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1 MOTIVATION
The serverless cloud computing model is gaining signifi-
cant adoption as it enables applications to harness extreme
elasticity and fine-grained billing while freeing developers
from infrastructure management hurdles [4, 13]. Serverless
is often offered in the form of an event-based Function-as-a-
Service programming model where applications are split into
lightweight and fast-executing logic units called functions
which are launched automatically by the serverless platform
upon invocation. As a result, serverless sparked a lot of in-
terest among practitioners which led to the development of
many serverless applications in image and video process-
ing [6], machine learning [3], data processing [9, 12, 16], and
web-based applications [7].

Serverless functions have different performance charac-
teristics compared to serverfull or even to microservices,
particularly when it comes to memory footprint and execu-
tion time. A recent study [14] showed that most serverless
applications run for at most 1 second and use up to 150
MBs of memory. For such fine-grained computations, tradi-
tional hardware and system isolation techniques (processes,
containers, VMs) are inefficient at protecting each unit of
computation from other units.

2 LIMITATIONS OF EXISTING ISOLATION
Despite their strong isolation properties, virtual machines
(VMs) and containers are inefficient in the context of isolat-
ing fine-grained serverless computations. First, high memory
redundancy stems from having multiple copies of the same
application and language runtime in memory. Second, high
cold start latency since every time a new sandbox needs to
be created to host a function invocation, a new virtual ma-
chine or container needs to be launched. To mitigate these
problems, recent works have proposed using a single lan-
guage runtime (and therefore a single VM/container) to host
multiple function invocations.

Process-based isolation. SAND [2] and SOCK [10] pro-
pose a zygote process that forks into a child process used to
handle the invocation. This approach only supports Python
as it is not straightforward to apply fork to most other
commonly-used runtimes without expensive reinitialization
mechanisms [2, 5, 10]. For example, most Java and Javascript
runtimes contain background threads that deal with Garbage
Collection and Just-in-Time compilation. Implementing the

fork approach for these runtimes would require properly
re-initializing all threads in the child process, which involves
complex and error-prone changes to the runtime.
Runtime/compiler-based SFI. Photons [5] propose a

bytecode rewriting tool that isolates global state between
concurrent function invocations running on the same Java
Virtual Machine (JVM). However, this technique is Java-
specific and requires manual intervention when Java’s re-
flective features (reflection for example) are utilized by the
function code. Faasm [15] relies on Wasm to deploy sand-
boxes within a single address space but also has limited
support for the most popular serverless languages (Python,
Javascript, and Java).

MPK-based isolation. Faastlane [8], on the other hand,
offers stronger memory isolation through Intel Memory Pro-
tection Keys [11] (MPKs) between functions within a sin-
gle process/runtime. Intel MPKs have recently been intro-
duced as an isolation mechanism within a single address
space. MPKs split virtual memory in domains that can be
assigned to one or more threads. However, MPKs are limited
to 16 memory domains, preventing their wide use to isolate
concurrent function invocations (only up to 16 invocations
would be handled in a single address space).

3 KEY INSIGHT
To lift the domain count limitation of existing hardware
mechanisms and scale isolation to real-world serverlesswork-
loads, our approach leverages the following key insight: man-
aged language runtimes already offermemory isolationwhile
the function is running managed code (i.e., code managed
by the runtime), hence, non-language-based isolation tech-
niques are only required when there is a control-flow transi-
tion to native code (i.e., code not managed by the runtime).

In managed languages, function code can only handle ref-
erences within the object graph managed by the sandbox
and cannot access arbitrary memory positions. Therefore,
code executing within the sandbox (we refer to it as managed
code) is not able to access memory locations belonging to
other concurrent functions. This guarantee is offered by the
compilers and runtime, which dynamically inject and exe-
cute a number of integrity checks (e.g., null pointer checks,
buffer overflow checks). Taking advantage of such language-
based guarantees, it is possible to delay the utilization of
MPK domains until there is a transition from managed code
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Figure 1: Memory domain distribution when running
three concurrent function invocations.

into native code, which runs outside the sandbox, where the
guarantees no longer apply. For example, if a Java function
calls a native library (through the Java Native Interface), an
MPK domain is only used isolate the library data and code
while the function is running in the native mode (see Fig-
ure 1). Functions that do not rely on external libraries will
naturally not use any MPK domain.

4 BRIDGING LANGUAGE AND
HARDWARE ISOLATION

This design has several advantages. First, isolation guaran-
tees are offered to all functions but will only be enforced if
the function calls into external libraries (native code). Sec-
ond, even if most functions need native code execution, MPK
domains can be shared over time. A single domain can be
shared not only across invocations that do not overlap in
time but also across invocations that overlap as long as they
don’t run native code simultaneously (see Figure 2. Third,
since only native code will be moved to a different MPK
domain, remapping becomes more efficient as the bulk of
the memory (managed by the runtime) is not required to be
in an MPK domain since the isolation is still guaranteed by
the compiler/runtime.

Capturing Managed to Native code calls Memory iso-
lation can be enforced at the managed execution boundaries
by analyzing the function code statically and inserting code
snippets to intercept transitions frommanaged code to native
code. Those transitions are handled by moving the calling
thread and the native code library that is being invoked into
a free MPK domain. When the native code call returns, we
move the thread and library back to the original MPK do-
main so that other functions could use it for calling native
code. It is also possible to collect metadata information about
if and when invocations call native code. Such information
could be useful to i) make better decisions at the higher level
scheduling to reduce the number of function invocations
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Figure 2: Memory domain distribution along the exe-
cution time of three concurrent function invocations.

that rely on external libraries on the same process, and ii)
push some of the MPK domain initialization/registration to
the background.

We consider the language runtime and compiler as trusted
entities and therefore, interactions between the function code
and the language runtime do not need to be monitored even
if these components are written in non-managed languages
such as C/C++. We do not trust user-provided code which
(may include a mix of managed and native code) as it can
potentially contain bugs or even malicious code.

Implementation and EvaluationWe are building a pro-
totype using GraalVM Native Image [17], an ahead-of-time
compiler for Java applications. It supports memory isolates 1

which we use to confine the execution of a particular func-
tion invocation in a separate memory heap. Furthermore,
Native Image limits dynamic class loading, ensuring that
all the reachable code is known at compile. Managed to na-
tive control-flow transitions are being intercepted to update
the calling thread’s permissions (i.e., revoking access to the
default MPK domain). In addition, we also intercept native
code loading and keep track of which pages belong to which
library such that when a managed to native transition is is-
sued, we are able to move the pages belonging to the library
that is being called into a free MPK domain.
We are looking into a number of opensource serverless

benchmarks and analyzing how much time is spent on na-
tive code and the overall number of transitions. We intend
to evaluate our prototype on a realistic serverless setup de-
ployed on top of a serverless platform such as OpenWhisk
and measure the overall cost reduction compared to run-
ning all invocations in completely separate MPK domains.
Updating the MPK permissions of a particular thread takes
less than 25 CPU cycles and updating the domain of a range
of memory pages belonging to a native library is very ef-
ficient [11]. We envision our design could significantly im-
prove the scalability (while retaining security guarantees) of
serverless platforms when there is a mix of functions with
different characteristics of frequency and duration of native
code utilization.
1Memory isolates are also supported by other runtimes such as V8 [1].
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