PRONGHORN
Effective Checkpoint Orchestration
for Serverless Hot-Starts

Sumer Kohli"*, Shreyas Kharbanda®*, Rodrigo Bruno?,
Joao Carreira®, Pedro Fonseca®

4 [5

PURDUE

UNIVERSITY.

TECNICO
LISBOA

Serverless Computing

=2

AWS Lambda Stateless functions
< > Azure
Functions .
Q Sandboxed environments
Google Cloud Functions Automatic infrastructure management
P High-level languages
JavaScript

Complex runtimes

t_{{) Java

< — 2

Modern Language Runtimes

lDeoptimized
machine code

tOptimized
machine code

Y

Code

orofiles | @ IT
Compiler

e Bytecode
Irll'tlii\I W » Execution
Compiler J

[JIT compilation is critical for performance.}

JIT Optimization Speed

Request #1 Response #2 7} #3 {/} NX {/}
4 Cold > 2] 1! 2] m Time
N—
>5X

[JITs can take hundreds of requests to fully optimize code. }

& 1 JIT Optimization
& ¥ JIT Deoptimization ‘

Waste of JIT Runtime Optimizations

Short-lived functions =) Gathering profiles is difficult

¢ Frequently-evicted workers == \ost runtimes are used once

o Fresh runtimes =) Previous optimizations are lost

State of the Art: Checkpoint & Restore

Req. #1 {.}
X f O, Checkpoint

== Cold |§§!n//,

[‘E‘Snapshot} ----- .

> Restore

!

Worker 1

Req. #2 {-}

e & Restore

!

|

JIT optimizations lost!
Never reach Hot.

|

Worker 3

Pronghorn’s Goal

L Workers should start with fully-optimized code. J

Request {..}
[@Snapshot} ----- - & Restore \ /

Worker

Challenge: When should we checkpoint?

10000
* HTML Generation

__ 7500

(2]}

El * Hashing

>

© 5000

§ * . ;k * Word Counting

3 2500 |

(1000 * JSON Parsing
0 200 400 600 800

Invocation Count

Non-monotonicHT @egitimfiPations can cause performance “valleys”.

Non-bounded: JIT runtimes can take any number of invocations to fully optimize a function.

Non-deterministic: JIT runtimes can optimize the same code differently.

We do not know ahead of time when is We need a dynamic
the best time to checkpoint a function. : checkpointing policy.

Pronghorn: Key Idea

[We can grade snapshots by their total lifetime latency. }

[ﬁ‘ Snapshot 1 | - ¢ Restore

!

Req. #3 {-}

C T

Req. #4

- @t Worker 1
[ﬁ‘ Snapshot 2 } > Restore Req.\‘#g {/} Req.\‘#10 {/‘}
¢ - @l Worker 2

9

Pronghorn

i (> Restore from a ‘&Y Checkpoint where a
i snapshot with low snapshot would have
| lifetime latency low lifetime latency

Worker
starts

I

. Worker
| evicted
I

Pronghorn: Computing lifetime latency

Given: Known 1
1. Worker lifetime
2. Latency for each request #

Let worker lifetime be 2 requests [:o: Checkpoint 1 /

(l‘ ul

Example latency curve

100 A —— Function latency

Prefer to LLOJ Checkpoint
7 L checkpoint here! J

Laten

204

[How do we get }/
this graph? . 3 i s 6 7 8 9 10

Request Number

11

Pronghorn: Estimating function latency
We can profile requests to estimate latency at each request number.

Req. #2 {.}

(> Restore \ /‘
- Req. #2

T { & Restore \

\
A |

Worker 1

Worker 2

12

End-to-end Benchmark Results

60
Integrated into a widely-used
50
37.2% serverless platform (OpenFaaS)
40
30
% Latency Improves compute-bound workloads
Reduction 29
Efed-to-End by 37.2% on average Vs. existing
10
systems
) .
7 - Compute-bound 7.6% Generally matches 1/0-bound
VO-bound ° o . 4.
720 | Compute-bound geometric mean funCtlon Eerformance Of eXIStlng
1/0-bound geometric mean
=30
A P P I R P systems
& LA S i A g e S @Q@’g P S
RS A . A L N A A P
& & S F & & P S
& & & & & S
& R £
< 0*0
Benchmark

Benchmarks adapted from ServerlessBench, FaaSDom, and SeBS. 13

Cost Analysis & Mitigation

:O: Checkpoint —> Off critical path
60—105 ms Controlled by cloud provider
worker downtime
P Storage m—)) Configurable pool size
Size of

snapshot pool

& Network) Reverts to SOTA after
2x bandwidth checkpointing phase
usage

critical path or confiqurable.

[Pronghorn’s costs are either off the J

Key Takeaways

1. We must carefully choose when to checkpoint functions for hot-starts.
2. Our dynamic checkpointing policy reduces latency by 37%.

3. Compatible with any JIT runtime or serverless framework.

Any questions?

O PRONGHORN: https:/github.com/rssys/pronghorn-artifact

@ Contact me at sumer@cs.stanford.edu

(Slide images courtesy of project webpages and flaticon.com)

15

https://github.com/rssys/pronghorn-artifact
mailto:sumer@cs.stanford.edu

