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Abstract
Serverless computing allows developers to deploy and scale
stateless functions in ephemeral workers easily. As a result,
serverless computing has been widely used for many ap-
plications, such as computer vision, video processing, and
HTML generation. However, we find that the stateless na-
ture of serverless computing wastes many of the important
benefits modern language runtimes have to offer. A notable
example is the extensive profiling and Just-in-Time (JIT)
compilation effort that runtimes implement to achieve ac-
ceptable performance of popular high-level languages, such
as Java, JavaScript, and Python. Unfortunately, when modern
language runtimes are naively adopted in serverless com-
puting, all of these efforts are lost upon worker eviction.
Checkpoint-restore methods alleviate the problem by resum-
ing workers from snapshots taken after initialization. How-
ever, production-grade language runtimes can take up to
thousands of invocations to fully optimize a single function,
thus rendering naive checkpoint-restore policies ineffective.
This paper proposes Pronghorn, a snapshot serverless

orchestrator that automatically monitors the function per-
formance and decides (1) when it is the right moment to take
a snapshot and (2) which snapshot to use for new workers.
Pronghorn is agnostic to the underlying platform and JIT
runtime, thus easing its integration into existing runtimes
and worker deployment environments (container, virtual ma-
chine, etc.). On a set of representative serverless benchmarks,
Pronghorn provides end-to-end median latency improve-
ments of 37.2% across 9 out of 13 benchmarks (20-58% latency
reduction) when compared to state-of-art checkpointing poli-
cies.
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1 Introduction
Serverless computing is an emerging cloud computing para-
digm that leverages lightweight, stateless workers to stream-
line application deployment. Under the serverless model,
developers decompose their applications into lightweight,
stateless logic units (functions) written in languages such
as Python, JavaScript, and Java. In contrast with traditional
cloud computing, serverless platforms automatically han-
dle infrastructure provisioning and application scalability,
enabling cloud developers to focus on their application’s
business logic [21, 22]. We will refer to serverless comput-
ing and function-as-a-service (FaaS) interchangeably as this
paper focuses on cloud offerings that combine both aspects
at the same time.

Serverless computing leverages high-level languages, free-
ing developers from many concerns related to managing
software packages and dependencies, low-level resources,
deployment, and portability. In turn, many of the benefits
provided by these languages are only possible by the use
of sophisticated language runtimes, such as PyPy [11] (a
high-performance Python implementation) and OpenJDK
HotSpot JVM [5] (the most widely used JVM implementa-
tion), which abstract programmers from the underlying hard-
ware resources while still offering acceptable run time per-
formance.

To achieve high application performance and ease of use,
modern language runtimes rely on complex JIT compilers
that incrementally gather information about an applica-
tion’s execution and iteratively optimize it over many in-
vocations. This approach allows runtimes to leverage dif-
ferent techniques, in particular, dynamic and speculative
optimizations [28, 63]. These optimizations include method
inlining and devirtualization [37], branch prediction, type
inference [35], loop unrolling and code hoisting [17], vector-
ization [52], and others. In practice, runtime optimizations
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Figure 1. Dynamic HTML generation workload latency using two optimizing runtimes. Experiment shows the performance
difference produced by taking a premature snapshot (as existing solutions do) and an ideal snapshot. These benchmarks were
repeatedly invoked for about 2500 requests, since convergence took up to approximately that number of requests.

are key to achieving acceptable performance in high-level
languages, and disabling them significantly degrades perfor-
mance [23].

Unfortunately, the design of today’s serverless platforms
is at odds with modern language runtimes for two main rea-
sons and effectively prevents serverless platforms from using
resources efficiently. First, serverless functions are stateless,
hence, serverless platforms are designed to discard function
state, including the JIT state, after each invocation. Second,
serverless platforms serve many function invocations across
many workers, spanning multiple customers and applica-
tions. As a result, each container individually might only see
a few invocations throughout its lifetime, a fundamentally
inefficient scenario for mature language runtimes.
In contrast, modern language runtimes are better suited

to host a single long-running application where code is con-
tinuously profiled and optimized. Figure 1 shows how a typ-
ical serverless workload (HTML page rendering), from the
SeBS [24] benchmark suite, can take on the order of two thou-
sand successive requests to converge to optimal performance,
far beyond the typical serverless worker lifetime.1 In fact,
we observe the same effect for entirely different workloads
and JIT runtimes (see §5), demonstrating the importance of
runtime optimizations for efficiently executing high-level
code in the cloud. Worse, the stateless nature of serverless
implies that with every new worker, all previous runtime
optimizations are lost, requiring past optimizations to be
wastefully re-computed each time. This results in significant
missed performance gains, as seen in previous work [23].
In order to address this challenge, researchers and prac-

titioners have turned to checkpoint-restore approaches to
retain the code optimizations generated by language run-
times. Checkpoint-restore allows serverless platforms to take
1Serverless workers are typically evicted due to inactivity after a platform-
specific timeout, e.g., 10 minutes in AWS Lambda. Moreover, a recent
study [58] revealed that only ≈25% of functions receive more than one
invocation under 10 minutes, meaning that many containers will only ever
see a single invocation.

a snapshot of a function’s state to be later restored in order
to serve a new function invocation. Checkpointing a worker
(function instance) can happen at any stage of the function
execution, for instance, after the code has been loaded into
memory, after code compilation, or even after the function
has been executed a few times. In fact, we find that the tim-
ing of when to checkpoint the state of a function is critical
to achieving acceptable performance after restoring it (see
§2).

Even though the decision of when to checkpoint a function
can have a significant impact on the performance of the
application after restoring it, no solution currently proposes
a technique to decide when to checkpoint a function. In fact,
existing solutions that use checkpoint-restore use a single
predefined threshold to decide when to checkpoint [15, 27,
59, 61], typically after runtime initialization and before the
first function invocation, or after the first invocation. We
show that neither of these approaches is sufficient to capture
runtime optimizations that maximize performance (see §2).

In this paper, we propose Pronghorn, a snapshot orches-
trator that ensures that new containers start with a fully
optimized version of each serverless function. Pronghorn
learns the best moment to checkpoint each function by tak-
ing snapshot samples over a configurable period of time.
Pronghorn targets rapid convergence and continuous learn-
ing, the latter of which provides resilience to perturbations
in serverless function input (see §5). Finally, Pronghorn
allows cloud providers to control the snapshot storage and
network overheads incurred during the learning period, and,
hence, control the cost-performance trade-off.

To show the performance benefits of Pronghorn, we eval-
uated it with a set of 13 representative serverless function
benchmarks from the ServerlessBench [71], FaasDom [46],
and SeBS [24] benchmark suites and previous papers [23],
using realistic values of serverless worker eviction rates [58],
function invocation frequencies, and variance in workload
latencies. We find that Pronghorn can provide cost-efficient
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Serverless Benchmark
Hash HTML WordCount JSON

Request #1 (baseline) 27 ms 650 ms 64 ms 360 ms
Request #200 1.9x 1.1x 2.3x 4.3x
Request #400 1.5x 3.9x 2.8x 5.9x
Request #600 2.5x 4.7x 3.4x 3.9x
Request #800 2.0x 5.1x 1.8x 2.6x

Table 1. Function latency reduction compared with the first
request for Java benchmarks. Different benchmarks achieve
peak performance at different numbers of served requests.
Benchmarks were invoked for up to 1000 requests to allow
the code to be extensively optimized, although full conver-
gence may take longer. Measurements were taken on an
Ubuntu 18.04 LTS VM with 4 GiB RAM and OpenJDK 17.0.1.

function invocation latency reductions of 20%-58% relative
to the state-of-the-art in exchange for additional checkpoint
operations that are not on the critical path (can be executed
when the runtime is idle) and a configurable amount of addi-
tional storage which is used keep the snapshot pool. Overall,
Pronghorn improves median end-to-end latency by 37.2%
on 9 out of 13 benchmarks.

In summary, this work makes the following contributions:
• We analyze the impact of the snapshot point during
function execution on function performance. This anal-
ysis quantifies the role of language runtime optimiza-
tions on serverless performance;
• We propose an effective snapshot policy that will or-
chestrate snapshot samples and search for a snapshot
that optimizes function execution. To the best of our
knowledge, this is the first attempt to automatically
optimize snapshot orchestration;
• We compare our snapshot orchestrator policy against
other orchestration policies used in the state-of-art.
Our results show that using our proposed policy yields
significant performance benefits.

2 Challenges of Serverless
Checkpoint-Restore

A number of previous works leverage checkpoint-restore
techniques to accelerate container and runtime initialization
stages of a function invocation [20, 27, 61]. Despite their suc-
cess, such works miss significant performance benefits (up
to 61% of end-to-end latency in our experiments) since they
do not fully exploit the optimizations provided by runtimes.
In order to capture these benefits, serverless platforms need
to be made aware that runtimes profile and optimize code
over multiple executions. In this section, we explain the main
challenges related to doing so.

Complex language runtimes. Modern language run-
times make use of highly complex optimizing pipelines that

are critical to improving the performance of high-level code.
For instance, applications running on OpenJDK HotSpot
JVM [5] (the most widely used industrial Java Virtual Ma-
chine) are initially executed by the runtime interpreter. At
this stage, the runtime has to load the code into memory,
parse it and initialize internal data structures. For this reason,
the first few invocations running interpreted code are typ-
ically slow. While code is interpreted, the runtime gathers
important profiling statistics related to the application’s exe-
cution (e.g., how many times each function was executed).
Then, after a certain number of invocations, these statistics
are used to iteratively compile and optimize hot methods
down to machine code. Even after a method has been opti-
mized by the runtime, the runtime continues to gather code
profiling statistics which can lead to advanced speculative op-
timizations tailored to specific application executions. Other
similarly sophisticated runtimes, such as Python’s PyPy [11]
and JavaScript’s V8 [34], use similar approaches based on
code interpretation and iterative optimization that leverage
application profiling.

To assess the importance of runtime techniques for itera-
tively optimizing code, we measured the latency of different
function invocations for different serverless workloads from
the SeBS [24] benchmark suite. In Figure 1, we show the func-
tion invocation latency for different request numbers for a
Dynamic HTML generation workload when running on two
different runtimes, PyPy (Python) and OpenJDK HotSpot
(Java). In blue, we show where existing solutions trigger
checkpointing. On the other hand, in orange, we showwhere
Pronghorn targets checkpointing. We also summarized the
latency speedup of function invocations for four benchmarks
from [23] in Table 1. From this analysis, we draw three im-
portant observations that will guide Pronghorn’s design.
Observation #1: runtime optimizations are highly effec-

tive in reducing the invocation latency of serverless func-
tions, even across different compilers. For instance, for Dy-
namic HTML, the invocation latency of the first request (run-
ning unoptimized code) and a request running optimized
code can differ by up to 33% (PyPy) and 76% (OpenJDK). We
found that these significant speedups are also obtained for
other serverless benchmarks, such as word counting, JSON
parsing, and hashing. This confirms the benefits that modern
runtimes bring to the performance of serverless workloads.
Observation #2: runtimes can take up to thousands of

function invocations to reach a highly optimized version
of the code. For instance, PyPy takes approximately 1000
requests to fully optimize the Dynamic HTML generation
workload, while OpenJDK takes even longer, nearly 2500
requests (see Figure 1). This suggests that systems that check-
point function instances close to instantiation [15, 27, 59, 61]
will end up serving function invocations with suboptimal
performance.
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Observation #3: JIT compilers do not always generate
code with better performance. JIT compilers optimize fre-
quently invoked methods and often speculate to produce
more efficient code, deoptimizing if any invariant is vio-
lated [19, 50, 53]. For example, the JIT compiler can produce
code with the assumption that a particular variable will not
be null and deoptimize if an invocation sees a null value.
Method calls can also be speculatively de-virtualized if the
callee is speculated to always be of the same type. If later a
callee of a different type is used, the call site is deoptimized.
Similar deoptimizations can happen when a method throws
an exception for the first time. Upon a deoptimization, the
runtime will gather additional profiling information before
trying to re-optimize the function code. Subsequent rounds
of optimization result in code being able to cover more code
paths and therefore may result in lower performance [36].
To further complicate the problem, JIT compilation is

not a deterministic process as it depends on a number of
non-deterministic factors: which methods are already op-
timized (compilation is performed by background threads
that contend for resources), code cache space availability,
types already loaded, among others. Finally, JIT compilers
have internal thresholds such as the size of a method, or the
number of deoptimization rounds that, once hit, may pre-
vent the method from ever be selected for optimization. As a
result, JIT compilation is a complex process and even given
the same set of profiles, the compilation of the same exact
method is not guaranteed to generate the same optimized
code.

Checkpointing cost. Another challenge is addressing the
trade-off between the checkpointing benefits and cost. On
one hand, more frequent checkpointing means we can collect
a larger pool of function instances containing code optimized
at different stages of a function’s execution. This provides
more chances of finding a function instance with higher
performance. On the other hand, function checkpointing is
an expensive task [73]. For instance, depending on the size
of the function, checkpointing can take up to 100 ms and
use tens of megabytes. This means that checkpoint-restore
systems in the context of serverless need to be applied judi-
ciously to not negate the benefits of running more optimized
code.

Understanding code performance. Lastly, the effect of
runtime optimizations on the function’s end-to-end latency
is not always immediate. This makes the task of measuring
and understanding the progress being made by optimiza-
tions challenging. First, runtime optimizations do not always
improve the performance of a function in a monotonic way,
as illustrated in Table 1 across four different SeBS [24] bench-
marks. For example, code de-optimizations may revert opti-
mizations, making the execution temporarily slower. After
collecting additional profiling information, the JIT compiler
will re-optimize the code taking advantage of the additional

profiling information. Second, runtime optimizations them-
selves can be expensive and interfere with the execution of
the function. This means that simple checkpointing strate-
gies that greedily checkpoint as long as invocation latency is
decreasing will miss high-performance function snapshots.

3 Pronghorn
We present Pronghorn, a snapshot orchestration system for
serverless platforms. In this section, we start by outlining the
system’s goals, model, and assumptions. Then, we discuss
the general workflow of the system. Finally, we explain in de-
tail Pronghorn’s request-centric checkpoint orchestration
policy and how it fulfills the proposed objectives.

3.1 System model and assumptions
Pronghorn’s goal is to accelerate the average execution
latency of serverless functions by continuously monitor-
ing their performance, checkpointing function instances at
specific moments, and launching functions from carefully
selected snapshots.
To achieve generality and ease of deployment,

Pronghorn leverages a set of black-box capabilities
commonly found in today’s serverless platforms:
• A transparent mechanism to measure the latency of
each function request as an approximate proxy for
the performance of a particular serverless function
snapshot;
• One or more high-level language runtimes (e.g., Open-
JDK HotSpot JVM) which are transparently invoked
within workers by the serverless platform to run
serverless functions;
• Language runtime JIT compilers that are automatically
invoked during a function’s execution to perform op-
timizations on the serverless function’s code.

Pronghorn’s design relies on the following components
(see Figure 2):
• A per-worker Orchestrator, responsible for enforcing
a snapshot management policy that decides when to
snapshot, which snapshot to restore from, and which
snapshot to evict;
• A Checkpoint Engine responsible for checkpointing
and loading snapshots;
• A global Object Store and Database to store function
snapshots and execution metadata used to manage the
snapshots, respectively.

3.2 SystemWorkflow
Pronghorn accelerates the execution of serverless func-
tions by continuously but selectively checkpointing JIT-
optimized functions and by intelligently deciding which
function snapshot to use for a new request. We now ex-
plain how Pronghorn influences a function’s execution to
achieve this goal (see Figure 2).
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Figure 2. Pronghorn’s design and execution steps (1-8) dur-
ing the invocation of a serverless function.

To invoke a function, a client issues a request to the server-
less platform through the platform’s Gateway ( 1 ). Then, the
serverless platform launches a container for its execution.
When the worker starts, the Orchestrator is automatically
invoked to determine what is the best snapshot to restore
from for this particular function. Since the Orchestrator is
local to the worker, it makes this decision based on global
information about snapshots and their performances from
the Pronghorn database. We explain how the Pronghorn
policy leverages this information to make decisions in more
detail in the next section.
If the policy decides to use an existing snapshot, the Or-

chestrator calls the Checkpoint Engine to start the invocation
from that snapshot. To do this, the Orchestrator reads the
snapshot from the Pronghorn’s Object Store to the worker’s
local memory and restores the function process from the
snapshot using the Checkpoint Engine. If the Pronghorn
policy does not recommend using a snapshot — e.g., the
very first time the function is invoked — the Orchestrator
performs a cold start of the workload process instead.
When the function’s request terminates, the response of

this execution is returned to the client through the Gateway
( 2 ). Then, the end-to-end latency is passed to the Orchestra-
tor’s policy, which uses this performance value to update the
Pronghorn’s Database ( 3 ). Since this function might have
been executed in other workers concurrently with this invo-
cation, the Orchestrator queries the Database ( 4 ) to update
its own information about available snapshots. This infor-
mation will be used in the next function invocation in this
worker. If the orchestration policy determines a checkpoint
is necessary, the Orchestrator directs the Checkpoint Engine
to checkpoint the function’s process ( 5 ). When invoked, the
Checkpoint Engine creates a snapshot of the function pro-
cess ( 6 ) and saves it to the local file system. The Orchestrator
then uploads the compressed snapshot to the Pronghorn’s
Object Store ( 7 ) and records the location of the snapshot
and relevant metadata in the Database ( 8 ).

3.3 Orchestration Policy Design
We now outline the design principles used in Pronghorn’s
orchestration policy.

Exploration-exploitation tradeoff. Part of the success
of Pronghorn hinges on being able to find the function
snapshots that provide the best performance. Unfortunately,
it is not obvious from a small number of function invoca-
tions which snapshots can, over many invocations, perform
the best. To make matters worse, it is hard to predict when
the JIT compiler is ready to perform code optimizations. In
fact, it can take hundreds of invocations before a function
is optimized. For these reasons, Pronghorn needs to care-
fully balance the exploration of promising snapshots with
the exploitation of the best-known ones.

Fixed-size snapshot pools. Generally, the more snap-
shots Pronghorn can store in the snapshot pool, the higher
chances it has of finding high-performance snapshots. On the
other hand, Pronghorn needs to keep overall costs (mem-
ory, storage, network) under control so they do not negate
the performance benefits. For this reason, Pronghorn al-
lows cloud providers to configure how much storage they
want to allocate for snapshots (the snapshot pool size), and
the system automatically takes advantage of that space to
optimize the snapshot exploration policy.

Accurate performance estimation. In order for
Pronghorn to decide which snapshots to explore, exploit,
or evict from the pool, it needs to be able to accurately
estimate the expected performance of a given snapshot.
This task is complicated by the fact that the latency of a
function invocation can vary significantly, even when using
the same snapshot, due to differences in hardware, resource
contention, or interference. Such differences are common in
distributed environments. Furthermore, the performance
of a particular snapshot can also vary significantly over
time due to JIT compilation, which typically improves
performance, but can also degrade it (as discussed in §2).
Pronghorn tackles these issues in two ways. First, to
account for performance variations due to changes in the
environment, it aggregates performance measurements
from different invocations of the same snapshot. Second,
to tackle the unpredictability in performance from JIT
compilations performed over many invocations, it evaluates
the performance of each function for its total expected
lifetime. To this end, Pronghorn monitors the performance
across all invocations starting from a particular snapshot to
build a complete picture of its performance.

Continuous learning. In practice, function performance
often varies over longer periods of time due to changes in
aspects as diverse as the workload inputs, the serverless en-
vironment (e.g., network traffic, runtime versions), or even
the configuration of the serverless functions (e.g., resources
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Symbol Description

Precomputed:
𝜷 Average number of requests handled by a worker before evic-

tion.
Overhead bounding:
𝑪 Maximum capacity of the snapshot pool.
𝑾 Largest request number at which checkpointing is permitted.

Learning:
𝜶 Proportion for the exponentially weighted moving average

update.
𝒑 The top 𝑝% of snapshots are retained when maximum pool

capacity is reached.
𝜸 𝛾% of randomly chosen snapshots are also retained when

capacity is reached.

Table 2. Notation for Pronghorn’s request-centric orches-
tration policy. Precomputed parameters are computed by
the cloud provider and provided to the algorithm. Overhead
bounding parameters are controlled by cloud providers based
on their desired performance trade-offs. Learning parameters
modify the speed and mode of convergence.

allocated to the functions). All of these can significantly af-
fect the performance of the snapshots used by Pronghorn,
and thus its end-to-end benefits. To adapt to these changes,
Pronghorn continuously profiles the performance of snap-
shots and prioritizes recent information when making sched-
uling decisions.

3.4 Request-Centric Orchestration Policy
Pronghorn’s orchestration policy (termed the “request-
centric orchestration policy”) is responsible for coordinating
checkpoint and restore operations across all workers allo-
cated to an application. It makes four key decisions: (1) when
to checkpoint; (2) from which snapshot to restore a new con-
tainer; (3) how many and which snapshots to store; and
(4) how to update the orchestrator’s state during execution.
In the rest of the section we introduce the necessary no-
tation, provide a pictorial overview of the algorithm, and
walk through the algorithm step-by-step, explaining how it
achieves our design principles.

Overview. Pronghorn’s orchestration policy (illustrated
in Figure 3, with accompanying notation in Table 2 and
optional pseudocode in the Appendix) provides orchestration
decisions at four specific moments in a function lifetime: (1)
worker initialization, (2) worker startup, (3) every function
request, and (4) snapshot pool capacity reached.
Every orchestration policy has two fundamental primi-

tives: when to checkpoint an existing worker, and which
snapshot to use to restore a new worker. Both of these prim-
itives are driven by latency measurements — we prefer to
restore a new worker from a snapshot that is taken at a re-
quest range with low latency rather than high latency, just
as we prefer to take a snapshot at a request range with low

invocation

Warm
worker?

New worker

No

Restore runtime
from snapshot

runtime
snapshot

blank
worker

Select snapshot from
snapshot pool

worker

Determine when to
take the next
snapshot (R)

Handle request

Yes

result

Update request
latency

>= R invocations?

Checkpoint snapshot
into pool

No

Pool is full?
NoKeep the best p% and

random % of snapshots 

Yes

Yes

latency

Figure 3. Pronghorn’s request-centric policy flowchart
overview. Green/dashed components represent core logic
units of our policy; Red/solid components represent check-
point and restore operations; Yellow/dotted components rep-
resent worker operations.

latency for future use. However, we need to gain latency
measurements across a fixed request range in order to deter-
mine what constitutes a low latency. The fixed request range
[0,𝑊 ] is our search space for this policy, with𝑊 defined in
Table 2.

Knowledge updates. To persist knowledge, we first zero-
initialize a weight vector of length𝑊 , which we use to store
latencies for each request number. With every single request
to an alive worker, we update the latency measurement for
that request number in the weight vector (see Figure 3). This
process enables us to learn latencies over multiple worker
lifetimes. A crucial aspect of this policy is that rather than
replacing the latency every single time a new measurement
is given, we instead build up an exponentially-weighted
moving average (EWMA) of request latencies in the request
weight vector by taking a weighted average of the previous
value and the new value (i.e., 𝑣new = (1 − 𝛼) 𝑣old + 𝛼𝑣new,
with 𝛼 defined in Table 2). By employing an EWMA, more
recent samples in the time series are weighted higher while
still retaining earlier knowledge. Through continuous im-
provement of latency estimates and prioritization of recent
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samples, we expect our performance to be resistant to appli-
cation input variance.

Snapshot restoration. With this weight vector formula-
tion, deciding which snapshot to restore from may appear
straightforward: pick the snapshot that, when restored from,
has the lowest latency over an average lifetime (the lifetime
latency, computed as an interval sum of the weight vector).
However, multiple promising regions of the search space can
exist simultaneously, and we still want to be able to traverse
local optima, so we instead draw randomly from the snap-
shot pool, with each snapshot weight inversely proportional
to lifetime latency. This process occurs in the first green
box in the left path of Figure 3. We first invert the snapshot
weights, and then convert the inverse weights into a proba-
bility distribution by applying the softmax [33] function.2
The softmax function outputs a probability distribution
over an input vector such that element values close to the
maximum of the vector receive most of the entire weight,
while the remaining elements receive the remainder. As a
result, the snapshots with the lowest lifetime latency will
be restored from most often, but even snapshots that have
high lifetime latencies will still be restored from, albeit less
often. This ensures that the policy will eventually explore
even high-latency regions.

Checkpoint orchestration. We must also implement the
second primitive: when to checkpoint an existing worker.
We should checkpoint at lower-latency request numbers, but
we also need to explore the request range. To achieve both
goals, our policy will checkpoint a live worker at a certain
request number over its lifetime. That request number is
drawn from a probability distribution over the interval for
which the worker is expected to be alive, with weight in-
versely proportional to its latency in the weight vector. This
logic executes in the second green box on the left path in Fig-
ure 3. Since unexplored request numbers (for which we have
no latency measurements) are zero by default, this request
weighting scheme puts enormous weight on checkpointing
at unexplored requests. Once no unexplored requests exist
in the range [0,𝑊 ], it will preferentially checkpoint at low-
latency request numbers. As a result, our policy addresses
both of the goals outlined above.

Snapshot pool management. We implement an
“exploration-exploitation” tradeoff by fixing a maximum
capacity for our snapshot pool, and whenever that capacity
is reached, evicting the worst-performing snapshots while
also keeping a random subset. This logic occurs starting in
the purple diamond at the bottom-right of Figure 3. Perfor-
mance for a checkpoint is measured by summing learned
request latencies over a worker lifetime (i.e., 𝛽 requests)
when resuming from that checkpoint. Through repeated
2For a vector v, it is defined as s = 1∑

𝑒𝑖
e where vector e is the result of

applying the exp function element-wise to v.

pruning and re-seeding of the snapshot pool, we expect the
policy to converge on a desirable mixture of snapshots in
the pool. A random subset is not deleted in order to enable
more difficult optimizations that may necessitate crossing
local optimization minima (“hill-climbing”). Similar bounded
random exploration has proved successful in the realm of
machine learning and reinforcement learning [38].

4 Implementation
We implement Pronghorn by building on OpenFaaS [10],
a popular open-source serverless platform, allowing us to
create an end-to-end serverless framework. We explain how
we implement the components outlined in Figure 2 as follows
(see §3.2 for an explanation of how the various components
interact).
We implemented the Orchestrator in approximately 800

lines of Python as a Flask [4] application with an event-
driven architecture. The Orchestrator manages snapshots in
the Object Store (implemented with MinIO [8]) and stores
policy weights in the Database. The Orchestrator also forks
and executes the function process and determines when to
checkpoint and from which snapshot to restore based on its
policy. When checkpointing or restoring, the Orchestrator
utilizes CRIU [25] as the Checkpoint Engine to create the
snapshot of the function process, upload it to MinIO, and
update the policy weights in the database. Furthermore, the
Orchestrator can terminate the function process at prede-
fined request intervals (simulating cloud providers evicting
workers) to analyze Pronghorn’s performance across vari-
ous traffic patterns (see §5.2).

We employed CRIU [25] as a stand-in for any Checkpoint
Engine due to its maturity and widespread usage. However,
Pronghorn is agnostic to the choice of Checkpoint En-
gine. This enables us to compare orchestration strategies
across any checkpoint-restore system with our own strategy.
A corollary of this approach is that the benefits of our or-
chestration strategies can accrue to serverless systems that
use different checkpoint-restore implementations (i.e., those
which have custom checkpointing or restoring solutions).

To provide flexibility and support various orchestration
policies, we designed the Orchestrator to execute policies
through a minimal abstract interface, enabling easy imple-
mentation of a range of policies. At its core, the policy must
implement interface functions that dictate which snapshot
to use when starting a new worker and when to checkpoint
a running worker.

The Database is a lightweight implementation of a general-
purpose key-value store. It is a Flask [4] application written
in approximately 100 lines of Python. The Database interface
provides a persistent store for storing orchestration policy
weights and learned data, exposing only strongly-consistent
atomic read and write operations. Since the Database only
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Benchmark Description

Java:
HTMLRendering HTML template rendering with random numbers
MatrixMult Square matrices multiplication with random sizes
Hash Checksum of a large random bytes array
WordCount Word count for random-length excerpts

Python:
BFS Breadth-first search on random graph
DFS Depth-first search on random graph
MST Minimum spanning tree (MST) of random graph
DynamicHTML HTML generation with randomized content
PageRank PageRank [51] on random graph
Uploader Upload file from provided URL to cloud storage
Thumbnailer Generate a thumbnail of an image
Video Add a watermark and generate gif of a video file
Compression Create a .zip file for a group of files in storage

Table 3. Evaluation benchmarks.

needs to implement a minimal interface, production key-
value stores (e.g., Redis [55], Dynamo [26]) can be readily
substituted.
In addition to these components, we also implemented

infrastructure to enable benchmarking Pronghorn. Our
benchmarking infrastructure for PyPy benchmarks is ap-
proximately 800 lines of Python code, and the infrastructure
for JVM runtime-based benchmarks accounts for approxi-
mately 450 lines of Java code.

5 Evaluation
We evaluate Pronghorn by presenting an analysis of our
proposed orchestration policy compared to a baseline sched-
uling strategy and the state-of-the-art scheduling strategy
on common serverless workloads. We quantify the benefits
of these strategies, reporting the distribution of end-to-end
request latencies across multiple container eviction rates and
language runtimes. To demonstrate resilience to perturba-
tions in inputs, we artificially introduce significant variance
in benchmark inputs to better model the range of inputs a
live serverless application could receive. Finally, we evaluate
the costs and overheads associated with the deployment of
Pronghorn.

5.1 Methodology
Benchmarks. Our evaluation encompasses a set of thir-

teen benchmarks adapted from representative benchmarking
suites such as ServerlessBench [71], FaaSDom [46], SeBS [24],
and previous papers [23]. These benchmarks were imple-
mented using Java 17 and Python 3, as outlined in Table 3.
The benchmarks were executed on two popular runtimes:
the Java Virtual Machine (JVM) and the PyPy Just-in-Time
(JIT) compiler. The selection of the JVM as one of our target
runtimes was driven by its widespread adoption as a preva-
lent target platform for a multitude of high-level languages.

Its extensive usage in industry and its robust optimization
pipeline make it an ideal choice for our evaluation. Addi-
tionally, PyPy was chosen as the JIT compiler for Python,
considering its prominent position as one of the most widely
used high-level languages in scientific computing and script-
ing. To ensure accuracy and to encompass a diverse range of
workloads, our evaluation encompasses both compute and
I/O-bound tasks. By including a variety of benchmarks that
represent different types of workloads, we aim to provide a
comprehensive assessment of our system’s performance.

In order to ensure the robustness of our system to pertur-
bations in benchmark inputs, we made slight modifications
to each benchmark, adding optional zero-mean Gaussian
noise in the inputs of up to an order of magnitude in the
input sizes. This adjustment is particularly significant for
graph-based benchmarks, as the execution latency directly
scales with the size of the random graph, which is the pri-
mary input to the benchmark. By introducing high variance
in inputs, we can determine whether our tested policies are
resistant to noise in inputs and, consequently, in request
latencies.

Measurements. To provide a holistic view of the system
performance, all latency measurements are end-to-end and
are measured from the perspective of the client. We mea-
sured the end-to-end latency for 500 invocations of each
workload for three orchestration policies. In our evaluation,
we present the Cumulative Distribution Functions (CDFs)
of these latencies to provide a comprehensive analysis of
latency distribution across the entire set of 500 requests. By
examining the CDFs, we aim to provide a holistic understand-
ing of the system performance. To ensure a comprehensive
evaluation, all orchestration strategies were subjected to
benchmarking with eviction rates of 20, 4, and 1 request per
worker. These rates roughly correspond to a request issued
every 1 minute, 5 minutes, and 1 hour, respectively, assum-
ing an average worker lifetime of approximately 20 minutes
based on real-world data [58].

Measurements were conducted on a three-node VM clus-
ter running Ubuntu 22.04 LTS, equipped with 2 vCPUs, 8
GiB memory, and 50 GiB of disk space. The VM cluster was
hosted on a bare-metal machine running Ubuntu 20.04.4 LTS,
with 61 GiB of RAM and a quad-core 4.0 GHz Intel i7-6700K
CPU.3 We employed k3s [6] (a lightweight Kubernetes [7]
distribution) for cluster management and Docker [3] for
containerization. The execution environment consistently
utilized OpenJDK 17 and CRIU 3.15. We adopted a multi-VM
configuration to better resemble real-life serverless systems,
with one VM serving as the control plane and the other two
operating asworkers.We note that Pronghorn is not limited

3While more specialized hardware exists for large-scale virtualization, we
opted for commodity server-grade hardware sufficient to run a mid-scale
OpenFaaS setup, which we believe is reasonably representative.
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to a three-node system — it generalizes to a distributed sys-
tem with several nodes in the control plane managing a fleet
of possibly hundreds of workers. In our setup, the Docker
server runs on the host machine, and the user launches and
invokes functions from there. When functions are launched,
they are executed within the designated workers (in our case,
Docker containers).

Orchestration policies. We evaluate three orchestration
policies:

1. Cold-start: Starting the workload anew each time a
worker is initialized (no checkpoint-restore);

2. Checkpoint after 1st (state-of-the-art): Checkpoint-
ing immediately after the first request is complete,
and resuming from that snapshot hereafter. State-
of-the-art systems including Catalyzer [27], Fire-
works [59], Prebaking [61], Groundhog [15], and Ama-
zon Lambda’s SnapStart [16] snapshot after the first
request or after initialization but before the first invo-
cation. We note that checkpointing after initialization
and before the first invocation results in inferior per-
formance as runtimes lazily initialize many internal
data structures inside the interpreter and JIT compiler,
meaning that much initialization will happen when
the first request is executed;

3. Request-Centric: Request-centric checkpointing (as
described in §3.4) with 𝑝 = 40%, 𝛾 = 10%, and snap-
shot pool capacity 𝐶 = 12. We set𝑊 to 100 for PyPy
benchmarks and 200 for JVM benchmarks.

We chose values of 𝑝 and 𝛾 that seemed reasonable to
prevent overfitting. A snapshot pool capacity of 𝐶 = 12
comes out to around 600 MB using average checkpoint sizes
from Table 4, which is under 1 GB, the lowest unit AWS
S3 [1] uses.

Stopping condition. Since each benchmark-strategy com-
bination was evaluated for 500 invocations, bounding the
search space to 100 requests (i.e., setting𝑊 = 100) assured
that the first 100 requests would be fully “explored”. For the
JVM, we used𝑊 = 200 since the JVM generally takes twice
as long as PyPy to arrive at an optima (as seen in Figure 1).
While we did not stop checkpointing workers after some
fixed number of requests for the purposes of our evaluation,
the cloud provider can always choose to stop checkpointing
and use the best snapshot available in the pool thereafter. For
example, if the cloud provider observes Pronghorn is not
improving performance throughout several worker lifetimes,
then it can halt further exploration for that application.

5.2 End-to-End Evaluation
We analyze the immediate impact of our orchestration strat-
egy and then examine the impact of different traffic patterns.
As explained in §5.1, we demonstrate the resilience of our
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Figure 4. The Cumulative Distribution Function (CDF) of
end-to-end request latency in microseconds of Python bench-
marks (rows) across the evaluated orchestration strategies
and three different container eviction rates (columns).

orchestration strategy to perturbations in the input by run-
ning all benchmarks with significant artificial variance in
input sizes, thereby inducing variance in request latencies.4

4Evidence of the large variance can be seen in the provided latency CDFs
for compute-bound benchmarks, where a typical request interquartile range
spans over an order of magnitude.
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Figure 5. The Cumulative Distribution Function (CDF) of
end-to-end request latencies in microseconds for all Java
benchmarks (rows) across the evaluated orchestration strate-
gies and three different container eviction rates (columns).

Orchestration strategy. Figure 4 and Figure 5 report the
distribution of request latencies of thirteen different work-
loads across two popular language runtimes (PyPy and Open-
JDK HotSpot JVM, respectively) across three different strate-
gies. In this paragraph, we examine the first column (where
the function workers are evicted after every request) and
compare Pronghorn’s performance to the state-of-the-art.
Given that only a quarter of typical serverless functions
receive more than one invocation in 10 minutes [58] (the
typical worker eviction timeout), this frequency of evictions
applies to nearly three-quarters of serverless functions. For
six of the thirteen benchmarks (BFS, DFS, DynamicHTML, MST,
PageRank, and WordCount), our policy provides a significant
improvement at every percentile over the state-of-the-art
(note that the 𝑥-axis is log-scale), with a median improve-
ment ranging from 20.5% to 58.9%. For three of the bench-
marks (MatrixMult, Hash, and HTMLRendering), our policy
provides a clear benefit up until the 90th percentile of request
latencies, with a median performance improvement of 24.8%,
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Figure 6. The Cumulative Distribution Function (CDF)
of end-to-end request latencies in microseconds for two
compute-bound workload and an I/O-bound workload for
varying percentiles of function popularity sampled from fif-
teen minutes of the Azure production traces.

36.8%, and 58.9% respectively. The remaining four bench-
marks are IO-bound rather than compute-bound: for three
of them (Compression, Thumbnailer, and Video) our policy
provides on-par performance (within 5% of state-of-the-art),
while only one (Uploader) shows worse performance. The
benchmark that shows worse performance (Uploader) is en-
tirely IO and network bound since the actual computation is
performed by calling out to a native C library, so the benefit
from runtime optimizations and Pronghorn is marginal.
Overall, for a typical serverless request density, Pronghorn
improves upon median performance for cold-start and the
state-of-the-art policy for 9 of 13 benchmarks, with a geomet-
ric mean of improvement (based on percentage improvement
in median) of 37.2% over the state-of-the-art, worsens per-
formance for 1 of 13, and provides on-par performance for 3
of 13 benchmarks.
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Request rates. Comparing performance across the
columns of Figure 4 and Figure 5, we can analyze the ro-
bustness of the performance improvements produced by
Pronghorn’s request-centric strategy for workloads with
different request traffic patterns. Specifically, the tested evic-
tion rates (in the figure columns) of every 1, 4, or 20 requests
correspond to a request issued every 1 hour, 5 minutes, or 1
minute, respectively. We observe that across the 39 settings,
Pronghorn almost always performs better, or at least as well
as the state-of-the-art. In 28 of 39 experiments, Pronghorn
provides better median performance (a total geometric mean
of improvement of 22.5%); in 9 of 39, Pronghorn provides
on-par median performance (within 5% of state-of-the-art);
and in only 2 of 39 experiments does Pronghorn clearly
lower median performance (Uploader for eviction rate of 1
and 4) for the reasons mentioned in the previous paragraph.
Of the benchmarks where Pronghorn provides better me-
dian performance, the geometric mean of improvement was
37.2% for eviction rate 1, 22.5% for eviction rate 4, and 13.5%
for eviction rate 20. This shows that the sooner function
workers are evicted, the larger the performance improve-
ments yielded by Pronghorn. Moreover, this confirms our
motivation for the system — that valuable runtime optimiza-
tions are lost when function workers are frequently evicted,
and that preserving those optimizations leads to significant
performance improvements. The data show that Pronghorn
is resilient to differing request traffic patterns, which is cru-
cial for Pronghorn to be deployed in a production setting.

Trace analysis. We additionally evaluate the perfor-
mance of different snapshot orchestration strategies using a
set of three 15-minute function traces extracted from Azure
production traces [58]. Each trace contains all invocations
of a single function for a fixed-size time window of fifteen
minutes. Functions were selected uniformly at random after
filtering by their popularity percentile, measured in number
of invocations per day.

Results in Figure 6 demonstrate that Pronghorn still out-
performs other orchestration strategies as it (1) offers supe-
rior performance in 6 out of 9 scenarios, (2) is on-par with
other strategies in 2 scenarios, and (3) only degrades perfor-
mance in 1 pathological scenario. This pathological scenario
(on the MST benchmark for 50th percentile of popularity)
occurs due to an extremely low number of invocations (3
requests) in a fifteen-minute window. Given more invoca-
tions over a longer period, Pronghorn would converge to a
better snapshot.

5.3 Cost Analysis
We analyze the costs that can be expected from Pronghorn
in a production deployment and explain how to bound these
overheads. To that end, we measure the overheads intro-
duced by Pronghorn compared to the state-of-the-art and
discuss practical strategies to both bound and mitigate them.

Benchmark Req. #
Checkpoint

(ms)
Restore
(ms)

Snapshot
(MB)

Java:
HTMLRendering 215 70.7 ± 25 50.4 ± 5.8 10.5
MatrixMult 203 66.1 ± 11 51.5 ± 3.9 10.6
Hash 212 60.6 ± 13 52.5 ± 3.8 10.6
WordCount 218 67.9 ± 18 55.2 ± 4.0 13.3

Python:
BFS 100 85.6 ± 21 73.8 ± 9.5 55.5
DFS 114 85.7 ± 21 70.8 ± 13 55.8
MST 135 79.6 ± 23 77.1 ± 2.1 56.1
DynamicHTML 287 74.4 ± 22 75.3 ± 6.5 54.1
PageRank 100 74.4 ± 16 80.5 ± 7.2 64.0
Uploader 154 100.2 ± 13 30.2 ± 2.4 61.2
Thumbnailer 100 100.7 ± 14 67.0 ± 6.3 62.0
Video 193 91.1 ± 12 40.4 ± 2.4 60.1
Compression 136 105.0 ± 8.0 39.1 ± 1.3 61.0

Table 4. For each benchmark, the requests taken by
Pronghorn to find the optimal snapshot; snapshot sizes;
and checkpoint/restore times. Request number is computed
by sliding a window of size 20 across the recorded laten-
cies to find the interval whose median is within 2% of the
final value. The reported request number is the mean of con-
vergence request numbers across all tested combinations of
input size variances and eviction rates for each workload.
Checkpoint and restore timings and sizes came from repeat-
edly checkpointing and restoring each benchmark 10 times
after startup and taking the mean across those 10 runs on
the same machine used for evaluation.

Checkpoint-restore overhead. Pronghorn’s request-
centric strategy first undergoes an exploration period, con-
figured by the hyperparameter𝑊 , before honing in on an
optimum. Therefore, the number of checkpointing primi-
tives is bounded: Pronghorn only incurs the fixed costs
for checkpointing until it stops exploring.5 Once an opti-
mal snapshot is found for an application, it can be deployed
with that snapshot indefinitely. Therefore, in serverless func-
tions with high request rates, the recurring speed-up due to
Pronghorn will rapidly accumulate, while checkpointing
overhead will cease entirely once exploration stops.

The checkpointing primitive of Pronghorn causes a brief
worker downtime on the order of 60 − 105 ms when using
CRIU 3.15 without any additional optimizations, as seen
in Table 4. For the same choice of Checkpoint Engine, the
restoration overhead is the same as that experienced by state-
of-the-art systems [27, 61] that rely on a similar primitive
to increase an application’s performance. Every system that
makes use of checkpoint-restore will incur the restore cost,
so Pronghorn does not increase restore costs relative to the
state-of-the-art — Pronghorn only increases the number
of checkpoints taken. Moreover, checkpointing overhead is

5The cloud provider can choose when to stop checkpointing — the best
snapshot seen will always be in the snapshot pool.
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Benchmark

Max
Storage
Used
(MB)

Max
Network
Used
(MB)

Baseline
Storage
Used
(MB)

Baseline
Network
Used
(MB)

Java:
HTMLRendering 126 2625 10 1312
MatrixMult 127 2650 10 1325
Hash 127 2650 10 1325
WordCount 159 3325 13 1662
Python:
BFS 666 13875 55 6937
DFS 669 13950 55 6975
MST 673 14025 56 7012
DynamicHTML 649 13525 54 6762
PageRank 768 16000 64 8000
Uploader 734 15300 61 7650
Thumbnailer 744 15500 62 7750
Video 721 15025 60 7512
Compression 732 15250 61 7625

Table 5. For each benchmark, the maximum storage used by
Pronghorn’s orchestration strategy, the maximum cumu-
lative network bandwidth used to transfer snapshots, and
the baseline values for state-of-the-art. Baseline storage used
is the average snapshot size for the benchmark; maximum
storage use is computed as the product of the former and
the size of the snapshots pool, 𝐶 . The maximum network
use is computed as double the product of the total number
of container lifetimes and the average snapshot size for the
benchmark, while baseline is half that. The doubling is due
to the network transfer cost of uploading a snapshot.

not directly experienced by the user, i.e., workers are only
checkpointed after a request has been completed. Analysis
of production traces [58] reveals that most deployed func-
tions handle few requests over long periods, while the most
frequently-invoked account for the majority of compute time.
If the application is infrequently invoked, then this brief
worker downtime will not impact user latency, as invoca-
tions during that downtime are unlikely. On the other side
of the spectrum, serverless functions in heavily distributed
contexts with high request density are typically auto-scaled
by the serverless platforms. As a consequence, their respec-
tive load balancers can direct requests away from workers
which are being checkpointed, thus shielding the user from
that latency in both cases.

Storage and network overheads. Pronghorn will gen-
erally improve performance and use less compute, at the
expense of the additional storage and network bandwidth
used. The benefits will accrue to both the user and the cloud
provider, while the storage and network costs will be primar-
ily borne by the cloud provider.6 Table 5 reports the maxi-
mum storage and network bandwidth used by Pronghorn’s
6Depending on their pricing model, cloud providers may choose to pass on
some portion of the cost to users.
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Figure 7. Per-operation overheads of Pronghorn for the
Request-Centric strategy versus the baseline strategy (Check-
point after 1st), across three components of orchestration:
per worker startup, per request, and per checkpoint. Each
benchmark is separately normalized, first against the base-
line and second against the number of relevant operations.
To normalize against the number of operations, the total
worker startup overhead is divided by number of worker life-
times; the total checkpoint overhead is divided by number of
checkpoints taken; and the total request overhead is divided
by number of requests served. Dashed line marks equality
with baseline.

orchestration policy and those of the state-of-the-art pol-
icy. Compared to the state-of-the-art, Pronghorn will use
twice the network bandwidth during the exploration pe-
riod (per container lifetime, one restore, and one checkpoint
operation, each requiring a snapshot transfer over the net-
work). After the exploration period, Pronghorn will incur
the same network bandwidth cost as the state-of-the-art (one
restore operation per container lifetime). In terms of stor-
age, Pronghorn will use up to the size of the snapshot pool
(i.e., 𝐶 snapshots) and therefore up to 𝐶 times the storage
of the state-of-the-art policy. Network and disk operations
associated with snapshot creation and transfer do not impact
user-perceived latency, as they occur asynchronously with
respect to the request flow. However, these operations can
increase the load on the whole system.

Bounding system costs. Table 4 also illustrates the num-
ber of requests the request-centric policy takes to converge
to an optimal snapshot in our main evaluation experiments.
For both PyPy and JVM, we observe that the request-centric
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policy converges in less than𝑊 + 100 requests for every
single benchmark (300 requests for JVM benchmarks and
200 requests for every PyPy benchmark). Consequently, the
cloud provider can stop further checkpointing after𝑊 + 100
invocations of the application, avoiding any additional net-
work bandwidth costs or checkpointing downtime compared
to the state-of-the-art policy.7 Of course, cloud providers
may wish to navigate the Pareto frontier between perfor-
mance and exploration cost differently, and so Pronghorn
enables them to choose their desired trade-off by simply end-
ing the exploration period whenever they choose. The cloud
provider can also directly lower the storage overhead used
by simply reducing the size of the snapshot pool (e.g., setting
𝐶 = 2 instead of 𝐶 = 12).

Checkpointing overheads can be further mitigated when
serverless applications are run in a distributed context (e.g.,
for a frequently-invoked application running on numerous
containers). Only a nonempty subset of containers running
a given application need to be exploring in order to realize
performance benefits — the remaining containers can simply
restore from the best snapshots found so far. Exploration
overheads can therefore be amortized over many containers,
with the degree of amortization chosen by the cloud provider.

Orchestrator overheads. Figure 7 reports per-operation
overheads associated with the main decision points in
Pronghorn’s orchestration algorithm (worker startup, re-
quest processing, and checkpointing), normalized against the
Checkpoint after 1st strategy as the baseline. Overheads were
tabulated for a full run with the same benchmarking suite
and methodology as described in subsection 5.1. Importantly,
while these overheads place load on the system, they all oc-
cur off the critical path of end-to-end request processing, and
are thus not directly observed by the user. Container startup
overhead is higher than the baseline (although not exceed-
ing 2.5x, or 28ms), which is expected given that Pronghorn
must decide from which snapshot to restore, a decision that
is trivial for the baseline strategy. Per-request processing
is generally on-par with the baseline, as Pronghorn only
incurs some extra array read-write operations, whose com-
putation time is outweighed by network latency. Finally, the
per-checkpoint time is higher for 9 of 13 benchmarks (not
exceeding 2x, or 34ms) as Pronghorn has to update the
snapshot pool in the database. We note that the orchestra-
tor implementation was unoptimized (i.e., written in Python
with many logging operations), and could be substantially
improved.

7A corollary of this empirical bound is that serverless applications that
receive very few requests (less than 150 requests, assuming a small𝑊 <

50) over the duration of their deployments are unlikely to benefit from
Pronghorn.

6 Discussion
In this section, we discuss additional aspects that can affect
Pronghorn’s effectiveness, and sketch potential improve-
ments for future work.

Lifetime estimation. We assume that cloud operators
can provide a reasonable estimate of the lifetime of a function
worker. Should this estimate be inaccurate, there are two
possibilities: worker lifetime can be underestimated or over-
estimated. An underestimate means we believe the worker
will die sooner than it actually does, and so we checkpoint
sooner than is ideal, thereby taking longer to explore the
request range. Conversely, an overestimate means we be-
lieve the worker will be evicted later than it actually does,
so we may plan to checkpoint at a certain number of invoca-
tions that is never reached. While this situation is not ideal,
cloud providers will likely run numerous function workers
over the entire deployment of a serverless application, and
most likely some of them will regularly reach the predicted
lifetime.

Tuning Pronghorn. Pronghorn can be tuned by cloud
operators based on various factors, including estimated
container lifetime, average JIT compiler warmup duration,
and snapshot budget (network, storage, etc.). Adjusting
the request-centric strategy parameters (e.g., 𝛽 ,𝑊 , and 𝐶
respectively for the prior examples) is sufficient to tune
Pronghorn. By doing so, Pronghorn can converge faster
and even work with a smaller snapshot pool. However, this
approachmay require prior knowledge about serverless func-
tion code, invocation patterns, or JIT compiler internals.

Workload and input-awareness. For serverless appli-
cations with multiple traffic patterns (workloads), different
orchestrators can be specialized towards specific patterns. By
doing so, instances can specialize for certain workloads, and
thereby achieve a closer "fit" to the data rather than forcing a
single snapshot to handle all workloads a function is subject
to. Moreover, distinct inputs to serverless applications can
lead to divergent code paths and execution profiles. While
Pronghorn should converge to a mixture of snapshots that
perform the best on average, across the distribution of re-
quest types and code paths, using Pronghorn to specialize
snapshots for specific code paths is an exciting future work
direction. We envision a meta-optimization strategy that
utilizes entirely different policies based on patterns in work-
loads and inputs to improve global response latency.

7 Related Work
Recent research efforts have yielded numerous systems that
leverage checkpoint-restore mechanisms to improve server-
less platforms. Silva et al. [61] employ a snapshot to restore
the memory and state of a previously executed function
runtime. Catalyzer [27] reuses user-level and system-level
state by using a combination of a snapshot and a custom
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OS primitive, reducing overall workload latency. Medes [57]
deduplicates redundant memory footprints to develop sand-
box state, which is faster to restore compared to a cold start.
SEUSS [20] reuses state from unikernel and function-specific
snapshots to expedite the deployment of serverless functions.
These systems checkpoint the function runtime right after
runtime initialization [15, 20, 27, 30, 67] or after the first func-
tion invocation [61], and, thus, miss the optima produced
beyond the lifetime of a single container due to JIT runtime
optimizations. Pronghorn can be deployed on top of these
systems as a snapshot orchestration layer.

Fireworks [60], on the other hand, triggers early JIT compi-
lation before the function code is even executed. This system
takes advantage of Numba [42] and Node.js [9] capabilities
to convert Python and JavaScript function code into ma-
chine code, respectively. By using Python and JavaScript
JIT compilers as Ahead-of-Time compilers, code produced
by premature JIT invocation misses important optimiza-
tions that rely on profiling dynamic code execution and
which are known to be crucial for performance in high-
level languages [28, 35, 63]. Instead of forcing JIT activity,
Pronghorn does not interfere with the code compilation
pipeline, allowing runtimes to fully optimize the code using
dynamic profiling information.

Existing approaches that keep containers alive [14, 32, 44,
47, 49, 70] necessarily incur high costs to the cloud provider
even if carefully optimized, since provisioning containers is
expensive. Pronghorn provides high performance to the
end-user while still retaining cloud providers’ flexibility on
when to evict containers. Similarly, Pronghorn does not rely
on co-location of functions within containers or machines,
which prior systems [29, 64] do to increase performance.

Pagurus [43] is a container management system that pro-
vides an orchestration layer on top of checkpoint-restore
solutions like Catalyzer [27] in order to optimize resource
utilization. Pagurus exploits inter-workload similarity by
sharing warm containers across different applications. There-
fore, Pagurus is orthogonal to Pronghorn’s approach of
optimizing the latency of one serverless workload at a time.
In fact, Pronghorn can be modified to also resume from a
warm container running a similar workload. However, to
retain the performance benefits of intelligent orchestration,
we would only do so when Pronghorn has no previous
snapshots for a given application.

A recent work proposed a JIT server that shares the com-
pilation effort across multiple runtimes [12]. However, this
solution came at a high engineering effort, making it chal-
lenging to adopt in other language runtimes. Moreover, since
profiling information is not shared in JITServer, a single run-
time would need to receive a significant amount of requests
in order to successfully profile and compile user code, which
is unlikely in the face of frequent container evictions.

REAP [65] pre-fetches resident memory pages from
disk when a serverless function is restored from a snap-
shot, thereby improving cold-start delays significantly.
CheckSync [40] integrates with the function runtime to
greatly decrease the size of function snapshots. Lamb-
daLite [69] accelerates the application code loading phase in
order to reduce the cold-start response latency of a function.
CRaC [13] aims to make Java programs aware of checkpoint
or restore operations to optimize snapshot sizes for Java
programs. On-demand fork [73] provides a fast fork imple-
mentation by generalizing copy-on-write to page tables that
can be used to accelerate process restoration. These opti-
mizations can be applied in concert with Pronghorn due to
it being agnostic to the underlying checkpoint engine and
runtime. Azul ReadyNow [2] reads from JVM profiler logs
in order to accelerate warm-up. By specializing for the JVM,
ReadyNow achieves hot-start performance at a low cost, but
unlike Pronghorn, is neither generalizable to other com-
piler versions nor runtimes.

To the best of our knowledge, Pronghorn is the first tech-
nique to orchestrate serverless checkpointing in order to au-
tomatically find the snapshot with the highest performance.
Pronghorn is platform and runtime agnostic and can be eas-
ily integrated into production serverless platforms.Moreover,
Pronghorn is orthogonal to many techniques proposed to
reduce memory function footprint [18, 29, 39], reduce cold
start latency [48, 56], enable networking [31, 66, 68], transac-
tional serverless workloads [72], serverless workflows [45],
and fast data exchange [41, 54, 62], among others.

8 Conclusion
Pronghorn enables serverless cloud providers to make full
use of speculative JIT optimizations in modern runtimes.
Pronghorn’s novel approach builds up knowledge of the re-
quest latency patterns for a given serverless application, and
leverages that knowledge to hone in on the best-performing
function snapshot. Pronghorn can be readily integrated
into existing serverless systems because it is agnostic to the
underlying JIT runtime, platform, and checkpoint engine.
Our experiments demonstrate that Pronghorn outperforms
the baseline of no checkpointing and the state-of-the-art of
checkpointing right after initialization, and maintains these
performance gains in the face of high variance in request
latencies and different traffic patterns. Finally, Pronghorn
provides these benefits in request latencies indefinitely, while
its costs are strictly bounded, and thus amortized over time.
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A Appendix

Algorithm 1 Request-centric orchestration policy algorithm
1: Initialize snapshot pool P with fixed capacity 𝐶 .
2: \ ← 01×𝑊 ⊲ Vector that stores request latencies
3: Form probability map D where each request 𝑖 has

Pr [𝑖] = 1
\ [𝑖 ]+` where ` is a tiny positive constant.

Part 1 – When to checkpoint

4: procedure OnContainerStart(container 𝐾 , starting
request number 𝑅)

5: v← re-computed D
6: v← v[𝑅, 𝑅 + 𝛽] ⊲ Clipped distribution
7: Draw 𝑟 ′ from interval [𝑅, 𝑅 + 𝛽] using weights v
8: Checkpoint container 𝐾 when it reaches request 𝑟 ′
9: Save the snapshot in pool P
10: end procedure

Part 2 – Which snapshot to use

11: function GetSnapshotWeights
12: v← re-computed D
13: w← 01×𝐶 ⊲ Snapshot weight vector
14: for each snapshot 𝐾 at index 𝑖 in pool P taken at

request number 𝑅0 do
15: 𝑤 [𝑖] ← 1

𝛽

∑𝑅0+𝛽
𝑖=𝑅0

𝑣 [𝑖] ⊲ Average lifetime weight
16: end for
17: return w
18: end function
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19: procedure OnContainerInit ⊲ Each new container
20: w← softmax (GetSnapshotWeights)
21: Draw snapshot𝐾 from poolPwith snapshotweights

given by w
22: Resume from snapshot 𝐾
23: end procedure

Part 3 – How to update weights

24: procedure OnReqest(request number 𝑅, latency 𝐿)
25: if \ [𝑅] is 0 then
26: \ [𝑅] ← 𝐿 ⊲ Initialize with latency
27: else
28: \ [𝑅] ← 𝛼 · 𝐿 + (1 − 𝛼) · \ [𝑅] ⊲

Exponentially-weighted update
29: end if
30: end procedure

Part 4 – Eviction policy for snapshot pool

31: procedure OnCapacityReached
32: w← GetSnapshotWeights
33: P’← top 𝑝% of snapshots in P using weights w
34: Add 𝛾% of snapshots in P chosen uniformly at ran-

dom to P’
35: P← P’ ⊲ Discard remaining snapshots
36: end procedure

B Artifact Appendix
B.1 Abstract
Pronghorn is a snapshot orchestrator for serverless platforms.
Its primary goal is to accelerate the execution of serverless
functions.

B.2 Description & Requirements
B.2.1 How to access. Pronghorn can be accessed via the
publicly hosted repository at the following URL: https://
github.com/rssys/pronghorn-artifact/. It can also be accessed
at the Zenodo artifact link here.

B.2.2 Hardware dependencies. To run Pronghorn effec-
tively, it is recommended to run on an x86_64 machine with
at least 8 cores, 32 GB of memory, and 256 GB of storage.

B.2.3 Software dependencies. To set up and use
Pronghorn, you will need specific software dependencies.
These include a Linux operating system (Ubuntu 22.04 is rec-
ommended), Docker Engine v20.10.12+ (version 20.10.12 or
higher), and Kubernetes Server v1.21.1+. Additionally, ensure
that you have several tools installed to facilitate the setup pro-
cess. These tools includeMultipass v1.12.2+, Arkade v0.8.28+,
Helm v3.5.2+, Kubectl v1.2.22+, k3sup v0.11.3+, and faas-cli
v0.14.2+.

B.2.4 Benchmarks. The descriptions of the benchmarks
bundled along with the artifact can be found in Table 3 of
the paper.

B.3 Set-up
To set up Pronghorn, follow the README in the Github project
above or the Zenodo snapshot.

B.4 Evaluation workflow
B.4.1 Major Claims.

• (C1): Pronghorn’s orchestration strategy significantly
improves request latencies for compute-bound workloads
over state-of-the-art.
• (C2): Pronghorn’s request-centric strategy consistently
outperforms or matches the state-of-the-art across vary-
ing request traffic patterns, which is crucial for deploy-
ment in production.
• (C3): Pronghorn minimizes checkpointing overhead by
undergoing an exploration period, resulting in brief con-
tainer downtime. This downtime is similar to state-of-
the-art systems and is not directly experienced by users.
• (C4): Pronghorn’s request-centric policy converges to an
optimal snapshot in a small number of requests, allowing
cloud providers to stop further checkpointing after a
specific number of invocations.

B.4.2 Experiments. Experiment (E1): [30 human-minutes
+ 48 compute-hour]: In this experiment, we conduct a
comprehensive evaluation encompassing all benchmarks,
strategies, and eviction rates, as presented in Section 5 of the
paper.

[Preparation] The Pronghorn setup process automatically
generates the necessary configurations for this experiment. No
additional steps are necessary.

[Execution] To initiate the experiment, simply execute the
run.sh script located in the root directory with the ’evaluation’
argument. Given the extended duration of this experiment,
we advise running the command in the background using
a mechanism such as nohup ./run.sh evaluation & to
ensure uninterrupted execution.

[Results] The results will be created as CSV files in the
results/ directory. The Evaluation.ipynb plotting script
provided in the figures/ directory can be used to interactively
create Figure 4 and Figure 5 of the paper.

Experiment (E2): [1 human-hour + 1 compute-hour]:
This experiment enables the assessment of the system’s
checkpoint and restore overhead.

https://github.com/rssys/pronghorn-artifact/
https://github.com/rssys/pronghorn-artifact/
https://zenodo.org/records/10089094?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjM5NDkzZmNmLTQ3YTgtNDgxZi05YjY0LWQ0OTQ2Y2EwZTFhZSIsImRhdGEiOnt9LCJyYW5kb20iOiI0M2E5YzczMGEwYzFmZTNjYjczMTY5OTJiNGUxOTU3MSJ9.QrTBay9-L3yID3Fz828C-9wvD9OxB363K8_P4YzgTePz8ntCqvE-j8H_8Av_ERHELhoefI4X2AvlogcwMgcPFw
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[Preparation] Deploy any function using faas-cli deploy
–image=USER/workload –name=workload

[Execution] Copy the script cost-analysis/table4.py
to the pod created by OpenFaaS. Next, attach to the pod using
kubectl exec -it $pod_name – /bin/sh and run the
script within the pod. Copy the JSON emitted by the program
to a file that can be used for the analysis.

[Results] If required, this can be done for all functions.
However, for convenience, a result JSON file has been attached
from our evaluation run. The results provide the numbers for
the checkpoint, restore, and snapshot overheads presented in
Table 4.

Experiment (E3): [10 human-minutes + 10 compute-
minutes]: This experiment quantifies the number of requests
needed for Pronghorn to reach an optimal snapshot state.

[Preparation] The evaluation run will produce the necessary
inputs for this experiment.

[Execution] To compute and display the results, simply
execute the cost-analysis/evaluation_cost.ipynb
notebook.

[Results] The output obtained from the notebook can be
directly compared with Table 4 of the paper.

Experiment (E4): [10 human-minutes + 10 compute-
minutes]: This experiment allows evaluating the storage and
network bandwidth usage of Pronghorn.

[Preparation] The data collected for E2 will produce the
necessary inputs for this experiment.

[Execution] To compute and display the results, simply run
the cost-analysis/table_5.py notebook.

[Results] The output obtained from the notebook can be
directly compared with Table 5 of the paper.


	Abstract
	1 Introduction
	2 Challenges of Serverless Checkpoint-Restore
	3 Pronghorn
	3.1 System model and assumptions
	3.2 System Workflow
	3.3 Orchestration Policy Design
	3.4 Request-Centric Orchestration Policy

	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 End-to-End Evaluation
	5.3 Cost Analysis

	6 Discussion
	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References
	A Appendix
	B Artifact Appendix
	B.1 Abstract
	B.2 Description & Requirements
	B.3 Set-up
	B.4 Evaluation workflow


