parallel Scavenge col-
lector is more efficient collecting the young generation than
G1 (which is used by ALMA). This comes from the fact that
in G1, although objects are all in the young generation, they
occupy several regions which imply handling inter-region ref-
erences (stored in card tables) and, consequently, need more
GC effort to collect all young garbage; such inter-region ref-
erences do not exist in the GC of ALMA-PS as all young
objects are in the same region (young generation).

In general, applications that use more memory tend to
consume more memory bandwidth during migration. From
Table 1 and Figure 6, we may conclude that applications
with more heap usage and less garbage percentage (e.g. sci-
mark, derby, h2) result in increased network bandwidth us-
age.

5.4 Application Throughput
Figure 7 shows the normalized results for the throughput

of CRIU, ALMA-PS, and ALMA. These results are obtained
by sampling the benchmark throughput (number of opera-
tions) each five seconds. The measured number of operations
is specific to each benchmark, i.e., one cannot compare the
number of operations of two different benchmarks. The only
possible comparison (which we do) is the number of opera-
tions between multiple runs of the same benchmark.

The average throughput in normal execution of the bench-
marks represents the value one in Figure 7. The normal-
ized throughput for each system, represents the throughput
achieved when the migration occurred.

The throughput results have a strong correlation with the

Figure 7: Application Throughput (normalized) for SPEC (left) and DaCapo (right) benchmarks

application downtime (see Section 5.2). In other words,
there is no relevant slowdown in the application through-
put after starting at the destination site (i.e., the applica-
tion is already running at a normal throughput and does
not need to warm-up). Therefore, most conclusions derived
from analyzing application downtime are still applicable to
application throughput.

In short, CRIU is clearly the solution with lower through-
put for almost all benchmarks, followed by ALMA-PS.
ALMA is the solution with highest throughput, which is
above 80 % of the normal throughput for almost all bench-
marks. The benchmark with lower throughput is scimark,
which is a CPU and memory bound benchmark, reason why
the migration of this specific benchmark produces a severe
throughput slowdown for all systems. Compared to ALMA-
PS, ALMA achieves higher throughput in 14 out of 15 bech-
mark applications.

5.5 Total Migration Time
This section presents the results for total migration time,

i.e., the time between a process migration is requested and
the process resuming at the destination site.

Once again (see Figure 8), JAVMM performs worse than
all others. This results from the fact that JAVMM migrates
a whole system-VM while the other solutions migrate only
a process (the JVM). Regarding CRIU, the results are pro-
portional to those presented in Figure 6 (bandwidth usage)
since the total migration time mostly comes from transfer-
ring snapshot data.

ALMA performs better than any other solution. ALMA-
PS, which shows better results for network bandwidth usage
(Figure 6) in some cases, has the drawback of forcing a 1GB
young generation space; this increases the cost of each snap-
shot and restoration of the process. Reducing the size of the
young generation wouldn’t help either because it would lead
to more young collections and push more objects into the
old generation, which is not collected by ALMA-PS before
a migration. As with application downtime, the mpegau-
dio application provides a clear example of this overhead:
ALMA-PS achieves the worst performance because the pro-
cess heap size is very small but the young generation is still
set to 1GB.

Table 2 shows the average of each one of the previously
presented evaluation results (application downtime, network
usage, total migration time, and throughput) of each so-
lution normalized to ALMA. We could not measure the
throughput for JAVMM since we could not reproduce our
experiments with JAVMM.

ALMA clearly achieves the best performance in all three
metrics. Compared to JAVMM, ALMA: i) improves the

Metric CRIU JAVMM ALMA-PS
Downtime 3.58 1.13 1.68
Net. Usage 2.86 4.42 1.41

Total Migr. Time 2.57 5.69 1.06
Throughput 0.61 NA 0.89

Table 2: Performance Results Normalized to ALMA

Benchmark G1 GC Migr. GC Migr. GC (Norm.)
scimark 19 ms 18 ms 0.94
derby 7 ms 7 ms 1.00
crypto 12 ms 8 ms 0.67

compress 2 ms 3 ms 1.50
xml 6 ms 11 ms 1.83

serial 2 ms 4 ms 2.00
mpegaudio 3 ms 7 ms 2.33

avrora 5 ms 12 ms 2.40
h2 102 ms 36 ms 0.35
fop 19 ms 26 ms 1.36

pmd 17 ms 22 ms 1.29
sunflow 5 ms 6 ms 1.20
eclipse 14 ms 38 ms 2.71
tomcat 14 ms 17 ms 1.21
jython 5 ms 13 ms 2.60

Table 3: ALMA Migration Aware GC Overhead Compared
to G1 GC for SPEC and DaCapo

downtime by 13%, ii) network usage is 4.42 times lower, and
iii) total migration time is 5.69 times faster.

ALMA-PS presents the closest performance results when
compared to ALMA. Table 2 shows that ALMA achieves
41% better performance compared to ALMA-PS regarding
network usage, 68% regarding downtime, 6% regarding to-
tal migration time, and 11% for the application throughput
(including migration).

5.6 Migration Aware GC Overhead
As already said, ALMA’s migration-aware GC collects

all heap regions whose GCRate is greater than the network
bandwidth (see Section 3). This section shows the perfor-
mance penalty of running such a migration-aware GC. Table
3 presents the average duration of: i) column G1 GC - each
collection done with the default G1 GC (as if there was no
ALMA), ii) column Migr. GC - using the migration aware
policy described in Section 3), and iii) column Migr. GC
(Norm.) - the normalized values for the migration aware
GC w.r.t. the G1 GC.

As expected, a migration-aware GC (as it happens in

Figure 8: Total Migration Time (seconds) for SPEC (left) and DaCapo (right) benchmarks

Figure 9: ALMA Application Downtime With More Cores
Versus More Network Bandwidth

ALMA) takes longer than a G1 GC in 12 out of 15 ap-
plications. This is due to the fact that ALMA migration
aware policy selects more regions to collect than the default
G1 policy (which tries to minimize the application pauses),
and thus, takes more time to finish.

In 3 applications (h2, scimark, and crypto) this is not true,
i.e. the migration aware GC is faster than G1 GC. In these
particular cases, this is due to the fact that G1 performs
several full GCs14 because these applications allocate large
blocks of memory which occupy most of the heap leading to
allocation failures. For this reason, ALMA migration aware
GC takes less time than the average default G1 GC.

Nevertheless, even the cases where the migration-aware
GC is slower than G1 GC, the difference in time is very small
compared to the application downtime during a migration.
In other words, an increase of a few dozens of milliseconds in
GC duration will have a negligible impact on the migration
downtime.

5.7 ALMA with More Resources
In this last experiment, we study the performance impact

of ALMA on the application downtime, when increasing the
number of cores used by the application and the network
bandwidth available (used to transfer the application snap-
shots). For this experiment only, we used 3 different system-
VMs (also hosted in our local OpenStack installation) with
2, 4, and 8 cores. We performed this experiment with only
one application, crypto. We chose this particular applica-
tion because it dirties memory at a constant rate, and does
not concentrate memory operations in a specific heap area
(which is frequent in derby, for example). This behavior evi-
denced by crpyto represents the worst case for ALMA; other
applications of the benchmarks are much less demanding

14A full GC happens when the heap has no more free memory
to satisfy an allocation request, and the G1 collection of
the young generation fails. In a full GC, the entire heap
is collected and compacted. This is a particularly costly
operation.

memory wise.

Downtime =
SizeIncSnapshot

NetBandwidth
(6)

SizeIncSnapshot =
SizeInitSnapshot

NetBandwidth
∗DirtyRate (7)

Donwtime =
SizeInitSnapshot

NetBandwidth2
∗DirtyRate (8)

The results are shown in Figure 9. Since our installation
only has 1Gbps, we estimate the remaining values with more
network bandwidth. The estimated values are obtained as
follows (see Eqs. 6,7, and 8): i) we start by measuring the
application dirty rate (by measuring the size of the incre-
mental snapshot) using 2, 4, and 8 cores. Then, with the
size of the initial snapshot divided by the network band-
width we get the time needed to transmit the initial snap-
shot. Multiplying it with the dirty rate, we get the size of
the incremental snapshot (Eq. 7). This enables us to esti-
mate the application downtime (by replacing Eq. 7 in Eq.
6 to obtain Eq. 8). We also consider that part of both the
initial and the incremental snapshots are filtered as garbage
(this percentage is taken from Table 1).

Figure 9 clearly shows that increasing the number of cores,
results in increasing the application downtime. This comes
from the fact that the application will dirty memory faster.
On the other hand, when we increase the amount of net-
work bandwidth used for migration, the application down-
time drops because the application has less time to dirty
memory (since the snapshot gets transferred faster).15 One
important conclusion to take from our experiment is that
the application downtime (see Eq. 8) is: i) proportional to
the number of cores (as it is multiplied by the application
dirty rate), and ii) inversely proportional to the square of the
network bandwidth (as it is divided by the square of the net-
work bandwidth). In other words, doubling the number of
cores will double the application downtime but doubling the
network bandwidth will reduce the downtime to one quarter
of its initial value. Note that these conclusions only hold
for ALMA which has one initial snapshot and one incre-
mental snapshot (taken right after transmitting the initial
snapshot).

15Note that memory gets dirty by an application running on
the source site while the first snapshot is transferred to the
destination site.

6. RELATED WORK
Solutions to migrate applications can be characterized

along two aspects: i) when the execution control is trans-
ferred to the destination site: before (pre-copy) or after
(post-copy) the memory is migrated, and ii) take advantage
(or not) of the state of the application (e.g. avoid transfer-
ring unused memory, or look for memory similarities to use
compression).

Pre-copy [44, 7], is the most common technique to transfer
a system-VM. The bulk of the system-VM’s memory pages
is transferred to the destination site, while the application
keeps executing. If a transmitted page is dirtied in the mean
time, it gets re-transmitted in the next round. This produces
an iterative process in which dirtied pages are transferred
until: i) a small writable working set (WWS) [7] is identified,
or ii) a preset number of iterations is reached. When one of
these conditions is met, the system-VM is suspended, and
the last modified pages and the processor state are trans-
ferred. After this final step, the system-VM is resumed on
the destination site.

In Hines [20], the opposite approach (post-copy [48]) was
proposed. Using a post-copy strategy, the control is trans-
ferred to the destination site and all the remaining pages
are lazily transferred when needed (the system-VM running
on the destination site will page fault, triggering the page
transfer). To avoid the transmission of free pages, the au-
thors employ a dynamic self ballooning mechanism to force
the guest OS to free pages before the migration starts. De-
spite the obvious overhead of waiting for the transmission
of memory pages each time a page fault happens, the au-
thors advocate that their approach results in less network
overhead since each page is transferred once.

In Vogt [45], authors use a mix of both pre-copy and post-
copy for checkpointing applications. While the hot WWS is
copied when the checkpoint is triggered, pages not included
in the WWS are lazily copied upon modification (this pro-
cess is very similar to Linux’s fork).

Regardless of when memory is transmitted, there are sev-
eral mechanisms proposed to reduce the amount of memory
to transmit. Compression [23] is used to reduce the size of
the memory snapshots to transmit in a pre-copy approach;
the compression cost can be dynamically tuned according
to the application dirty rate. Memory deduplication [10, 11]
has also been proposed to reduce the number of memory
page duplicates when migrating several system-VMs at the
same time. A similar technique was proposed by Knauth
[27], where the authors propose reusing data from previous
checkpoints to when a system-VM returns to a site where
it was in the past. Skipping file caches and free pages [28]
(soft pages) was also suggested; the system scans memory
pages when migration is triggered and marks soft pages to
avoid transferring them.

Others have taken a different approach to reduce the size
of the memory to transmit by analyzing and taking advan-
tage of the state of the application. In Giuffrida [19], the
authors trace application resources (allocated memory, for
example) and transmit only the usable data instead of trans-
mitting all the memory that the application can use. In
Kawachiya [26] and Hou [21] the authors propose looking
into the JVM heap and forcing a Garbage Collection (GC)
to reduce the used memory. In Garrochinho [41], the au-
thors look into the internals of the JikesRVM and extract
only the necessary information to restore the application at

the destination site.
Our approach for process live migration (which is targeted

to migrate JVMs) inherits some aspects of the previous solu-
tions. We also use the GC to minimize the amount of process
state to transmit. However, as opposed to i) Kawachiya [26]
which forces a full mark-and-sweep collection (thus decreas-
ing the responsiveness and increasing the down time of the
application), and ii) Hou [21] which only performs a minor
collection to clean the young generation (and leaves the rest
of the heap with potentially lots of garbage), in ALMA we
add a new migration aware policy to G1 GC to: i) provide
useful information about the liveliness of the heap and the
cost of collecting it, and ii) enforce a migration aware GC
operation in which only the heap regions whose GCRate is
greater than the network bandwidth are are effectively con-
sidered for collection.

Regarding process migration (not system-VM), most sys-
tems either require re-linking with some process migration
tool library ([5, 47, 43]), modify the application code ([32,
36, 37]), or require modification to existing Kernels ([4, 15,
18]).

Other systems such as [30, 25] use CRIU to provide fast
OS updates (via checkpoint and restoring processes) [25] and
to migrate preempted jobs in Hadoop clusters [30]. In Silva
[40], authors propose replaying of JVMs (coupled with sev-
eral optimization techniques such as dynamic pruning of un-
reachable data, and a lightweight checkpoint mechanism) as
a way to migrate JVMs. This approach has two problems:
i) serialization of memory accesses has a severe impact on
application’s performance, and ii) the logs used for replaying
the server state can easily achieve significant size, thus in-
creasing the amount of data that needs to be transmitted to
the destination site. We could not find any other published
work on process migration taking advantage of application
state (JVM state, in our scenario) to reduce the costs of mi-
gration. We also could not find any recent and relevant live
process remote migration system to compare with ALMA.

In short, ALMA’s distinctive feature is the possibility to
dynamically calculate the optimal set of memory pages to
transfer by comparing the cost of collecting each heap region
with the potential benefits versus the network bandwidth.
By harnessing reachability information provided by the GC,
ALMA is able to identify all dead or unused data and thus,
reduce the number paces included in the snapshot.

7. CONCLUSIONS
This paper presents a novel approach to migrate JVM

applications by analyzing the G1 heap to identify heap
fragments which should be collected before migration.
ALMA separates the migration of the application from the
hosting system (system-VM) by migrating only the applica-
tion process instead of migrating the whole hosting system-
VM. ALMA is evaluated using two well-known benchmark
suites (SPECjvm2008 and DaCapo 9.12) and shows very
good performance results. The code is publicly available at
https://github.com/rodrigo-bruno/ALMA-JMigration.

8. ACKNOWLEDGMENTS
This work was supported by national funds through Fun-

dação para a Ciência e a Tecnologia (FCT) with reference
UID/CEC/50021/2013 and through the FCT scholarship
SFRH/BD/103745/2014.

9. REFERENCES
[1] A. W. Appel. Simple generational garbage collection

and fast allocation. Software: Practice and Experience,
19(2):171–183, 1989.

[2] J. Armstrong and R. Virding. One pass real-time
generational mark-sweep garbage collection. In
Memory Management, pages 313–322. Springer, 1995.

[3] S. M. Blackburn et al. The DaCapo benchmarks: Java
benchmarking development and analysis.

[4] M. Bozyigit, K. Al-Tawil, and S. Naseer. A kernel
integrated task migration infrastructure for clusters of
workstations. Computers & Electrical Engineering,
26(3):279–295, 2000.

[5] M. Bozyigit and M. Wasiq. User-level process
checkpoint and restore for migration. ACM SIGOPS
Operating Systems Review, 35(2):86–96, 2001.

[6] C. J. Cheney. A nonrecursive list compacting
algorithm. Commun. ACM, 13(11):677–678, Nov.
1970.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proceedings of the 2nd
conference on Symposium on Networked Systems
Design & Implementation-Volume 2, pages 273–286.
USENIX Association, 2005.

[8] G. E. Collins. A method for overlapping and erasure
of lists. Communications of the ACM, 3(12):655–657,
1960.

[9] T. Das, P. Padala, V. N. Padmanabhan, R. Ramjee,
and K. G. Shin. Litegreen: Saving energy in
networked desktops using virtualization. In USENIX
annual technical conference, 2010.

[10] U. Deshpande, B. Schlinker, E. Adler, and
K. Gopalan. Gang migration of virtual machines using
cluster-wide deduplication. In Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on, pages 394–401. IEEE,
2013.

[11] U. Deshpande, X. Wang, and K. Gopalan. Live gang
migration of virtual machines. In Proceedings of the
20th international symposium on High performance
distributed computing, pages 135–146. ACM, 2011.

[12] D. Detlefs, C. Flood, S. Heller, and T. Printezis.
Garbage-first garbage collection. In Proceedings of the
4th international symposium on Memory management,
pages 37–48. ACM, 2004.

[13] D. Doligez and X. Leroy. A concurrent, generational
garbage collector for a multithreaded implementation
of ml. In Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 113–123. ACM, 1993.

[14] T. Domani, E. K. Kolodner, and E. Petrank. A
generational on-the-fly garbage collector for java. In
Proceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and
Implementation, PLDI ’00, pages 274–284, New York,
NY, USA, 2000. ACM.

[15] F. Douglis and J. K. Ousterhout. Transparent process
migration: Design alternatives and the sprite
implementation. Softw., Pract. Exper., 21(8):757–785,
1991.

[16] R. Dua, A. R. Raja, and D. Kakadia. Virtualization vs

containerization to support paas. In Cloud
Engineering (IC2E), 2014 IEEE International
Conference on, pages 610–614, March 2014.

[17] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro.
Assessing the scalability of garbage collectors on many
cores. In Proceedings of the 6th Workshop on
Programming Languages and Operating Systems,
page 7. ACM, 2011.

[18] R. Gioiosa, J. C. Sancho, S. Jiang, F. Petrini, and
K. Davis. Transparent, incremental checkpointing at
kernel level: a foundation for fault tolerance for
parallel computers. In Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 9.
IEEE Computer Society, 2005.

[19] C. Giuffrida, C. Iorgulescu, and A. S. Tanenbaum.
Mutable checkpoint-restart: automating live update
for generic server programs. In Proceedings of the 15th
International Middleware Conference, pages 133–144.
ACM, 2014.

[20] M. R. Hines and K. Gopalan. Post-copy based live
virtual machine migration using adaptive pre-paging
and dynamic self-ballooning. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pages
51–60. ACM, 2009.

[21] K.-Y. Hou, K. G. Shin, and J.-L. Sung.
Application-assisted live migration of virtual machines
with java applications. In Proceedings of the Tenth
European Conference on Computer Systems, EuroSys
’15, pages 15:1–15:15, New York, NY, USA, 2015.
ACM.

[22] W. Huang, Q. Gao, J. Liu, and D. K. Panda. High
performance virtual machine migration with rdma
over modern interconnects. In Cluster Computing,
2007 IEEE International Conference on, pages 11–20.
IEEE, 2007.

[23] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan. Live
virtual machine migration with adaptive, memory
compression. In Cluster Computing and Workshops,
2009. CLUSTER’09. IEEE International Conference
on, pages 1–10. IEEE, 2009.

[24] R. Jones, A. Hosking, and E. Moss. The garbage
collection handbook: the art of automatic memory
management. Chapman & Hall/CRC, 2011.

[25] S. Kashyap, C. Min, B. Lee, T. Kim, and
P. Emelyanov. Instant os updates via userspace
checkpoint-and-restart. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16), Denver,
CO, June 2016. USENIX Association.

[26] K. Kawachiya, K. Ogata, D. Silva, T. Onodera,
H. Komatsu, and T. Nakatani. Cloneable jvm: a new
approach to start isolated java applications faster. In
Proceedings of the 3rd international conference on
Virtual execution environments, pages 1–11. ACM,
2007.

[27] T. Knauth and C. Fetzer. Vecycle: Recycling vm
checkpoints for faster migrations. In Proceedings of the
16th Annual Middleware Conference, pages 210–221.
ACM, 2015.

[28] A. Koto, H. Yamada, K. Ohmura, and K. Kono.
Towards unobtrusive vm live migration for cloud
computing platforms. In Proceedings of the

Asia-Pacific Workshop on Systems, page 7. ACM,
2012.

[29] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and
I. Stoica. Tachyon: Reliable, memory speed storage for
cluster computing frameworks. In Proceedings of the
ACM Symposium on Cloud Computing, pages 1–15.
ACM, 2014.

[30] J. Li, C. Pu, Y. Chen, V. Talwar, and D. Milojicic.
Improving preemptive scheduling with
application-transparent checkpointing in shared
clusters. In Proceedings of the 16th Annual Middleware
Conference, pages 222–234. ACM, 2015.

[31] H. Lieberman and C. Hewitt. A real-time garbage
collector based on the lifetimes of objects.
Communications of the ACM, 26(6):419–429, 1983.

[32] M. Litzkow, T. Checkpointing, T. Process
Migration for MPInbaum, J. Basney, and M. Livny.
Checkpoint and migration of UNIX processes in the
Condor distributed processing system. Computer
Sciences Department, University of Wisconsin, 1997.

[33] J. McCarthy. Recursive functions of symbolic
expressions and their computation by machine, part i.
Communications of the ACM, 3(4):184–195, 1960.

[34] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L.
Scott. Proactive fault tolerance for hpc with xen
virtualization. In Proceedings of the 21st annual
international conference on Supercomputing, pages
23–32. ACM, 2007.

[35] R. Nathuji and K. Schwan. Virtualpower: coordinated
power management in virtualized enterprise systems.
In ACM SIGOPS Operating Systems Review,
volume 41, pages 265–278. ACM, 2007.

[36] T. Osman and A. Bargiela. Process checkpointing in
an open distributed environment. In Proceedings of
European Simulation Multiconference, ESM,
volume 97, 1997.

[37] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent checkpointing under unix. Computer
Science Department, 1994.

[38] T. Printezis and D. Detlefs. A generational
mostly-concurrent garbage collector, volume 36. ACM,
2000.

[39] K. Shiv, K. Chow, Y. Wang, and D. Petrochenko.
Specjvm2008 performance characterization. In
Computer Performance Evaluation and
Benchmarking, pages 17–35. Springer, 2009.

[40] J. M. Silva, J. Simão, and L. Veiga.
Ditto–deterministic execution
replayability-as-a-service for java vm on
multiprocessors. In ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and
Open Distributed Processing, pages 405–424. Springer,
2013.

[41] J. Simão, T. Garrochinho, and L. Veiga. A
checkpointing-enabled and resource-aware java virtual
machine for efficient and robust e-science applications
in grid environments. Concurrency and Computation:
Practice and Experience, 24(13):1421–1442, 2012.

[42] A. Singh, M. Korupolu, and D. Mohapatra.
Server-storage virtualization: integration and load
balancing in data centers. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, page 53.

IEEE Press, 2008.

[43] G. Stellner. Cocheck: Checkpointing and process
migration for mpi. In Parallel Processing Symposium,
1996., Proceedings of IPPS’96, The 10th
International, pages 526–531. IEEE, 1996.

[44] M. M. Theimer, K. A. Lantz, and D. R. Cheriton.
Preemptable remote execution facilities for the
V-system, volume 19. ACM, 1985.

[45] D. Vogt, A. Miraglia, G. Portokalidis, H. Bos,
A. Tanenbaum, and C. Giuffrida. Speculative memory
checkpointing. In Proceedings of the 16th Annual
Middleware Conference, pages 197–209. ACM, 2015.

[46] P. R. Wilson and T. G. Moher. Design of the
opportunistic garbage collector. In ACM SIGPLAN
Notices, volume 24, pages 23–35. ACM, 1989.

[47] V. C. Zandy, B. P. Miller, and M. Livny. Process
hijacking. In High Performance Distributed
Computing, 1999. Proceedings. The Eighth
International Symposium on, pages 177–184. IEEE,
1999.

[48] E. Zayas. Attacking the process migration bottleneck.
In ACM SIGOPS Operating Systems Review,
volume 21, pages 13–24. ACM, 1987.

