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Abstract
Function-as-a-Service has emerged as a trending paradigm
that provides attractive solutions to execute fine-grained and
short-lived workloads referred to as functions. Functions are
typically developed in a managed language such as Java
and execute atop a language runtime. However, traditional
language runtimes such as the HotSpot JVM are designed
for peak performance as considerable time is spent profiling
and Just-in-Time compiling code. As a consequence, warmup
time and memory footprint are impacted. We observe that
FaaS workloads, which are short-lived, do not fit this profile.

We propose CloudJIT, a self-optimizing FaaS platform that
takes advantage of Ahead-of-Time compilation to achieve re-
duced startup latency and instantaneous peak performance
with a smaller memory footprint. While AOT compilation
is an expensive operation, the platform automatically de-
tects which functions will benefit from it the most, performs
all prerequisite preparation procedures, and compiles se-
lected functions into native binaries. Our preliminary anal-
ysis, based on a public FaaS invocations trace, shows that
optimizing a small fraction of all functions positively affects
a vast majority of all cold starts.

CCS Concepts: • Software and its engineering→ Run-
time environments; • Computer systems organization
→ Cloud computing.

Keywords: Function-as-a-Service, Ahead-of-Time Compila-
tion, Just-In-Time Compilation, GraalVM Native Image
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1 Introduction
Function-as-a-Service has become an attractive alternative
to run lightweight and short-lived computational workloads
in the cloud. Such workloads can accommodate a high vol-
ume of parallel tasks where each individual function can
scale independently, thus making cloud applications highly
scalable and elastic.
In FaaS, cloud service providers manage infrastructure

provisioning for executing functions, alleviating customers
from resource management burdens and making function
deployment as simple as uploading a snippet of code to the
platform. On the other hand, it also gives cloud providers
a substantial amount of control over computational infras-
tructure and function execution environment, thus enabling
providers to optimize resource allocation and usage.
Functions are primarily written in high-level languages

such as Python, JavaScript, and Java [1] which execute atop
a language runtime. These runtimes, however, lead to high
startup and initialization times that can take up a significant
portion of the overall function execution time. In addition to
the long initialization overhead, language runtimes that use
a Just-in-Time (JIT) compiler, Java and JavaScript, are also
subject to a warmup overhead. Finally, such runtimes also
require a considerable memory footprint to be in memory.

JIT compilation is particularly effective for long-running
applications, which give the JIT compiler the opportunity to
identify snippets of code that are frequently executed and
how they are executed. Before obtaining highly-optimized
application code, the language runtime goes through several
tiers of profiling data collection and compilation.
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We claim that while long-running applications can benefit
from JIT compilation, this is not the case for FaaS appli-
cations, where most functions are short-running. A recent
study showed that more than half of all functions execute
under one second [18]. A different study showed that the
majority of serverless functions pay the price of long cold
start times and warmup times but rarely benefit from highly
optimized JITted code [13].
Recent works tackle slow cold starts and warmup over-

heads in different ways. Some works propose serverless sys-
tems backed by lightweight virtualization [12, 15, 16, 21].
These systems usually rely on Software Fault Isolation (SFI)
to collocate several function executions in a single worker
node. Such systems experience fewer cold starts since, in-
stead of allocating a separate serverless workerwith an entire
virtualization stack, they allocate an isolated execution envi-
ronment in an already existing worker node. However, such
execution environments may still carry a burden of initial
optimization duties that they will never take advantage of.
Other studies propose forking function runtime processes
instead of launching them from the ground up [11, 17]. How-
ever, many managed runtimes do not support forking. Other
studies suggest restoring serverless workers from snapshots
to avoid initializing virtualization stack [14, 22], but this ap-
proach induces additional storage and bandwidth overhead
to manage snapshots. More importantly, both forking and
snapshotting techniques still suffer from running an unopti-
mized function code in the interpreter mode. Deciding when
to snapshot is also an open problem.

An alternative approach to reduce both cold start latency
and warmup overheads is to replace Just-In-Time compila-
tion with Ahead-of-Time (AOT) compilation. By doing so,
the entire program code is compiled into a native binary
beforehand that includes a minimal runtime necessary to
run the application. Henceforward, the AOT-compiled appli-
cation leads to a lower memory footprint, has lower startup
latency, and has minimal warmup latency (as the code is not
interpreted nor profiled).
There are some setbacks when using AOT compilation,

however. First, natively built applications cannot benefit
from speculative runtime optimizations since the original
version of the code is not kept as part of the binary, and
therefore de-optimizing the code is not an option. Second,
AOT compilation is time-consuming (or costly in a cloud en-
vironment) as it requires multiple computationally intensive
compilation phases. Third, AOT compilation operates un-
der a closed-world assumption that limits/forbids dynamic
features, such as reflection or serialization, which are com-
monly used in managed languages. Since AOT compilation
eliminates the need for the managed runtime to execute a
native binary, such dynamic features may be supported only
partially or require configuration to be supported. Although
it may be possible to have some of these features at runtime

while using AOT compilation, explicit configuration is re-
quired. Creating this configuration, however, is non-trivial
as it is error-prone and may be incomplete, leading to run-
time errors. Finally, AOT compilation often results in larger
binaries compared to the original application code.
In view of the above, we introduce CloudJIT, a Just-In-

Time FaaS optimizer that automatically selects warm func-
tions as candidates for AOT compilation. As the name im-
plies, CloudJIT is inspired by how JIT compilers work, i.e.,
FaaS functions (methods in traditional JIT compilers) are
monitored to detect warm functions, which are considered
for AOT compilation. Since AOT compilation is expensive,
only a restricted selection of functions should be picked up
for compilation. Following the ideal of FaaS platforms (and
JIT compilers), all these optimizations are transparent to the
users, i.e., they do not require additional effort from the func-
tion developer’s side. The core component of CloudJIT is
an optimizing pipeline that the function goes through. This
pipeline consists of several steps that produce artifacts that
are later consumed in subsequent stages of the pipeline.
Our project is based on GraalVM [4] Native Image, an

AOT compilation tool that converts bytecode into native
code. Applications compiled with GraalVM Native Image do
not require a full-blown JVM for execution and run native
code with minimal startup and warmup overheads. CloudJIT
takes advantage of the Native Image Agent [2], a tool that
tracks dynamic feature access, to automatically create Native
Image configuration files transparently to the user.
In our preliminary analysis (§5.1), we demonstrate the

potential of this work by running a simulator using real FaaS
traces [18]. We also validate these results with a prototype
of our project in §5.2. Results show that CloudJIT optimizes
a small number of functions that are responsible for the vast
majority of invocations and, as a consequence, significantly
reduces the overall memory footprint and optimizes a large
portion of cold starts.

In summary, this work offers the following contributions:

• it proposes using AOT compilation as a replacement
for JIT compilation of FaaS functions;

• it proposes a platform that automatically detects and
builds functions that could greatly benefit from AOT
compilation (i.e., acting as a cloud JIT optimizer);

• it demonstrates the feasibility of CloudJIT using a num-
ber of experiments and simulations using real-world
traces from a FaaS platform;

• it evaluates the impact of CloudJIT on a realistic server-
less deployment.

2 FaaS and Language Runtimes
FaaS functions are traditionally developed using high-level
languages that run atop a language runtime that is instan-
tiated and managed by the FaaS platform. These runtimes,
however, occupy a significant amount of memory, in the



range of tens of MBs, and take tens of milliseconds to load
and initialize [12]. To avoid paying the cost of loading and
initializing runtimes on every request (i.e., a cold start), plat-
forms re-use runtimes that were used to handle previous
invocations of the same function and that are currently not
being used. Doing so reduces the cold start overhead but
introduces a considerable memory footprint overhead to
maintain all these runtimes idle, waiting for future invoca-
tions. Fundamentally, FaaS platforms need to balance cold
start overheads with memory footprint overheads. Language
runtimes play a crucial role in that overhead as one of the
most complex and expensive components (in terms of mem-
ory footprint and initialization time) necessary to prepare a
FaaS execution environment.
The majority of FaaS functions run atop language run-

times [1]. Managed language runtimes offer multiple benefits
that result from decades of research in areas such as Garbage
Collection (GC), a sandboxed execution environment, and
dynamic and speculative code optimizations, among oth-
ers. However, while these features are important for long-
running server applications, they are less important for short-
running and lightweight functions. We argue that most of
these features come at a high cost in terms of long runtime
initialization and high memory footprint. We claim that tra-
ditional runtimes are not effective in FaaS environments.

Java, as one of the most popular languages in FaaS [13, 15]
is a good example. It uses a tiered compilation approach [24]
to obtain better-optimized code snippets. The JVM makes
use of the interpreter, the C1 (client) JIT compiler, and the C2
(server) JIT compiler to achieve maximum long-term perfor-
mance. The JIT compiler makes assumptions about program
behavior and optimizes the code accordingly. In case the ac-
tual behavior diverges from the previously collected profiling
data, the code gets deoptimized, and the runtime falls back to
the interpreter tier to repeat the entire pipeline. Despite all
this language runtime complexity, FaaS functions do not run
for long enough to benefit from it [18]. For such functions,
cold start takes up a considerable fraction of total execution
time [23]. Additionally, all functions go through the slow
warmup phase to collect profiles for future optimizations.

Recent studies approach the problem of FaaS long cold
starts and high memory footprint in different ways. One
widely adopted approach is to try to avoid cold starts by
re-using warm function workers from the recently executed
invocations. The duration of this time window differs from
platform to platform and can last at least 10-20 minutes [19,
20]. This way, whenever a new invocation comes into the
function within that period, the warm worker can be picked
up to serve it, hence avoiding instantiating another worker.
However, such an approach imposes memory overhead since
function workers should be kept in the main memory for the
keep-alive window. Besides, each parallel invocation triggers
the creation of another worker that experiences a cold start.

Another way to reduce cold start time is to employ light-
weight virtualization stacks to host separate invocations of
the same function. Typically, the main idea behind this ap-
proach is to employ Software Fault Isolation (SFI) within
language runtime processes. This enables platforms to collo-
cate parallel executions of the same function code in a single
runtime process. With such an approach, given that a func-
tion worker is already instantiated, the system creates a slim
isolated execution environment inside the worker instead of
starting up an entirely separate worker. However, SFI needs
to be supported by an underlying language runtime. Also, it
does not solve the problem of slow cold starts and warmups
for functions that are invoked somewhat infrequently.
A promising alternative suggests using snapshotting to

reduce the cold start time of FaaS functions. With this ap-
proach, a cloud service provider needs to take a snapshot of
the entire function worker after its first deployment. This
snapshot is stored persistently in external storage. Instead
of instantiating new workers from the ground up, the FaaS
infrastructure can restore new workers from the snapshot
that was created for a particular function. This approach
speeds up cold starts [14] but imposes additional overhead
on storage since snapshots occupy more disk space than
user-provided code. It may also affect network bandwidth
as entire snapshots may need to be uploaded from the re-
mote storage. Besides, snapshotting may introduce security
vulnerabilities as all workers, restored from the snapshot,
will have the same address space layout (which is random-
ized for security purposes). Finally, deciding when to take a
snapshot is a fundamentally hard problem as has been noted
recently [13]. All the aforementioned techniques attempt to
solve the problem of long cold start latency. However, none
of these solutions target slow execution right after the cold
start due to a warmup in managed language runtimes.

3 Ups and Downs of AOT Compilation
Ahead-of-Time (AOT) compilation offers a way to reduce the
cost of language runtimes. It not only reduces startup and
warmup latency by avoiding loading, parsing, interpreting,
and profiling the function code but also memory footprint by
reducing the number of components that are not part of the
runtime (the interpreter and JIT compiler may be removed
from the runtime if only AOT compiled code is used). To
show this, we conducted an experiment by running three
Java functions based on popular frameworks: Tika (a PDF
converter based on Quarkus [8]), Petclinic (a web application
based on Spring Boot [9]), and Shopcart (a web application
based on Micronaut [6]). The first function is a stateless
applicationwith a single functionality, whereas the latter two
are complete web services operating with local in-memory
storage to keep state. Figure 1 shows the startup, throughput,
and memory footprint of different Java applications when
running on GraalVM [4], a full-blown runtime (based on
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Figure 1. Performance comparison of three microservice applications atop GraalVM (which includes a JIT compiler) and as
Native Image AOT-compiled binary. Note the log-scale in b) Startup latency.

Table 1. AOT compilation maximum RSS footprint, total
build time, and final binary size.

Benchmark RSS (GB) Time (sec) Size (MB)
Tika (Quarkus) 6.41 97 89.7
Petclinic (Spring Boot) 8.21 200 189.3
Shopcart (Micronaut) 6.31 87 69.4

HotSpot [5]) including an interpreter and a JIT compiler,
and GraalVM Native Image, an AOT compiled binary that
bundles the application together with a lightweight Java
runtime (SubstrateVM).
Results show that AOT compilation greatly reduces the

memory footprint and startup latency, and improves startup
throughput. The reason is that the AOT compilation pro-
cess compiles the whole program into native code before it
becomes available for execution. This native code is pack-
aged in a self-contained executable binary that does not
require the full language runtime for execution. Since the
code is already compiled into native, no additional actions
(such as tiered JIT compilation) need to be taken in order
to execute the program. This means that AOT compilation
eliminates the warmup phase along with its overheads, and
the code executes at peak performance immediately after
startup [25]. Native binaries utilize only necessary pieces
of language runtimes, thus not carrying the burden of ini-
tialing unused resources. Finally, due to the same reason,
natively built applications leave a smaller memory footprint.
Unfortunately, AOT compilation comes at the expense of
reduced peak throughput (in our experiment, peak through-
put is measured after 15 seconds of execution). Even though
many functions will not reach peak throughput in a realistic
scenario, we plan on using Profile-Guided Optimizations to
reduce the performance gap (§6).
AOT compilation offers faster startup, minimal warmup,

and reduced memory. However, such an approach does not
eliminate compilation overhead; it merely moves all code
analysis and compilation routines to the phase preceding
the actual application execution, nonetheless, avoiding such
overhead at run time.

Native binary generation is a complex task that conven-
tionally consists of several consecutive phases, including but
not limited to code analysis, method inlining, code compila-
tion, and heap pre-initialization. Our experiments show that
the AOT compilation process for typical Java applications
takes a significant amount of time and imposes high memory
requirements on the system (see Table 1), and in general, is
a resource-consuming job. Real-world FaaS clusters oper-
ate with a large number of functions, and building native
binaries for all of them would require immense resources.
Besides, based on the collected profiles, JIT compilers

perform speculative optimizations such as type inference,
branch predictions, and aggressive method inlining. Tradi-
tional AOT compilers, on the other hand, cannot specula-
tively optimize the function code. Therefore, they generate
native code by analyzing the source code only statically, and
the resulting native binary will only feature conservative
optimizations. That being said, native code generated by an
AOT compiler may be less efficient than the JIT compiler
code as it lacks dynamic runtime data that can drive more
complete optimizations. Figure 1.d shows that JIT compila-
tion achieves better peak throughput in the long run.
Finally, GraalVM Native Image, the tool we use to AOT

compile functions, operates under a closed-world assump-
tion which limits dynamic code loading and other reflective
and dynamic features of the Java language. As a consequence,
only the elements known at compile time will be included in
the final binary. These components must be either reachable
for static analysis or specified explicitly in additional config-
uration files. We have conducted an experiment to measure
the complexity of the configuration that needs to be collected
to build Java applications that rely on popular frameworks
with the Native Image (see Figure 2). Based on the results of
this experiment, we can conclude that it may be a non-trivial
task to manually prepare this configuration for applications
that make extensive use of the dynamic features.

4 CloudJIT
We propose CloudJIT, a serverless infrastructure that takes
advantage of AOT compilation to improve function cold
start, reduce memory footprint, and reduce warmup latency.
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In CloudJIT, certain functions go through the optimizing
pipeline, which consists of several consecutive stages. The
system detects functions that will benefit from such optimiza-
tions the most and gradually applies the pipeline to these
functions. The entire process of function optimization occurs
transparently to the user, not requiring any intervention or
source code modifications.

4.1 Function Optimization Pipeline
The optimizing pipeline is a central component of our system.
The main objective is to prepare the function code for AOT
compilation, proceed with actual compilation, and further
improve the natively compiled code in a transparent way.
This pipeline is composed of 3 sequential stages and 1 back-
ground process. Some stages and processes produce artifacts
that are used as inputs to one or multiple successive stages or
processes. Fundamentally, this pipeline implements a simple
state machine for each function in the FaaS infrastructure.
Figure 3 shows the transitions between the stages of the
pipeline and how these stages produce or consume artifacts.
We now briefly describe each stage and its transitions.

HotSpot (with Agent) is the first stage of the pipeline
for every function. Upon the first invocation of a function, a
HotSpot is launched and provided with the function code (a
JAR file). HotSpot is launched with the Native Image Agent
tool which automatically tracks dynamic features used at
run time. The goal of this stage is to extract dynamic feature
configurations for the function. The result of this stage is a
set of JSON files, each file representing configuration for a
particular dynamic feature.

Executing requests with a Native Image Agent enabled in-
troduces performance degradation as a result of intercepting

some events within the JVM. For this reason, in order not
to deteriorate the performance of most invocations, we only
deploy this stage once for each function, and it is only used
to serve up to 1000 requests (a configurable threshold).
HotSpot function instances are launched if the follow-

ing conditions are met: a HotSpot with the Agent is already
running to serve concurrent requests or if the Agent config-
uration has already been produced; and if there is no Native
Image built for this function.
During the HotSpot stage, the function is executed on

top of a traditional JVM. This stage does not produce any
artifacts. If some function never gets marked as worth opti-
mizing, then this function will never proceed further through
the pipeline. Otherwise, this stage is going to support func-
tion invocations when the function binary is being compiled.

NI Builder is a background process that is invoked when-
ever CloudJIT takes the decision to proceed with the function
optimization. The primary objective of this process is to gen-
erate an AOT-compiled binary of the function. It uses the
GraalVM Native Image compiler to accomplish the compila-
tion process. Upon invocation, it accepts function bytecode
and configuration as input and produces a native binary that
enables the function to transition to the Native Image stage.

Native Image is the final stage of the pipeline, where the
function is considered to be fully optimized. Throughout this
stage, the function runs as a native binary, thus benefiting
from reduced cold start latency, minimal warmup overhead,
and reduced memory footprint.
If an AOT-compiled binary attempts to invoke some dy-

namic feature that it was not configured for, it may fail with
an exception, and the corresponding function invocation
will not succeed. In such cases, CloudJIT deoptimizes the
function by rolling it back to the first stage of the pipeline.
The invocation is then re-executed on a HotSpot with Native
Image Agent to fulfill the request and update the function
configuration. Then, the entire optimizing pipeline is re-
peated again. To avoid potential correctness issues, CloudJIT
allows users to define what happens when a request fails.
Users may decide to re-execute the request (on a HotSpot
with the Agent instance) or simply return an error. In the
latter, CloudJIT still deoptimizes the function but does not
re-execute the failed request.

4.2 Which Functions to Optimize?
Manually AOT compiling applications is a slow and resource-
consuming process (§3). Real production platforms manage
numerous functions, and compiling all registered functions
may be an overkill that does not always pay off. Therefore,
not all functions are worth AOT compilation.

In §3, we discussed that AOT compilation predominantly
improves cold start latency and instantaneous throughput.
Based on this observation, we argue that functions that ex-
perience cold starts most frequently will benefit from the op-
timization pipeline the most. The frequency of cold starts for
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Figure 4. Simulating the impact of AOT compilation using the Azure Functions invocation trace.

each function depends on multiple factors, such as function
invocation pattern and duration of the keep-alive window
(i.e., for how long a FaaS platform keeps function workers
in memory after serving an invocation).
Our system defines a criterion to determine cold start

regularity for each function. It counts how many cold starts
happened throughout the time of the sliding window. If the
amount of cold starts within this window exceeds a threshold,
then the function is marked as worth optimizing, and the
correspondingNI Builder process is launched. Optimization
policies can be configured by adjusting the threshold and
duration of the sliding window. Our default values are 10
cold starts in a sliding window of 1 minute.

5 Evaluation
We now assess how AOT compilation affects memory foot-
print and the number of cold starts in a realistic FaaS en-
vironment. To do so, we built an infrastructure capable of
simulating invocation traces from the Azure Functions pub-
lic dataset [18] at a cluster-wide level (§5.1). It considers each
invocation from the trace and aggregates metrics for periods
of 1 second. We implemented a CloudJIT prototype that we
use to replay the Azure Functions trace at a level of a single
serverless node with actual function invocations (§5.2).

5.1 Real-World Trace Simulation
In our simulation setup, we consider a 30-minute time seg-
ment from the Azure Functions dataset. The keep-alive time
window is fixed for each function and is 10 minutes, the
default value in OpenWhisk [7]. During the simulation, we
measure the number of running functions, memory foot-
print, and the number of cold starts. We distinguish between
optimized and unoptimized functions when measuring the
number of running functions and cold starts, and we calcu-
late the memory footprint for simulation with and without
optimizations enabled. Figure 4 depicts results of our simu-
lation execution.

Figure 4.a shows how many functions are running invoca-
tions at each moment of time. We can observe that a greater
part of all functions do not get optimized, and only a small
fraction of the functions are considered eligible for AOT

compilation. The simulator defines the following criterion
for optimization: if the function experiences more than ten
cold starts over a 1-minute period, then it is deemed worth
AOT compilation. The main takeaway from this plot is that
in a real-world FaaS scenario, only a minor part of functions
will ever get to be optimized with our pipeline.

The following plot (see Figure 4.b) depicts the difference
between cluster-wide memory utilization of the running
functions with and without AOT optimization enabled. From
the plot, we see that by applying AOT compilation to certain
functions, the total memory footprint gets reduced by 52.6%.
In order to calculate the memory footprint of the optimized
function, the simulator multiplies its actual memory foot-
print value by 0.375, a ratio derived from the experiment
depicted in Figure 1.a. Finally, Figure 4.c shows how many
cold starts happen during each 1-second period throughout
the trace simulation. We can see that optimized functions
generate the vast majority of all cold starts in the system.

Takeaway. From the simulation results, only a small frac-
tion of all functions in the cluster impose most of the cold
starts and take up a considerable portion of the overall mem-
ory footprint. Therefore, a modest overhead of AOT compila-
tion for these few functions can significantly reduce latency
for the vast majority of cold starts and decrease memory
requirements for most of the function workers.

5.2 Real-World Trace Execution
In the execution setup, we re-use the 30-minute time seg-
ment from the Azure Functions dataset, and we downscale
the dataset to accommodate its workload in the local cluster
node running Ubuntu 18.04.6 LTS (Linux kernel 5.8.5-050805)
with an Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz and
128GB of DDR4 DRAM. The trace does not describe the func-
tions being executed, and, therefore, we use a generic Java
function that allocates memory according to the trace data
and performs hashing operations to simulate the workload.

In order to execute the trace, we implemented our Cloud-
JIT prototype on a single node that distributes invocations
to local function workers. CloudJIT handles function regis-
tration, invocation scheduling, and manages workers. It also
carries out the optimization pipeline functionality, such as
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Figure 5. Evaluating the impact of AOT compilation using the Azure Functions invocation trace.

determining function eligibility for further optimization and
initiating compilation tasks for eligible functions. Function
workers are based on Firecracker microVMs [10].

We execute a down-scaled version of the original trace
on a cluster node. In this setup, functions may lose their
original invocation patterns and experience fewer cold starts.
Therefore, during the execution experiment, CloudJIT marks
functions for optimization if they receive more than two
cold starts over 10 minutes. If we apply the same cold start
configuration to execution as for simulation, the system
may end up optimizing only a few functions (as it only sees
a fraction of the original invocations). We plan to lift this
limitation in the future by allowing CloudJIT to manage a
number of nodes instead of a single one.
During trace execution, we collect the same metrics as

during simulation: number of running functions, memory
footprint, and number of cold starts. The distinction between
optimized and unoptimized functions is preserved the same
as in simulation. We also conducted two executions — with
and without AOT optimization enabled to compare memory
footprints. Figure 5 shows the results of the trace execution.
Figure 5.a demonstrates a similar tendency depicted in

Figure 4.a. We observe that the first compiled functions start
appearing in the trace after 5 minutes of execution. After
10 minutes of execution (the time needed to select and com-
pile most of the eligible functions), an average of 27% of
all running functions were optimized. Other functions were
considered unworthy of AOT compilation.
Figure 5.b shows that after optimizing certain functions,

overall memory consumption can be reduced by 30% on aver-
age. The percentage of reduced memory utilization is lower
than in the simulation because the simulation metrics did not
account for the memory requirements of the virtualization
stack. The memory overhead of VMs pertains to all func-
tion workers regardless of whether or not the corresponding
functions are optimized.
Finally, Figure 5.c illustrates that, after certain functions

are AOT-compiled, an average of 30% of all cold starts relate
to the optimized functions. As we downscale the trace for
this experiment, the number of invocations is decreased for
all functions evenly. Thus, some functions may lose their

original invocation pattern with multiple cold starts over a
short period of time. Therefore, such functions are deemed
unworthy of optimization in our experimental setup.

6 Conclusions and Ongoing Work
We propose CloudJIT, a FaaS platform that automatically
(and transparently) optimizes user functions based on the
number of cold starts a function had recently. CloudJIT picks
a small fraction of functions for optimization (therefore incur-
ring a minor AOT compilation overhead) which still leads to
a large portion of optimized cold starts and reduced memory
footprint. CloudJIT is currently a work-in-progress research
effort which we plan on extending to accommodate at least
two new optimization stages: PGO and Checkpointed.

Profile-Guided-Optimization (PGO) execution, requires
CloudJIT to build an instrumented version of the function
binary to collect profiles, which later are used to build an
optimized version of the binary. We plan on studying the per-
formance improvements of PGO and determine how to filter
functions that should advance to this stage of the pipeline;
Checkpointed execution is made possible by snapshot-

ting a running function worker instance to disk for later
reuse. Compared to previous works that propose using snap-
shotting at the hypervisor level (e.g., snapshot the entire
VM), we plan on investigating the option of snapshotting at
the sandbox level. This feature might be particularly effective
for dynamic languages such as Python and JavaScript where
AOT compilation is not possible [3].
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