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Serverless Computing
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Modern Language Runtimes
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[JIT compilation is critical for performance.}




JIT Optimization Speed
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[ JITs can take hundreds of requests to fully optimize code. }
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Waste of JIT Runtime Optimizations

Short-lived functions =)  Gathering profiles is difficult

¢ Frequently-evicted workers ==  \ost runtimes are used once

o Fresh runtimes =) Previous optimizations are lost



State of the Art: Checkpoint & Restore
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Pronghorn’s Goal

L Workers should start with fully-optimized code. J
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Challenge: When should we checkpoint?
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Non-monotonicHT @egitimfiPations can cause performance “valleys”.

Non-bounded: JIT runtimes can take any number of invocations to fully optimize a function.

Non-deterministic: JIT runtimes can optimize the same code differently.

We do not know ahead of time when is We need a dynamic
the best time to checkpoint a function. : checkpointing policy.




Pronghorn: Key Idea

[ We can grade snapshots by their total lifetime latency. }
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Pronghorn
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Pronghorn: Computing lifetime latency
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1. Worker lifetime
2. Latency for each request #
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Pronghorn: Estimating function latency
We can profile requests to estimate latency at each request number.
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End-to-end Benchmark Results
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Benchmarks adapted from ServerlessBench, FaaSDom, and SeBS. 13



Cost Analysis & Mitigation

:O: Checkpoint —> Off critical path
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[ Pronghorn’s costs are either off the J




Key Takeaways

1. We must carefully choose when to checkpoint functions for hot-starts.
2. Our dynamic checkpointing policy reduces latency by 37%.

3. Compatible with any JIT runtime or serverless framework.

Any questions?

O PRONGHORN: https:/github.com/rssys/pronghorn-artifact

@ Contact me at sumer@cs.stanford.edu
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