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ABSTRACT
Container checkpointing has emerged as a new paradigm
for task migration, preemptive scheduling and elastic scaling
of microservices. However, as soon as a snapshot that con-
tains raw memory is exposed through the network or shared
storage, sensitive data such as keys and passwords may be-
come compromised. Existing solutions rely on encryption
to protect data included in snapshots but by doing so pre-
vent important performance optimizations such as memory
de-duplication and incremental checkpointing. To address
these challenges, we design and implement CRIUsec, an
efficient end-to-end encryption scheme for container check-
pointing systems built on the open-source CRIU (Check-
point/Restore In Userspace). Our preliminary evaluation
shows that CRIUsec integrates seamlessly with popular con-
tainer platforms (Docker, Podman, Kubernetes), and com-
pared to existing solutions, achieves an average of 1.57×
speedup for memory-intensive workloads, and can be up to
100× faster for compute-intensive workloads.
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1 INTRODUCTION
Over the past decade, container checkpointing has been
adopted into many popular container platforms to enable
use cases such as fault-tolerance [30], fast application start-
up [11, 29], live migration [24], elastic scaling [15], pre-
emptive scheduling [12, 22], and forensic analysis [1]. De-
spite these benefits, checkpoint/restore tools simply dump
memory pages to disk and these pages may include sen-
sitive data such as cryptographic keys, API access tokens,
and passwords. The traditional solution to this problem is
to use encryption. However, container engines lack native
support for checkpoint encryption and require infrastruc-
ture operators to implement their own security mechanisms
using external encryption tools. These tools lack visibility
on what is included in the snapshot and encrypt/decrypt all
of the dumped application state. This problem is particularly
important in multi-tenant environments, where container
platforms are shared across multiple users, teams, or organi-
zations with different security requirements.

Existing security mechanisms for container checkpointing
can be classified into two categories based on the method
of processing data: (i) local encryption – checkpoint data is
saved and encrypted locally before being transferred to a
remote or distributed storage [2, 3, 7, 20]; and (ii) streaming
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Figure 1: Checkpoint/restore workflow for encrypted
CRIU images in protocol-buffer format. Highlighted in
yellow are components providing CRIUsec function-
ality, those in red are modified, while those in blue
remain unmodified.

encryption – a data streaming pipeline is used to encrypt
checkpoint data on-the-fly [13, 23, 28].

While local encryption offers data protection, the required
intermediate storage introduces a significant performance
overhead, increased storage requirements, and creates a new
attack vector (through unauthorized storage access [16, 21]).
Streaming, despite offering a more efficient and secure solu-
tion, relies on data transfer through undocumented, ad hoc
protocol implemented by operators over UNIX domain sock-
ets. This creates a potential vulnerability where an attacker
with filesystem access could replace the original socket file
and perform a man-in-the-middle attack. This presents im-
plementation challenges that prevent mainstream adoption
of streaming encryption in container engines. In addition,
neither of these two approaches supports optimization tech-
niques such as incremental checkpointing and memory de-
duplication. These techniques are crucial for performance
and cannot be efficiently implemented with existing external
snapshot encryption mechanisms (both local and streaming),
as they require multiple rounds of encryption and decryption
to calculate the incremental changes and de-duplicate clear
text data.

To address these challenges, we propose CRIUsec, an end-
to-end encryption mechanism for container checkpointing
systems. CRIUsec combines asymmetric cryptography with
symmetric stream and block ciphers to provide confidential-
ity, integrity, and authentication of checkpoint data. It mini-
mizes the overhead of encryption and storage requirements
by encrypting the checkpoint data in-place and on-the-fly.
In addition, it enables support for incremental checkpoint-
ing and memory de-duplication by integrating encryption
mechanisms with the core checkpoint/restore functionality.
Our preliminary evaluation demonstrates that compared

to state-of-the-art cryptographic tools, CRIUsec significantly
reduces the overheard of end-to-end encryption. It achieves
an average reduction of up to 62% for memory-intensive and
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Figure 2: Pre-copy container migration with iterative
checkpointing involves transferring the majority of
memory state over N iterations prior to freezing, trans-
ferring the remaining state, and restarting the applica-
tion from the checkpoint.

can be up to two orders of magnitude faster for compute-
intensive workloads. In addition, CRIUsec seamlessly inte-
grates with popular container platforms (Docker, Podman,
Kubernetes) without modifications to existing workflows.

2 BACKGROUND
Container platforms such as Kubernetes typically assume
a threat model where the hardware, operating system (OS)
kernel, and privileged userspace are trusted. Container run-
times (e.g., runc) are responsible for handling low-level tasks
such as creating and running containers, while container
engines (e.g., CRI-O) are high-level tools that fetch and man-
age container images, and act as an intermediary between
Kubernetes and the underlying container runtime. Container
checkpoint/restore is enabled at low-level using tools such as
CRIU [5] to transparently capture the state of a running con-
tainer and restore it later on the same or different machine.

2.1 Security Risks
Container checkpointing with platforms such as Docker,
Podman, Kubernetes by default does not provide support for
encryption. System administrators are required to setup their
own security mechanisms that restrict access to checkpoint
data through methods such as access control lists or filesys-
tem encryption. The lack of a security standard for container
checkpoints creates a critical vulnerability that leaves sensi-
tive data unencrypted and exposed to unauthorized access.

2.2 End-to-End Encryption
While alternative methods can be utilized to protect check-
point data, our aim is to provide a generic solution for end-to-
end encryption, i.e., checkpoint data is encrypted while it is
extracted from the address space of processes, and decrypted
as it is restored within the new process address space. By
addressing the problem at the low-level checkpoint/restore
functionality, it ensures that optimization techniques such as
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iterative checkpointing (illustrated in Figure 2) and memory
de-duplication remain available while at the same time avoid-
ing expensive decryption and encryption cycles. In addition,
this approach integrates seamlessly with existing checkpoint-
ing systems.

3 CRIU OVERVIEW AND THREAT MODEL
CRIUsec aims to provide security by integrating crypto-
graphic capabilities directly into the checkpointing engine
(CRIU). This approach ensures that sensitive data is auto-
matically encrypted end-to-end, and eliminates the need
for external data processing layers or tools. In addition, it
applies fine-grained encryption of checkpoint data where in-
dividual memory pages and data structures can be modified
without the need to decrypt the entire checkpoint. This is
crucial for enabling advanced optimizations such as iterative
checkpointing and memory de-duplication.

To optimize performance, CRIUsec utilizes in-place encryption
and zero-copy techniques, thus avoiding unnecessary data
copying. This method is particularly important for memory-
intensive workloads, where the overhead of encryption can
significantly increase downtime during checkpointing.

3.1 System Model
A container checkpoint consists a set of files (CRIU images)
that capture the serialized runtime state of a process tree, in-
cluding open file descriptors, user/group IDs, PIPEs, sockets,
mount points, and memory state. Understanding the char-
acteristics of different types of CRIU images (such as the
number of data entries and size) is crucial for selecting the
most suitable encryption cipher. In particular, CRIU images
can be broadly classified into the following three categories:

• Memory pages: binary data with large number of
entries of fixed size;

• Raw images: data in a third-party format defined by
external tools such as ip, iptables, tar;

• Protobuf images: structured data in protocol buffers
format with a variable number of entries and size [26].

For each category, CRIUsec provides a separate component
encapsulating the cryptographic operations for encryption,
decryption, and verification. These components are reused
across all images of a specific data format, aiming to avoid
code duplication and improve maintainability. We discuss in
more detail the implementation in Section 4.

3.2 Threat Model and Assumptions
Our threat model is primarily concerned with vulnerabili-
ties that may be exploited to compromise the confidentiality
or integrity of checkpoint data. Attacks in scope include
compromising the host environment (e.g., through container

breakout [17]) that allows an attacker to read/modify check-
points stored on persistent storage or to intercept network
communications. We assume that a container does not vol-
untarily reveal its own private data whether on purpose or
by accident, but attacks with malicious containers where the
attacker has control over the container state being check-
pointed are in scope. Availability, physical or side-channel
attacks are out of scope.

We assume secure key and certificate storage is available,
with certificates signed by a trusted Certificate Authority. We
assume the hardware is bug-free, and the system is initially
benign, allowing signatures and keys to be securely stored
before the system is compromised. We assume the container
engine and runtime do not have any vulnerabilities and can
be trusted. We assume it is infeasible to perform brute-force
attacks, and encryption protocols are designed to defend
against replay attacks.

4 CRIUSEC
CRIUsec builds on the open-source CRIU [5] and leverages
cryptographic primitives from the GnuTLS library [23] to
apply the most appropriate cipher for each CRIU image type.
The implementation consists of approximately 2,000 lines
of C code, and 250 lines of Python code extending the CRIU
image tool (CRIT) and the zero downtime migration (ZDTM)
test suite.

4.1 Encrypting Protocol Buffer Entries
Checkpoint data in protobuf format is stored as single-entry
or array data structure. A single-entry format stores a pro-
tobuf message (entry) with pre-defined fields (e.g., process
names, signal masks, registers). In contrast, array image has
zero or more entries, and this data format is utilized for the
majority of checkpoint data (e.g., process tree, files, sockets).

To ensure security and efficient processing for these mes-
sages, CRIUsec applies ChaCha20-Poly1305 authenticated
encryption with associated data. The ciphertext size is then
prepended, and authentication tag with random nonce (num-
ber used only once) are appended to the data. During restore,
an analogous approach is used for decryption.
Since, during restore, the content of array images is read

until an end-of-file (EOF) has been reached, the authentica-
tion tag, nonce, and ciphertext size are prepended to the en-
crypted data for each entry in the array. This approach allows
for detecting data corruption, e.g., when EOF is encountered
unexpectedly. Figure 1 illustrates this checkpoint/restore
workflow, where pb_read and pb_write are utilized to read
and write protobuf entries, bwritev combines multiple data
streams with vectored I/O and writes to persistent storage.
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Figure 3: Pipeline for encrypting/decrypting raw im-
ages created with external tools. The external tool is
executed with cr_system 1○, while a helper function
handles read/write operations to the image file 2○, and
intercepts the input/output data 3○ to perform on-the-
fly encryption and decryption 4○.

4.2 Encrypting Raw Images
When CRIU collects and restores data with tools such as ip,
iptables, and tar, these tools are executed with standard
I/O file descriptors set to transfer data between the tools
and a checkpoint (raw) image. CRIUsec replaces the I/O file
descriptors with PIPEs that allow intercepting the check-
point data to perform encryption and decryption on-the-fly.
This pipeline mechanism is integrated with the so-called
cr_system component (as shown in Figure 3). This compo-
nent is responsible for running the external tools, handling
the SIGCHLD signal and exit code.

4.3 Encrypting Memory Pages
Memory pages typically make up the largest part of a check-
point [27]. The techniques for checkpoint/restore of memory
are highly optimized for performance and efficiency, lever-
aging zero-copy transfer between processes and file descrip-
tors to avoid unnecessary data copying (e.g., using splice,
vmsplice, process_vm_readv). This memory state consists
of three types of images: memory mappings (mm), memory
page mappings (pagemap), and memory pages (pages). The
first two image types are encoded with protobuf format, and
encryption is handles as described above.
The third image type consists of individual pages stored

sequentially in binary format (with 4 KB size on x86-64 sys-
tems) according to the mappings in the pagemap image.
CRIUsec applies encryption with the AES-XTS block cipher
with a single initialization vector (IV). This approach al-
lows to avoid saving authentication tag and nonce for each
memory page and to minimize storage overhead. It is impor-
tant to note that IV is set with random generated data that
is unique for each checkpoint and it is never reused. This
method provides confidentiality and ensure that encryption
of identical plaintext will not result in the same ciphertext.
To enable performance optimizations such as asynchro-

nous restore of memory [8] and de-duplication, each page
is encrypted independently. The implementation of this ap-
proach is straightforward during checkpointing, however,
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Figure 4: Restoring encrypted memory pages within
PIE-compiled restore context with a helper process
decrypting the data.
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Figure 5: The page-read-iov data structure is used to
queue asynchronous read requests during the restore
operation. This helps to reduce the number of system
calls used for reading data and restoring memory map-
pings. It consists of a linked list with objects, where
each object contains one or more vectors, and each vec-
tor may contain pages with different virtual addresses.
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Figure 6: An illustrative example of saving and restor-
ing memory pages for parent and child process.

the restore operation is performed in PIE-compiled code (re-
storer context) that cannot be linked with GnuTLS to perform
cryptographic operations. To address this problem, we in-
troduce a helper process that communicates with the PIE
code via PIPEs, performs decryption, and writes the memory
pages at the target address space using process_vm_writev
system call, as shown in Figure 4.

4.3.1 Integrity Verification. While AES-XTS provides effi-
cient security solution, it requires an additional mechanism
for integrity verification. A traditional solution for this prob-
lem is to compute a keyed-hash message authentication code
(HMAC) for the encrypted data. However, the order in which
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pages are decrypted during restore is different from the or-
der in which they are encrypted during checkpointing. Fig-
ures 5 and 6 show an example of how asynchronous read
requests are combined during restore with a single invoca-
tion of the preadv system call. In particular, during restore
data is read into multiple scatter input (IOV) buffers that
are then remapped to their original virtual address. CRIUsec
uses an approach inspired by Merkle trees that verifies the
integrity of memory pages by computing an HMAC digest
of the virtual address, process ID, and ciphertext of each
memory page. It then computes an XOR for all HMAC di-
gest values and stores the final result in the checkpoint. The
restore process computes HMAC digest values in a similar
manner and compares the final result with the digest in the
checkpoint, and failing with an error in case of a mismatch.

4.4 Iterative Checkpointing
CRIU supports two core functionalities that enable iterative
checkpointing: (i) a memory tracking mechanism that iden-
tifies modified (dirty) pages; and (ii) a pre-dump feature that
creates a memory snapshot of only the changed pages since
the last checkpoint. The memory tracking functionality can
be used as a fault-tolerance mechanism. This can be achieved
by periodically creating a full snapshot and storing only
modified memory pages. Alternatively, it can be utilized in
combination with pre-dump during live-migration. This ap-
proach reduces downtime by minimizing the amount of data
that needs to be transferred between source and destination
nodes when the target application is not running. CRIUsec
integrates cryptographic capabilities with this mechanism
that allow to decrypt only the necessary data to identify
pages present in previous checkpoints.

4.5 Memory De-duplication
Memory de-duplication can be used both during checkpoint-
ing to remove redundant data in previous checkpoints, and
during restore to punch holes (with fallocate syscall) in the
checkpoint image file as soon as memory pages are restored.
CRIUsec encrypts memory pages using in-place encryption
that guarantees encrypted memory blocks to have the same
size as the plantext data. This allows to de-duplicate memory
without the need to decrypt the content of individual pages.

5 PRELIMINARY EVALUATION
We evaluate the performance of CRIUsec compared to base-
line CRIU, which does not provide support for encryption, as
well as CRIUwhen used in conjunction with general-purpose
encryption tools. In particular, we address the following ques-
tions in this section:

• What is the performance overhead of encryption dur-
ing checkpointing?

• How does the performance of CRIUsec compare to
other state-of-the-art encryption tools?

• What is the impact of encryption on application down-
time during checkpointing?

5.1 Experimental Setup and Methodology
We run all experiments on Ubuntu 22.04 server with kernel
v5.15 running on Intel i9 CPU (3.50 GHz, 8 cores, 16 threads),
Corsair 128 GB DDR4 memory (2133 MHz), and 1 TB Sam-
sung SSD 970 NVMe disk. We use runc v1.1.12, Podman v4.5,
Docker v26.0.1, Kubernetes v1.27.4, and build CRIUsec on
top of CRIU v3.19 compiled with GnuTLS v3.8.5.

Wemeasure the performance of CRIUsec with andwithout
encryption, and use OpenSSL v3.0.2 [6], GnuPG v2.2.27 [19],
and age v1.1.1 [25] as baselines. These tools run via CRIU’s
action-script functionality, as a shell script that implements
the post-dump hook to encrypt all CRIU image files at the
final phase of the checkpointing process.
Our evaluation focuses on encryption with two types of

workloads:memory-intensive and compute-intensive. Memory-
intensive workloads have a large memory state, and a check-
point typically consists of a small number of very large files
(that contain memory pages). In contrast, compute-intensive
workloads run a large numbers of processes or threads, and
checkpointing generates many small files (corresponding to
the process tree).

Each experiment is repeated 10 times and standard devia-
tion is calculated to quantify uncertainty of measurements.
To ensure consistency and accuracy of the performance mea-
surements, we disable CPU frequency scaling, unnecessary
systemd services, and use a real-time scheduling policy with
high priority.

5.2 Performance Overhead
To evaluate the encryption overhead of CRIUsec during
checkpointing, we utilize CRIU’s built-in stats functional-
ity [18], extending it to measure encryption and verifica-
tion times for steam and block ciphers. For comparison, we
measure the total execution time of the action-script pro-
viding similar encryption functionality with OpenSSL us-
ing AES-256-CBC, GnuPG using AES-256 cipher algorithm
without compression, and age with ChaCha20-Poly1305. Fig-
ure 7 shows the results of checkpointing a container running
stress-ng, an HTTP server, and amemhog process with differ-
ent size parameters. The results in Figure 7 (a) demonstrate
that increasing the number of workers for a performance
benchmark running across different CPUs has only a min-
imal impact on the encryption overhead of CRIUsec, and
it is up to 2.82× faster when compared to encryption with
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Figure 7: Performance comparison of CRIUsec with OpenSSL, GnuPG, and age for compute-intensive workload,
containerized HTTP server, and memory-intensive workload.

external tools. Similarly, the results in Figure 7 (b) show that
when checkpointing a container running a real-world appli-
cation with a large number of concurrent threads, CRIUsec
is up to 100× faster than the slowest option (GnuPG). Fig-
ure 7 (c) highlights throughput improvements for memory-
intensive workloads, with CRIUsec achieving up to 2.6×
faster encryption.

5.3 Application downtime
For the purposes of our evaluation, we define downtime to be
the time during checkpointing when the target application
is in a frozen state. Although encrypting the data after a
checkpoint has been created does not have an impact on the
frozen time, end-to-end encryption requires cryptographic
computations to be performed during checkpointing process,
and this increased security comes at the cost of potentially
longer downtime. Figure 7 (b) shows that the frozen times
during checkpointing with CRIUsec are significantly lower
compared to alternative solutions.

6 DISCUSSION
While CRIUsec aims to minimize the performance overhead
of encryption by integrating cryptographic primitives with
the checkpoint/restore functionality, it inevitably introduces
some computational overhead relative to unencrypted check-
pointing. Compared to alternative solutions that rely on
general-purpose encryption tools (e.g., OpenSSL, GnuPG,
age), CRIUsec achieves an improved trade-off between se-
curity and performance. However, this approach is specific
to the data format used by CRIU. Other checkpointing sys-
tems such as DMTCP [4] or systems that offer checkpointing
functionality like PyTorch [14] and Apache Flink [9] may

require different solutions to achieve efficient end-to-end
encryption. As CRIU has been integrated with a wide range
of container platforms (e.g., Docker, Podman, Kubernetes,
OpenVz, LXC/LXD), CRIUsec can be seamlessly integrated
with existing container checkpointing systems to enable
checkpoint encryption.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose CRIUsec – an efficient, end-to-end
encryption scheme for container checkpointing systems. It
provides built-in encryption optimized to apply an appro-
priate cipher based on the data format of each checkpoint
image, and improves performance and storage efficiencywith
zero-copy techniques and in-place encryption. We evaluated
CRIUsec using memory-intensive and compute-intensive
workloads, and compared its performance against state-of-
the-art cryptographic tools: OpenSSL, GnuPG, and age. Our
evaluation results show that end-to-end encryption with
CRIUsec outperforms alternative solutions by up to two or-
ders of magnitude, resulting in significantly reduced storage
utilization and application downtime. Future work will focus
on integrating CRIUsec with data compression techniques
to further optimize storage efficiency.
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