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Abstract

Object Oriented Programming has flourished in many areas

ranging from web-oriented microservices, data processing,

to databases. However, while representing domain entities

as objects is appealing to developers, it leads to data fragmen-

tation, resulting in high memory footprint and poor locality.

To improve memory footprint and memory locality, em-

bedding the payload of an object into another (object inlining)

has been proposed, however, with severe limitations. We ar-

gue that object inlining is mostly useful to optimize objects

in the application data-path and that such objects have value

semantics, unlocking great potential for inlining objects.

We propose value fields, an abstraction which allows fields

to be marked as having value semantics. We take advantage

of the closed-world assumption provided by GraalVM Native

Image to implement Object inlining. Results show that using

value fields requires minimal to no effort from developers and

leads to improvements in throughput of up to 3×, memory

footprint of up to 40%, and GC pause times of up to 35%.

CCS Concepts: · Software and its engineering→ Com-

pilers; Runtime environments.
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Figure 1. Memory usage to load the IMDB movie collection

dataset (plain text size on disk = 854 MB, 6.3M entries).

1 Introduction

Object-oriented programming (OOP) languages such as Java,

Python, and JavaScript are among the most popular program-

ming languages used to date. However, by allowing devel-

opers to easily express domain concepts as objects, OOP lan-

guages promote partitioning of application data into many

data objects, resulting in increased memory footprint and

poor memory locality. This overhead is further aggravated

in managed languages that tend to i) promote generalized ob-

jectification (everything is an object), and ii) embed metadata

into object headers to help with language runtime tasks.

In managed languages, objects are typically represented in

memory in two components: header, and payload (contents

of the object). The object header contains the type of the ob-

ject, as well as some additional information used for garbage

collection, synchronization, hashing, etc. Object headers can

account for up to 16 bytes in current production Java Virtual

Machine (JVM) implementations such as OpenJDK HotSpot

when references are not compressed (heaps larger than 32 GB

cannot take advantage of compressed references). In many

scenarios, such boxed primitives in Java, the object header

corresponds to a large proportion of the total memory occu-

pied by the object. Different runtimes have different object

header sizes but, in overall, headers largely contribute to a

higher memory consumption.

Figure 1 shows the amount of memory used by object head-

ers and object references required to load a movie collection

database (IMDB dataset [11]) into memory. Two VMs are
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analysed: the Java HotSpot VM of OpenJDK 11, and GraalVM

20.3 Native Image. For each VM, two variants are considered,

with and without reference compression[36]. Results show

that, out of the 5794 MB and 5133 MB required to load the

dataset, 36% and 20% of the memory is dedicated to object

headers, for HotSpot and Native Image, respectively. Object

references also take significant amounts of space, 18% and

21% of the memory. The combined effect of headers and ref-

erences accounts for up to 54% and 41% of the total memory

required for the dataset. Enabling compressed references

leads to an approximate reduction of 50% of the space used

for object headers and references, but the remaining over-

head is still significant as headers and references are still in

place. In summary, partitioning data into large collections of

domain objects has a high memory cost.

The overhead of OOP is particularly noticeable in applica-

tions/frameworks that handle massive amounts of objects

in memory. Examples include in-memory caches [10, 23],

data analytics [4, 8, 41], databases [7, 10, 14], among others.

To mitigate the inefficiencies introduced by splitting appli-

cation data into many data objects, we propose the use of

object inlining [19, 20], a technique that reverts data separa-

tion by aggregating multiple objects into a single one. This

idea is supported by our first key insight: data objects are

confined, i.e., object sub-graphs rooted by data objects are

disjoint. Using object inlining, it is then possible to aggregate

each of these data sub-graphs into a single object.

Aggregating multiple objects into a single one can lead

to reduced memory bloat and improved memory locality.

However, it introduces two main challenges that derive from

relaxing the properties associated with objects: i) loss of

object identity and ii) loss of atomic field access (more details

in ğ2). To overcome these challenges, we rely on our second

key insight: data objects have value semantics, i.e., data

objects are used to carry values so neither identity nor atomic

field access are required for these objects.

To take advantage of these insights, we propose value

fields, a simple abstraction that enables fields to be marked

as having value semantics, allowing the compiler to inline

the marked fields. This new abstraction hides all the com-

plexity of object inlining and offers a solution to have better

control over the memory layout of application data, thereby

reducing the memory footprint and improving memory lo-

cality. Fields marked as value fields are inlined upon field

store, and copied into a newly allocated object upon field

load. Compiler optimizations help reducing the pressure on

the garbage collector by removing allocations of objects that

can be escape analyzed. We show that value fields can be

used in real-world frameworks to reduce memory footprint

and improve throughput with minimal to no user effort.

We implement value fields as a compilation phase in the

GraalVM Native Image builder [40]. We take advantage of

the closed-world assumption and static analysis capabilities,

that provide us with enough information to make inlining

1: class Point {
2: int x;
3: int y;
4: }
5: class Line {
6: Point a;
7: Point b;
8: }

a) Language Layout

Line
a Point

x
y

b

Point
x
y

b) Original Memory

Line
a_x
a_y
b_x
b_y

c) Inlined Memory

Figure 2. Object inlining example.

decisions at image build-time. In addition, it allows easy in-

tegration with other compiler optimizations such as escape

analysis [34], build-time initialization [40], and method inlin-

ing, that amortizes the costs of accessing inlined objects. We

show that, for a variety of realistic use-cases, value fields can

be used to reduce memory footprint and improve throughput

with minimal or even no developer effort (more details in

ğ6). Results show that memory footprint is reduced by up to

40% for data analytics using Apache Spark [41], throughput

is improved by up to 3× for graph database requests using

OrientDB, and garbage collection pauses are reduced by up

to 35% for microservice requests for both Micronaut and

Spring Boot.

In summary, this paper contributes with the following:

• It revisits the topic of object inlining, presenting the

challenges that prevent it from being a generally ap-

plicable optimization;

• It proposes value fields, a simple abstraction which,

when applied in a closed-world environment, unlocks

significant potential for object layout optimizations

(object inlining) resulting in reduced memory footprint

and improved memory locality;

• It integrates value fields into GraalVM Native Image, a

production system targeting Java applications;

• It evaluates the proposed technique using platforms

and workloads inspired by real use-cases, showing

when and how it can be effective for improving per-

formance with little to no developer effort.

2 Object Inlining

Object inlining [19, 20, 37] is a technique that optimizes

the memory layout of a set of objects. As described in previ-

ous work [19, 37], object inlining is applicable to two objects

that are in a parent-child relationship. Parent-child relation-

ships are one-to-many,meaning that one child has one parent

but a parent may have multiple children. Object inlining can

be applied multiple times over the same object graph until

no more parent-child relationships exist. In the scope of this

work, object inlining is used to replace a parent field by a set

of children fields. Figure 2 presents a simple example of object

inlining where Line, the parent type, has two fields of Point

type, the child type, which will be inlined. After inlining is

finished, the children fields (Point.x and Point.y) replace
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the original parent fields (Line.a and Line.b). The memory

layouts before (center) and after (right) object inlining show

that both the headers of the Point objects and the references

(parent fields) were removed.

Object inlining produces a compact memory representa-

tion for object graphs at the expense of additional complexity

to load and store parent fields. Using the example from Figure

2, a field store to Line.a is converted into a copy of Point.x

and Point.y into Line.a_x and Line.a_y, respectively. A

field load from Line.a is converted into the allocation of a

new object of Point type followed by its initialization using

the values of the Line.a_x and Line.a_y.

Finally, because object inlining rearranges the layout of

types, type polymorphism in the child type is not allowed.

Therefore, to enable inlining Line.a and Line.b, the Point

type needs to be final, i.e., there can be no sub-types of Point.

2.1 Data Layout Optimizations in a Closed World

Data layout optimizations that involve changing type lay-

outs (such as object inlining) are particularly hard to apply in

language runtimes such as JVMs because once objects are al-

located with their optimized layout, the optimization cannot

easily be invalidated and reverted since changes have been

committed to memory. Type layout deoptimization would

require a complete memory re-write, converting all objects

to their original memory layout, something we consider in-

feasible in terms of performance overhead. To avoid doing

so, it is required that all type optimizations are proven to

be applicable before the optimization is applied, and thus,

speculative optimizations are often not possible or severely

restricted. For example, the parent field (Line.a) cannot be

inlined unless it is proven that all instances of Point have ex-

actly two int fields. Language runtimes that allow dynamic

class loading, for example, render this particular inlining can-

didate unviable as new sub-types of Point could be loaded

with different type layouts.

To realistically apply type optimizations we argue that

a closed-world environment is particularly important as it

guarantees that all the application code is known at compile-

time. Such an environment offers strong static analysis that

significantly increases the chances of successfully applying

type transformations such as object inlining. Therefore, to

improve the applicability of the type transformations pro-

posed in this work, we take advantage of the Native Image

builder, provided as part of GraalVM. A closed-world envi-

ronment is now feasible [40] and has been shown to work

for a variety of real-world use-cases such as microservice

frameworks like Spring Boot [17] and Micronaut [5].

2.2 Detaching Memory and Language Data Layouts

While the closed-world environment maximizes the number

of potential candidates for object inlining, it still does not

provide enough guarantees to automatically apply object

inlining. There are two reasons to this: i) non-atomic parent

field load/store; and ii) loss of object identity during inlining.

The first issue emerges from the fact that a single parent field

is replaced by a set of children fields and therefore, a single

field access is now converted into multiple accesses (one for

each child field). For example, using Java code to represent

the before and after transformation logic, the following code
Point p = line.a;

will be converted into

Point p = new Point();
p.a = line.a_x;
p.y = line.a_y;

Since multiple field read and write operations are not

guaranteed to be executed atomically, data races are possible.

Solutions involving locks require expensive operations and

would lead to additional memory to keep the lock state. Wide

read and write operations could be a possible solution but

these are often differently supported in different CPUs/ar-

chitectures and require complex cache alignments in order

to achieve an atomic operation.

The second issue stems from the fact that loading the

parent field will result in the allocation of a new object which

is not guaranteed to have the same identity as the original

object stored into the parent field. For example, the following

code would not succeed if Line.a is inlined:

line.a = p;
assert(line.a == p);

Maintaining object identity would require extra memory

space to keep a reference to the original object, defeating the

purpose of using object inlining to reduce memory footprint.

Returning a copy of the object stored in the parent field

also raises an additional problem with aliasing. For example,

updates to the object returned by a parent field access will

not be propagated back the original object and would be lost.

This issue however, only applies if the objects are mutable,

i.e., if the returned copy of the parent field can be modified.

Proving non-atomic access or loss of identity is difficult

as objects often escape the scope of allocation (for example,

when objects are inserted into a data structure). These two

issues (non-atomic parent field access and the loss of object

identity) prevent object inlining from being an automatic

optimization technique since applications can potentially

detect side-effects. We claim that to unlock type layout op-

timizations such as object inlining, new abstractions are

needed to detach the language-level data layout from the

memory layout. To this end, we propose value fields.

3 Value Fields

Often, big data and data science applications handle many

objects with value semantics. Such objects carry data that

needs to be processed but do not benefit from having an iden-

tity nor atomic field access. However, neither the compiler

nor the language runtime can easily detect that such objects

have value semantics and therefore, optimizations such as

object inlining are severely restricted. To unlock memory
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Line
Point: a
Point: b

Point
int: x
int: y

a) Types before Inlining

Point
int: x
int: y

Line
byte: a_state

int: a_x
int: a_y

byte: b_state
int: b_x
int: b_y

b) Types after Inlining

LoadField(Line.a_state)

Line object

object

if

== 0

begin begin

falsetrue

NewInstance Point

LoadField(Line.a_x)
object

StoreField(Point.x)
valueobject

LoadField(Line.a_y)
object

StoreField(Point.x)
valueobject

endend

condition

merge phi

null

branch b1b0

c) Load field after Inlining

Point object

if

isNull

begin begin

falsetrue

LoadField(Point.x)

StoreField(Line.a_x)

object

LoadField(Point.y)

valueobject

StoreField(Line.a_y)

StoreField(Line.a_state)

object

endend

condition

Line object

value

object
1

value
StoreField(Line.a_state)

object

0

value

merge

d) Store field after Inlining

Figure 3. Type and field access transformations to inline Line.a.

layout optimizations, we propose value fields, a simple ab-

straction that allows fields to be marked as data carriers, i.e.,

as having value semantics. Fields marked as value fields will

be selected by the compiler to be subject to type transfor-

mations and code transformations (update how to access

inlined fields).

3.1 Type Transformations

Fields marked as value fields will be inlined at Native Im-

age build-time. We continue using the initial example from

Figure 2 and, in Figures 3.a and 3.b, we illustrate the type

transformations for inlining Line.a and Line.b. This exam-

ple is simple but yet representative of the transformations

required during object inlining.

Type transformations use the following procedure. For

each field marked as a value field (parent fields, Line.a

and Line.b), remove it from the parent type (Line) and

replace it by the respective children fields (Point.x and

Point.y). Finally, a state field is also added (Line.a_state

and Line.b_state) to keep track of whether the field is

initialized or not.

All types besides the parent type (Line) remain unchanged,

thus limiting changes to the fields marked as value fields. No

additional types are created.

3.2 Field Access Transformations

To cope with the type transformations just described, field

loads and field stores to the parent field (field marked as

value field) need to be updated. Figure 3.c and 3.d present a

simplified version of the Graal compiler Intermediate Rep-

resentation (IR) [22] graph after the field access transforma-

tions are applied. Solid arrows denote control flow while

dashed arrows represent data dependencies.

Load Field To load a parent field (Line.a in this exam-

ple), a single LoadField IR node is converted into the IR

sub-graph presented in 3.c. In this sub-graph, an if node is

utilized to separate the execution depending on whether the

parent field is initialized or not. If it is initialized, then a new

instance of the child type (Point) is allocated and all chil-

dren fields are copied from the Line object into the newly

allocated instance. If, on the other hand, the parent field is

not initialized, a null value is passed down as a result. De-

pending on the branch taken at run-time, the phi node will

provide the resulting value which replaces the value returned

by the original LoadField (before the transformation).

Store Field A store to a parent field (Line.a in this exam-

ple) is converted into the IR sub-graph presented in Figure

3.d. In this sub-graph, an if node is utilized to separate the

execution depending on whether the value being passed for
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1: class Point {
2: int x;
3: int y;
4: }
5: class Line {
6: Point a;
7: Point b;
8: }
9: class Plane {
10: Point p;
11: Line l;
12:}

a) Language Layout

Line
Point: a

Plane
Point: p

Point: b

Line: l

Point
int: x
int: y

b) Original Types

Plane
byte:p_state

int: p_x
int: p_y

byte: l_state
byte: l_a_state

int: l_a_x
int: l_a_y

byte: l_b_state
int: l_b_x
int: l_b_y

Line
byte: a_state

int: a_x
int: a_y

byte: b_state
int: b_x
int: b_y

Point
int: x
int: y

c) Value fields types

Plane
byte: p_state

int: p_x
int: p_y

byte: l_state
byte: l_a_state

int: l_a_x
int: l_a_y

byte: l_b_state
int: l_b_x
int: l_b_y

Line
Point: a
Point: b

Point
int: x
int: y

d) Value graph types

Line
a

Plane
p Point

x
y

b

l

Point
x
y

Point
x
y

e) Original memory

Plane
p_state
p_x
p_y

l_state
l_a_state
l_a_x
l_a_y

l_b_state
l_b_x
l_b_y

f) Inlined memory

Figure 4. Object graph inlining example.

the field store is null or not. If the value is non-null, all

children fields are copied from the Point object into the

Line object. The state field (Line.a_state) is set. If, on the

other hand, the value being passed to the field store is null,

all reference fields and the state field must be reset by stor-

ing a null value in reference fields and 0 in the state field.

Resetting all reference fields avoids memory leaks as these

references could never be accessed by the application again

but the garbage collector would not be able to collect the

objects referenced by them.

3.3 Type Layout Optimizations

For performance reasons, we allow extra information to be

passed to the compiler to indicate specific properties of chil-

dren fields used to optimize the layout of the parent type. In

particular, we allow two properties to be defined: a) children

fields that have a non-null value, and b) children fields that

can be recomputed if needed. The former (non-null fields)

can be used as a replacement for the state field as it will only

have a null value if the parent field is not initialized. The

latter can be used to ignore particular children fields that

can be discarded during inlining. We evidence the usability

of these properties using the String type as an example.

String objects often represent a large portion of applica-

tion data objects and, in many cases, String objects have

value semantics (i.e., the object is only used as a data car-

rier). Strings are wrappers for a byte array which stores the

String’s content. For a given String, the byte array (from here

on called String.value) is always initialized upon the ini-

tialization of the String object. Taking advantage of this fact,

this field is marked as a non-null field and therefore no state

field is required and all checks are performed directly on the

String.value field. This optimization further reduces the

memory footprint (no state field) and also avoids both the set

and unset operations on the value field (required for inlined

field stores). Strings also contain a hash field which caches

the result of hashing the String’s content. This particular

field can be recomputed if necessary. To save extra memory

space, we skip this field during inlining.

4 Object Graph Inlining

Object inlining is not limited to one-level inlining but instead,

it supports multi-level inlining or, in other words, object

graph inlining. Figure 4.a shows a simple extension of the

example presented in Figure 2. In this example, a single

instance of Plane is the root for an object graph containing

one Line instance and three Point instances (Figure 4.e).

Using object graph inlining, it is possible to compact all five

objects into a single object as shown in Figure 4.f. We present

two variants for object graph inlining.

Value fields can be used to inline entire object graphs

into a single object. For instance, it is possible to mark as

value fields all non-primitive fields in the presented example

(Line.a, Line.b, Plane.p, and Plane.l). This will result in

type transformations not only in Line, but also in Plane, as

depicted in Figure 4.c. Loading Place.lwill return an object

of Line type which inlines both Point fields.

Value graphs, a different inlining primitive, can also

be utilized to inline object graphs. Fields marked as value

graphs will inline the entire object graph but type transfor-

mations will be limited to the parent type. For example, if

both Plane.p and Plane.l are marked as value graphs, and

no other fields are marked as value fields or value graphs,

only the Plane type will be transformed (see Figure 4.d). This

object graph inlining variant is beneficial when changing

children types is not possible.

Both variants of object graph inlining produce the same

inlined memory layout for an instance of Plane type (see

Figure 4.f). The algorithm used for our inliner is depicted in

Algorithm 1. In the first phase (lines 2-9) all possible parent

fields are considered. If a particular parent field contains

children fields that are also parents to other fields (line 6),

then this parent field is deferred for later inlining (line 7).

Otherwise, the field is inlined (line 9).

After the first phase is finished, all one-level inlining is

finished and all the remaining parent fields will be inlined in

the second phase (lines 10-17). The idea behind the second

phase is to inline fields from the bottom to the top, i.e., all

parent fields whose children fields are not parent fields to

other children, are inlined first. The algorithm converges

after all inlineable fields have been inlined. For simplicity,
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Algorithm 1 Object graph inlining.

1: queue ← []

2: for parent_type in known_types do

3: for parent_f ield in f ields(type) do

4: if is_inlineable(parent_f ield ) then

5: child_type ← type(parent_f ield )

6: if has_inlineable_f ields(child_type) then

7: queue .push(f ield )

8: else

9: inline(parent_type , parent_f ield )

10: while not_empty(queue) do

11: parent_f ield ← queue .pop()

12: if is_inlineable(parent_f ield ) then

13: child_type ← type(parent_f ield )

14: if has_inlineable_f ields(child_type) then

15: queue .push(parent_f ield )

16: else

17: inline(parent_type , parent_f ield )

several methods are left out. In particular, is_inlineable

checks if the field is marked as a value field or value graph,

and if the type of the field is monomorphic. Arrays, primitive

fields, and fields marked as volatile are also not considered

for inlining. Cyclic data structures are also automatically

ignored. The inlinemethod internally updates the compiler

data structures to accommodate the changes in the parent

type (which depend on the variant of object inlining).

5 Using Value Fields

Value fields combine semantics from value types and refer-

ence types. When using value fields, deciding if a particular

object is passed by reference or value does not depend on

the type, but rather on the operation in which the object

is being utilized. From the previous example, instances of

Point are always passed by reference except when being

loaded/stored from/to a field marked as a value field.

Fields can be marked as value fields either through a Java

field annotation (@ValueField or @ValueGraph), or through

a configuration file (JSON file which contains a list of Java

value graph/fields). By default, only value fields of immutable

child type or value graphs of immutable child type hierarchy

are inlined. This restriction prevents lost updates resulting

from the lack of aliasing between the object returned by a

parent field load and the inlined field. For example, if a parent

field of a mutable type is inlined, a store to an object returned

by a parent field load will not be propagated to the inlined

field. This problem does not occur when inlining is restricted

to immutable child types as no updates are possible.

Our experience using value fields to inline objects pro-

cessed by large frameworks such as Spring Boot, Micronaut,

or Spark, suggests that identifying candidate fields for in-

lining is a simple task, taking no more than a few minutes

per application. To further simplify this task, we developed

a JVMTI-based agent that can be used for profiling when

running the same application on the HotSpot VM. The agent

periodically traces the entire Java heap and tracks fields refer-

encing confined object graphs, i.e., disjoint object graphs that

have a single incoming reference. Such fields are reported

to developers as candidates for inlining. By reporting fields

referencing confined object graphs, the profiler helps re-

ducing potential memory overheads resulting from inlining

the same object in multiple locations. The profiler, however,

does not guarantee that the application semantics won’t be

impacted due to the loss of object identity or non-atomic

inlined field access.

We also noted that in all the frameworks we analyzed so

far, most data objects are immutable and neither object iden-

tity nor atomic field access are necessary. On the one hand,

object identity is often used to implement a fast-path for

the equals method but it does not compromise correctness.

On the other hand, synchronization among multiple worker

threads is usually done at a much coarser grain to avoid

inter-worker synchronization overhead and is commonly

provided at the data structure entry level.

6 Evaluation

We evaluate different aspects of a set of applications we

use to test value fields. Our analysis is focused on three

main metrics: footprint reduction, throughput improvement,

and effort to integrate into existing applications/frameworks.

While the first two metrics are easy to measure experimen-

tally, the third required us to utilize and deploy different

applications and try to assess the extent of changes required.

Object inlining is implemented as a compilation phase of

the GraalVM 20.3 Native Image builder. The new compilation

phase is executed early in the compilation pipeline (right

after generating the Graal IR [22]) so that the transformed

code can benefit from all the existing compiler optimizations

such as method inlining and escape analysis to optimize the

code produced by the inlining transformation.

Experiments run in isolation for at least 10 iterations (more

iterations are used if the results take longer to stabilize). The

last 5 iterations are utilized to create average values. The

standard deviation resulting from measurements is low in

most experiments and therefore we only include it in our

plots if it is above 5%. Value fields produce no measurable

footprint overhead and less than 1% increase in compilation

time during Native Image building. The default Native Im-

age Garbage Collector (GC) is utilized in all experiments

(using the recently added Garbage First Native Image GC

did not affect the benefits of value fields). Experiments run

in a single cluster node running Debian 10 (Linux kernel

4.19.0-10) equipped with an Intel(R) Xeon(R) CPU E3-1225

v6 @ 3.30GHz, and 32GB of DDR4 DRAM. CPU frequency

scaling and hyper-threading are disabled.

The remainder of this section is divided into sub-sections,

each exploring a specific use-case. We picked different use-

cases from different areas ranging from data analytics (Apache

133



Compiler-Assisted Object Inlining with Value Fields PLDI ’21, June 20ś25, 2021, Virtual, Canada

MapNode
key
value

Line
a
b

String
coder
hash
value

Point
x
y

Point
x
y

a) Original

MapNode
key
value

Line

String
coder
hash
value

a_x
a_y

a_state

b_x
b_y

b_state

b) Inlined

MapNode

value_state

key_coder
key_value

value_a_state
value_a_x
value_a_y

value_b_state
value_b_x
value_b_y

c) Spec+Inlined

Figure 5. Combining type specialization and inlining.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

List IMap S+IMap

S
p
e
e
d
u
p

Read (FRef)
Write (FRef)
Read (CRef)
Write (CRef)

a) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

List IMap S+IMap

R
e
d
u
c
ti

o
n
 (

%
)

Full Refs
Compressed Refs

b) Memory Footprint

Figure 6. Performance of data structures with value fields.

Spark), Microservices (Spring Boot and Micronaut), to Graph

Databases (OrientBD) to illustrate the wide applicability of

value fields. We also benchmark the effect of object inlining

on widely used Java data structures and take advantage of

DaCapo [18] and Renaissance [32] to study the applicability

of object inlining on a wider spectrum of applications.

6.1 Optimizing Java Generic Data Structures

We start by demonstrating how value fields can be used to

improve both the memory footprint and throughput of Java

generic data structures. To this end, we select two of the most

widely used data structures in the Java Development Kit

(JDK): ArrayList<V> and HashMap<K,V>. We parametrize

both data structures using Line (as value) and String (as key,

only for HashMap). These two data structures are selected as

representative of other JDK generic data structures.

Internally, an ArrayList contains an Object array which

keeps references to the objects inserted into the data struc-

ture. In this section, we use value fields to inline the fields

of the Line type and compare to a version of the same data

structure with no inlining (see example in Figure 2). Simi-

larly, HashMaps also keep references to map entries inside

an array of MapNode. Each MapNode contains a reference to

a key and a value (Figure 5.a). The resulting type layout of

using value fields to inline the fields into Line is depicted in

Figure 5.b. To maximize throughput and reduce memory, we

further inline both the key and value fields in MapNode us-

ing a technique called Type Specialization (described below).

Figure 5.c represents the final layout of MapNodes. By com-

bining inlining with specialization, it is possible to reduce

by 3× the number of objects utilized in HashMaps.

Type Specialization [21, 33, 35] is a technique that allows

the specialization of generic data structures by allowing the

creation of specialized instances of such data structure. As

opposed to the regular utilization of generic Java data struc-

tures, which are subject to type erasure during compilation

and rely on artificial type casts introduced by the (Java)

compiler to complement the data structure implementation,

specialized data structures keep their type information until

run-time and therefore unlock inlining opportunities. For ex-

ample, specialization assigns a concrete type to MapNode.key

(String) and MapNode.value (Line) whereas in the original

generic version both fields are of Object type.

Specialized data structures are offered through a factory

provided as a library to applications. Developers simply need

to replace their regular generic data structure allocation

Map<String,Line> map = new HashMap<>();

by

Map<String,Line> map =
newHashMap(String.class,Line.class);

During Native Image building, calls to the factory methods

are statically analyzed and all data structure specializations

are created to accommodate all calls to factory methods. At

run-time, upon calling the factory method newHashMap, a

specialized instance is returned. We currently implement

specializations for a variety of the most widely used generic

Java data structures.

To evaluate the proposed data structures, we utilize a

simple micro-benchmark which performs random read and

write operations. Results (Figure 6) show that inlining leads

to both read and write speedups in all three data structures

variations: ArrayList (List), Inlined HashMap (IMap), and

Specialized and Inlined HashMap (S+IMap). Speedups are

more pronounced when using full references (FRefs) as the

locality is significantly improved by inlining objects. Spe-

cialization also has a positive performance impact as it also

improves locality by avoiding one extra memory indirection

to access both the key and value fields in MapNode. Memory

footprint reduction ranges from 25% for IMap, and up to 55%

for List and S+IMap. Benefits come from reducing the num-

ber of object headers and object references. In sum, generic

Java data structures can greatly benefit from object inlining

with minimal user involvement. Results show speedups of

up to 30% and memory reductions of up to 55%.

6.2 Value Inlining in Microservice Caches

Microservices [28] have recently received a lot of attention

from the software industry as a way to split monolithic appli-

cations into smaller, more maintainable, isolated, and easier

to deploy services. Large companies such as Netflix [3], Ama-

zon [2], Ebay [6], and Uber [1] have transitioned several of

their services/applications into microservice architectures.

As a result many Microservice frameworks are now avail-

able to help users build, manage, and deploy microservices
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Figure 7. PetClinic Throughput (left), Memory Footprint (center), GC Pause Time (right).

more easily. Popular frameworks include, for example, Spring

Boot [17] and Micronaut [5]. Among many of the function-

alities provided by these frameworks, caching of requests

(through a @Cacheable annotation) is a common built-in fea-

ture. Cacheable requests usually keep in memory the result

of a database request, therefore improving throughput, but

at the expense of higher memory footprint. In this section we

evaluate value fields for reducing the footprint and improv-

ing the throughput of two popular microservice frameworks,

Spring Boot and Micronaut.

6.2.1 SpringBoot PetClininc. To benchmark Spring Boot

with value fields we take advantage of a popular demo ap-

plication, PetClinic 1. The setup includes: i) a MySQL Server

8 installation that keeps a database with all the state; ii) an

instance of the PetClinic application; and iii) JMeter [9] that

produces load based on a realistic dataset (which includes

names of people, addresses, etc). Requests are issued using

a combination of the services provided by the microservice

and try to emulate real users using the website.

To trigger object inlining, we look at the domain types

in the PetClinic application and create an object inlining

configuration file with all the fields that should be inlined. In

total, 12 fields are marked for inlining across 6 different do-

main types as can be seen in following configuration file. The

configuration file is loaded by the Native Image builder and

thus no changes to the application source code are required.
{
"value_fields" : {
"petclinic.model.BaseEntity" : ["id"],
"petclinic.model.Person" : ["firstName", "lastName"],
"petclinic.model.NamedEntity" : ["name"],
"petclinic.owner.Owner" : ["address", "city", "phone"],
"petclinic.owner.Pet" : ["birthDate", "type"],
"petclinic.visit.Visit" : ["date", "desc", "petId"]

}
}

Figure 7 shows the experimental results for PetClinic’s

throughput, memory footprint, and GC latency, respectively.

All plots compare the original deployment of PetClinic (Orig-

inal) with the version using value fields (Inlined). Results

clearly indicate that throughput increases as time goes on

(this is a side-effect of more requests being served directly

from the in-memory caches) but the Inlined deployment is

always superior in terms of requests per second. After the

1https://github.com/spring-projects-experimental/spring-graalvm-

native/tree/master/spring-graalvm-native-samples/petclinic-jdbc

initial warmup, the Inlined deployment of PetClinic has 23%

higher throughput. At this point, requests are both being

served from the database and from the cache showing that,

in both situations, value fields makes request handling faster.

Memory footprint and GC latency follow the same trend.

After the initial warmup, the memory footprint of PetClinic

is reduced by 33% and the GC latency, important for long

tail latencies of application requests, drops by 35%.

6.2.2 Micronaut ShopCart. The same approach of prepar-

ing a configuration file for object inlining that was used for

Spring Boot could also be applied to Micronaut. However,

since Micronaut performs most of its framework setup logic

at (Java) compilation-time (during annotation processing to

be specific), we extended Micronaut’s annotation process-

ing engine to automatically configure object inlining for

cached objects. With such extension, no user involvement is

required and applications that use framework-based caching

automatically benefit from value fields.

To benchmark Micronaut with value fields, we developed

a simple application called ShopCart, which has similar oper-

ations when compared to PetClinic, but in a different domain

(online shopping). One of the domain types used in the appli-

cation and returned in a @Cacheable request is Product. The

following code shows the Java representation of the gener-

ated type whose instances are saved inside the microservice

cache instead of the original Product:

class Value$Product {
@Value’raph Product p;

public void inline(Product p) { this.p = p; }

public Product deinline() { return this.p; }
}

Our extension of Micronaut uses inline and deinline

when inserting and retrieving into/from the cache, respec-

tively. Note that, in this use-case, inlining is used to compress

the memory layout only when objects are stored inside the

cache. This is made possible by creating a wrapper type

(Value$Product in this example) that inlines the original

Product object. At run-time, Micronaut automatically inter-

cepts cache accesses and calls inline and deinline when

inserting and retrieving objects from the cache (respectively).

Similarly to the PetClinic experiments, JMeter is utilized to

produce load on the microservice by issuing a combination

of requests that emulate user requests on the website. In this
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Figure 8. ShopCart Throughput (left), Memory Footprint (center), GC Pause Time (right).
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build-time (middle), using inlining at build-time (right).

specific use-case, we do not use a backing database and all

information is kept inside the microservice caches.

Results are reported in Figure 8. After an initial warmup,

results stabilize for both the deployment with (Inlined) and

without (Original) object inlining. Throughput of the In-

lined deployment shows an improvement of approximately

7%. This improvement is less significant compared to Pet-

Clinic because objects are only inlined while stored inside

the cache. When objects are retrieved form the cache, the

original layout is utilized. A throughput improvement means

that the overhead of restoring the original objects (during de-

inlining) is more than compensated by having fewer objects

in memory (thus reducing the pressure on the runtime).

Memory and GC latency show significant improvements.

After the initial stabilization period, memory is reduced by

32% and GC latency is reduced by 35%. These performance

benefits come with zero user involvement as all object inlin-

ing setup is performed at compilation-time using Micronaut.

We also analyze the tradeoff between run-time and build-

time initialization and how value fields can reduce the size

of binaries produced by the Native Image builder. We de-

ploy ShopCart with a static table of product prices and de-

scriptions. This data can be loaded into the application a) at

run-time, in which case the loading time is included into the

startup time of the microservice or, b) at build-time, reducing

startup time but increasing the binary size generated by the

Native Image builder. Figure 9 shows how value fields can

be used to reduce the size of static data structures initialized

at build-time.

Results show that through object inlining, the binary size

can be reduced by up to 40%, leading to a total package size

Table 1. Spark RDD queries.

Query Description

Q1 Number of movies released in a year by genre.

Q2 Movies ordered by movie rating.

Q3 Average age of a movie’s actors.

Q4 Actors ordered by number of roles.

Q5 Year with more average rating vores.

Q6 Actors ordered by number of roles in highly rated movies.

(binary size plus static data size) increase of 1.3-2.16× com-

pared to run-time initialized. In exchange for the increased

binary size, startup time (time until the microservice is ready

to serve requests) is reduced by up to 98.3×. This great reduc-

tion in startup time is the result of pushing dataset loading

time to built-time. Loading the static data and inserting all

entries into an in-memory table (HashMap) takes up to 8.7

seconds for a 120 MB dataset with 10M entries.

6.3 Data Analytics with Spark

We now look at how object inlining can be used to optimize

data analytics using Apache Spark [41]. We take advantage

of a public movie dataset with 6.3M entries [11] which is

loaded into a SparkRDD and used to execute a number of

queries (see Table 1). Queries are implemented using a mix

the most common SparkRDD operations (map, filter, reduce,

flatMap, etc).

The Spark application contains only two domain types:

Movie and Actor and all non-array and non-primitive fields

are marked using the @ValueField annotation (6 annotated

fields across 2 domain types):

1: class Movie {
2: Actor[] actors;
3: @ValField String genre;
4: @ValField String name;
5: @ValField Date release;
6: int votes;
7: float rating;
8: }

1: class Actor {
2: @ValField Date birth;
3: @ValField Date death;
4: @ValField String name;
5: }

We run Spark in a single node using 8 threads and 16GB

of memory. We anticipate that, in a cluster setting, most

benefits and conclusions are similar as the proposed opti-

mizations have effect on memory consumption and query

processing time, and not on data distribution over the net-

work. Since Spark is not yet supported by the Native Image
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Figure 10. Spark performance using value fields.
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Figure 11. Spark memory footprint.

builder, we perform all inlining transformations by hand. No

other changes to the application (query implementation) or

to Spark platform are required.

Results for query execution time show an average speedup

of 1.35× compared to the original Spark deployment (see Fig-

ure 10.a). This improvement shows that since objects are

more compact in memory, Spark engines can process data

faster. Improvements can also be measured for memory foot-

print (up to 40%) and GC latency (up to 58%). Both memory

consumption and GC latency are a direct benefit of optimiz-

ing the memory layout of objects to reduce the number of

headers and object references.

Figure 11 shows the memory utilization trace throughout

an entire run of loading the dataset, followed by a single

execution of each query. Comparing both deployments, one

can see that both curves share the same number of peaks

and relative duration but the inlined deployment presents

lower and earlier peaks, showing that each query used less

memory and executed faster. In sum, using value fields yields

not only memory footprint reductions, but also throughput

improvements.

6.4 Graph Processing with OrientDB

We now look into how inlining can be helpful to optimize

graph/object databases. We take advantage of OrientDB [14],

an opensource graph/object database which we use to store a

subset of S2ORC [27], a public collection of research articles.

Once the database is loaded, we perform a number of popular

queries such as fetching all citations of a paper/researcher,

or calculating the journal impact factor (see Table 2).

Table 2. OrientDB queries.

Query Description

Q1 Get all citations of a paper.

Q2 Get all citations of a researcher.

Q3 Calculate the hIndex for a researcher.

Q4 Calculate the i10Index for a researcher.

Q5 Calculate the Impact Factor for a journal.

Queries are implemented in Java using a few domain types.

In total, 5 fields are annotated across two domain types:

1: class Paper {
2: @ValField String id;
3: @ValField String title;
4: @ValField Publication pub;
5: }

1: class Researcher {
2: @ValField String id;
3: @ValField String name;
4: }

OrientDB’s object API accepts object graphs which are

then serialized and merged into its internal graph repre-

sentation. The database data is stored in off-heap memory

(memory which is not managed by the garbage collector).

OrientDB serializes object graphs to off-heap memory using

their database format. Since OrientDB is not supported yet

by the Native Image builder, we perform all inlining transfor-

mations by hand. No other modifications to the application

or to OrientDB database are performed.

Throughput (see Figure 12.a) shows a significant speedup

ranging from 2.5x to 3x for queries and 2x for writing new ar-

ticle entries into the database.Value fields leads to higher read

and write rates compared to the original deployment, a di-

rect consequence of reducing the number of objects involved

in serialization/deserialization to/from off-heap. Footprint

improvements are depicted in Figure 12.b. For simplicity, we

show the memory traces for a single execution for a work-

load that starts by loading the dataset (the initial increase in

memory utilization), followed by a query execution phase.

During query processing time, memory utilization does not

increase as no new entries are inserted into the database.

Memory utilization is positively impacted by object inlining,

showing an 18% reduction compared to the original deploy-

ment. It is relevant to note that this example shows that value

fields can effectively reduce the size of serialized objects. Re-

sults for GC latency are not depicted as most of the memory

is allocated off-heap and therefore, GC latency is negligible

as only a few objects reside inside the heap.

6.5 DaCapo and Renaissance Benchmark Suites

DaCapo [18] and Renaissance [32] are popular benchmark

suites that represent a wide spectrum of applications. In this

section, we use benchmarks from both suites to measure the

improvement of value fields. From the benchmarks included

in both suites, we exclude benchmarks that are currently not

supported by Native Image (due to missing Native Image

build configuration, required for applications using dynamic

features such as serialization and Unsafe memory access).
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Figure 12. Performance of OrientDB with value fields.
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Figure 13. DaCapo and Renaissance with value fields.

In addition, all applications with low memory footprint (less

than 5 MB) are also excluded.

For each application, we create a configuration file which

contains the fields that should be considered for inlining. To

determine such fields, we first use the JVMTI profiler (see

Section 5) to create an initial set of fields to inline. From this

set, we eliminate all fields whose type is mutable. Finally, we

analyze a heap dump of the running application looking for

objects with high retained memory size (data structures) and

we limit the inlining candidates to fields of objects inside the

data structure.

Normalized improvement percentage results for Memory,

GC Pause Time, Throughput are included in Figure 13. The

plot also includes the number of fields selected for inlining

(right axis). Results show that value fields improve the perfor-

mance across of most metrics in all applications. Only three

benchmarks report degradations in one of the three metrics.

In scala-stm-bench7, a 2% memory footprint degradation

results from some objects escaping the scope of allocation

(inlined field loads) but it compensated by 17% improvement

in throughput and 30% reduction in GC pause time. In h2

and fop, a 1% throughput reduction is compensated by 4%

and 6% memory footprint reduction, respectively. All other

benchmarks achieve improvements across all three metrics.

Benchmarks with low memory footprint (less than 5 MB)

are not presented as no fields are selected for inlining and

therefore no improvement or degradation is reported.

7 Related Work

Value types, fields, and objects (or structures, as in C#

and Swift) offer value semantics and therefore do not require

identity and do not provide atomic access, making them good

candidates for type optimizations which minimize memory

footprint and improve data locality. However, the dichotomy

between value types and reference types forces developers to

have completely separate types (and semantics) for data and

control, increasing the complexity and code maintainability

effort. Languages such as Java, Python, and JavaScript opted

for a uniform type system where all composite types are

reference types leading, however, to performance issues.

Recent efforts have been trying to bridge the performance

gap between value and reference types. Project Valhalla [13]

is an ambitious experimental project which aims at bringing

value types and data structure specialization into Java. It does

so by allowing objects to be marked as immutable values at

run-time through a new method introduced into Object, the

root of the Java type system. Objects marked as immutable

values can no longer be used in identity exposing operations

(such as reference equality) and cannot be modified. Just-In-

Time (JIT) compilers are then free to optimistically optimize

code that handles objects marked as immutable values. De-

optimization checks are also automatically introduced by the

JIT compiler, and exceptions are thrown if the application

tries to mutate an already immutable object.

Compared to value fields, project Valhalla requires signif-

icant changes to core language libraries and core runtime

components such as the interpreter and JIT compilers, in-

creasing the complexity of the design and implementation.

We also argue that handling the conversion from value to

reference at the field access level, compared to explicitly call-

ing a method on the object, is not only a simpler abstraction

for developers, but also limits the number of cases in which

both reference types and value types are involved, possibly

reducing the number of complex and ambiguous scenarios.

Records [16] were recently introduced as a new data type

in the Java type system. Records are specifically designed

to represent immutable data objects. The goal of this new

proposal is to reduce boilerplate code and not to improve

performance. Records still have object properties such as

identity and atomic access, and therefore are not candidates

for object inlining.

Scala Value Classes [26] provide a mechanism for types ex-

tending AnyVal to be automatically inlined. However, these

types have many restrictions such as being limited to having

a single field. In practice, value classes can be used as a tool

for type aliasing. We argue, however, that declaring types as

values creates a type dichotomy which increases complexity

and prevents already existing types which may have value

semantics in particular scenarios, from being inlined.
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Object inlining is not a new idea [19, 20]. Wimmer et al.

[38] proposed an automatic feedback-oriented object inlin-

ing technique for the Java HotSpot VM. The goal was not

to reduce the memory overhead but to optimize the perfor-

mance of field accesses instead. This is done by co-allocating

objects with their fields consecutively in memory and re-

placing field accesses by address arithmetic. In order to find

potential candidates for this optimization, profiling code is

installed during Just-In-Time (JIT) compilation.

The two preconditions for this optimization are i) that the

object and its fields must be allocated together, i.e., the field

storemust occur right after the allocation of both objects, and

ii) the field should not be modified to reference other objects.

The profiling code installed in the class loader and reflection

system makes sure no newly loaded code or reflection call

could violate the preconditions. If the latter occurs, code

deoptimization must be triggered to remove the optimized

field accesses.

The idea of optimizing field accesses was further extended

to arrays [39]. Inlining arrays required the same precondi-

tions as for inlining regular objects. Inlining of objects inside

arrays is not handled due to the missing type information in

Java bytecodes, preventing a safe optimization.

Haubl et al. [25] propose an optimized version of String for

the Java HotSpot VM based on inlining the character array

(previously, a field of the String type) directly into the String

type. According to the authors, the motivation for this work

was that the vast majority of String objects do not share their

character array with other String objects and therefore, the

character array could be directly inlined into String. Unlike

the previously discussed work, this approach proposes that

the header of the character array should be removed when

inlining it into String.

Pape et al. [31] also proposed taking advantage of the

JIT compiler to identify specific types that contain fields

that are either primitives or object references not modified

after initialization (in other words, immutable). A prototype

implementation of this technique was presented for RPython.

Gope et al. [24] presented a technique for inlining hashtable

keys to provide faster lookup access. This technique was also

based on a profiler that detects frequent accesses to specific

hashtables. Once the optimization is triggered, the hashtable

keys are moved into an array so that faster key lookup is

possible. This optimization also relies on the assumption that

the number of keys is constant.

Compared to previous object inlining techniques, our pro-

posal improves the state of the art in three ways. First, taking

advantage of the closed-world environment, which has been

made a viable approach in recent years, greatly improves

the range of applicability of object inlining as all types are

known statically and inlineable fields can easily be identified.

Second, value field further unlocks the potential of object

inlining by allowing the compiler to treat objects as values.

This abstraction allows us to overcome the barriers imposed

by proving that identity of inlining candidates is not exposed

and that concurrent field access is not possible. Both con-

ditions are hard to prove, especially if objects escape the

scope of allocation, therefore imposing severe restrictions

on the candidate fields for inlining. Third, the proposed ob-

ject inlining design aims at exploiting all existing compiler

optimizations. To this end, inlining is performed early in

the compilation pipeline so that other optimizations such as

method inlining and escape analysis can optimize the code

produced to perform inlined field accesses.

Object Serialization is a widely used technique that con-

verts object graphs into a compact serialized format (byte

streams), reducing memory consumption. Serialization is,

however, a complex and slow process as it requires run-

time introspection (reflection), or developer-provided code-

snippets on how to serialize objects [12, 15]. Compared to

object serialization, object inlining is a compiler-transparent

technique meaning that objects are not required to be copied

out from their inlined format if the value does not escape

the current scope. Using serialization, every object access re-

quires deserialization. In addition, we also show that inlining

can be combined with serialization to reduce the overhead

imposed by the serialization process, and also to reduce the

memory footprint of the serialized format (see ğ6.4).

Previous works [29, 30] have also studied techniques to

process data in its native/serialized format. These techniques

have been shown to work in the context of Big Data plat-

forms such as Spark [41], Hadoop [4], and Flink [8]. However,

unlike value fields, these techniques will not help improv-

ing the performance of caches and databases since objects

stored in such data stores tend to always escape the scope

of allocation.

8 Conclusions

This paper revisits the topic of object inlining and starts by

addressing the challenges that prevent it from being a gener-

ally applicable technique in languages that contain identity

exposing operations. We demonstrate through experiments

with real-world platforms and workloads that there is a sig-

nificant potential for performance improvements of through-

put and memory footprint that could be attained by allowing

such type layout optimizations. To unlock object inlining,

we propose using the closed-world environment combined

with value fields, an abstraction that allows the compiler to

optimize data layouts by relaxing object identity and atomic

field access guarantees. Applying value fields to the appli-

cation data-path is shown to be possible with minimal user

effort or even with no effort at all if incorporated directly

into frameworks. Looking forward, we see this work as a tool

that framework and library developers can use to optimize

applications and to develop memory-efficient data structures

and algorithms which can take advantage of object inlining

with minimal to no user involvement.
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