
PRONGHORN
Effective Checkpoint Orchestration

for Serverless Hot-Starts

Sumer Kohli1*, Shreyas Kharbanda2*, Rodrigo Bruno3,
Joao Carreira4, Pedro Fonseca5

1 2 3 4 5

Stateless functions

Sandboxed environments

Automatic infrastructure management

High-level languages

Serverless Computing

2

Complex runtimes

Modern Language Runtimes

3

Initial
Compiler Execution

Bytecode
Code

profiles

JIT compilation is critical for performance.

 Optimized
machine code

 Deoptimized
machine code

 JIT
Compiler

JIT Optimization Speed

4

Response

Time

…

Request #1 #2

Cold

JITs can take hundreds of requests to fully optimize code.

Warm

#3

Warm

N

Hot

JIT Optimization
JIT Deoptimization

>20x >5x

Waste of JIT Runtime Optimizations

Gathering profiles is difficult

Most runtimes are used once

Previous optimizations are lost

5

Short-lived functions

Frequently-evicted workers

Fresh runtimes

State of the Art: Checkpoint & Restore

JIT optimizations lost!
Never reach Hot.

6

Worker 1

Worker 2

Req. #1

Cold

Req. #2

Warm

Checkpoint

 Restore

Worker 3

Req. #2

Warm

 Restore

Snapshot

Pronghorn’s Goal

7

Worker

Request

Hot

Workers should start with fully-optimized code.

 RestoreSnapshot

Challenge: When should we checkpoint?

8

HTML Generation

Hashing

Word Counting

JSON Parsing

We need a dynamic
checkpointing policy.

We do not know ahead of time when is
the best time to checkpoint a function.

Non-monotonic: JIT deoptimizations can cause performance “valleys”.

Non-bounded: JIT runtimes can take any number of invocations to fully optimize a function.

Non-deterministic: JIT runtimes can optimize the same code differently.

9

Pronghorn: Key Idea

If we know:We can grade snapshots by their total lifetime latency.

Worker 1

Req. #3

85ms

 Restore
Req. #4

80ms

Worker 2

Req. #9

75ms

 Restore
Req. #10

95ms

 Snapshot 1

Snapshot 2

85+80 = 165ms

75+95 = 170ms

Pronghorn

10

Worker
starts

 Checkpoint where a
snapshot would have
low lifetime latency

Worker
evicted

 Restore from a
snapshot with low

lifetime latency

Let worker lifetime be 2 requests

11

Pronghorn: Computing lifetime latency

Given:
 1. Worker lifetime
 2. Latency for each request #

Known
Example latency curve

Prefer to
checkpoint here!

 Checkpoint

165 ms 170 ms

 Checkpoint

How do we get
this graph?

Pronghorn: Estimating function latency

12

We can profile requests to estimate latency at each request number.

≈ 125ms
at req. #2

Worker 1

Worker 2

Req. #2

150ms

Req. #2

100ms

 Restore

 Restore

Snapshot

Generally matches I/O-bound
function performance of existing
systems

End-to-end Benchmark Results

Improves compute-bound workloads
by 37.2% on average vs. existing
systems

13Benchmarks adapted from ServerlessBench, FaaSDom, and SeBS.

37.2%
Integrated into a widely-used
serverless platform (OpenFaaS)

-7.6%

Reverts to SOTA after
checkpointing phase

Off critical path
Controlled by cloud provider

Cost Analysis & Mitigation

Configurable pool size

14

Storage

Network

Pronghorn’s costs are either off the
critical path or configurable.

 Checkpoint
60–105 ms

worker downtime

Size of
snapshot pool

2x bandwidth
usage

1. We must carefully choose when to checkpoint functions for hot-starts.

2. Our dynamic checkpointing policy reduces latency by 37%.

3. Compatible with any JIT runtime or serverless framework.

Key Takeaways

Any questions?

15

PRONGHORN: https://github.com/rssys/pronghorn-artifact

Contact me at sumer@cs.stanford.edu

(Slide images courtesy of project webpages and flaticon.com)

https://github.com/rssys/pronghorn-artifact
mailto:sumer@cs.stanford.edu

