
Heap Size Adjustment with CPU Control
Sanaz Tavakolisomeh

sanazt@ifi.uio.no
University of Oslo
Oslo, Norway

Marina Shimchenko
marina.shimchenko@it.uu.se

Uppsala University
Uppsala, Sweden

Erik Österlund
erik.osterlund@oracle.com

Oracle
Sweden, Stockholm

Rodrigo Bruno
rodrigo.bruno@tecnico.ulisboa.pt

INESC-ID/Técnico, ULisboa
Lisbon, Portugal

Paulo Ferreira
paulofe@ifi.uio.no
University of Oslo
Oslo, Norway

Tobias Wrigstad
tobias.wrigstad@it.uu.se

Uppsala University
Uppsala, Sweden

Abstract
This paper explores automatic heap sizing where developers
let the frequency of GC expressed as a target overhead of the
application’s CPU utilisation, control the size of the heap, as
opposed to the other way around. Given enough headroom
and spare CPU, a concurrent garbage collector should be able
to keep up with the application’s allocation rate, and neither
the frequency nor duration of GC should impact throughput
and latency. Because of the inverse relationship between time
spent performing garbage collection and the minimal size of
the heap, this enables trading memory for computation and
conversely, neutral to an application’s performance.

We describe our proposal for automatically adjusting the
size of a program’s heap based on the CPU overhead of GC.
We show how our idea can be relatively easily integrated into
ZGC, a concurrent collector in OpenJDK, and study the im-
pact of our approach on memory requirements, throughput,
latency, and energy.

CCSConcepts: • Software and its engineering→Garbage
collection.

Keywords: JVM, Garbage Collection, Heap sizing policy

ACM Reference Format:
Sanaz Tavakolisomeh, Marina Shimchenko, Erik Österlund, Rodrigo
Bruno, Paulo Ferreira, and Tobias Wrigstad. 2023. Heap Size Adjust-
ment with CPU Control. In Proceedings of the 20th ACM SIGPLAN
International Conference on Managed Programming Languages and
Runtimes (MPLR ’23), October 22, 2023, Cascais, Portugal. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3617651.3622988

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
MPLR ’23, October 22, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0380-5/23/10.
https://doi.org/10.1145/3617651.3622988

1 Introduction
Garbage collection (GC) offers significant benefits to appli-
cations and developers. By abstracting away memory man-
agement, code is not tied to a specific strategy for managing
heap memory, allowing programs to switch easily between
different GC implementations with different properties, e.g.,
by a command-line argument.

Managed programming languages use various approaches
for controlling an application’s footprint. Some languages in-
clude strategies that automatically reduce the heap size based
on memory usage or other metrics. Although the program-
mer can influence this behavior to some extent by ensuring
that objects become garbage, the system may not detect it
immediately. Other languages allow the programmer to set
an upper bound for the heap size and then manage it relative
to that limit. Regardless of how language runtimes manage
memory, collecting memory inherently impacts performance
in an indirect and hard-to-predict manner.
In OpenJDK HotSpot JVM (OpenJDK for short) a maxi-

mum heap size is set on startup, to a user-defined value using
the –Xmx command-line flag, or in its absence, by picking a
default value based on the available memory of the machine
(at the time of writing, OpenJDK sets Xmx to 25% of the ma-
chine’s RAM). This decision is made before the program is
started, so unless care is taken to explicitly control the max-
imum heap size, simple programs and complex enterprise
applications will share the same memory constraints.

The size of the heap affects the performance differently de-
pending on the GC algorithm. Stop-the-world GC’s typically
optimize for high throughput and are only able to deliver
low latency if the working sets are small enough. In con-
trast, concurrent collectors typically are not able to achieve
as high throughput, but by allowing program activities to
continue while GC is running, the frequency or duration of
GC has very little impact on a program’s performance, as
long as the GC is able to collect memory at the same rate as
the application is allocating. When memory is abundant or
allocation rate is low, infrequent GC can materialize through
worse spatial locality in both types of collectors, which may
negatively affect performance and/or latency [35].

https://orcid.org/0000-0002-7648-6188
https://orcid.org/0000-0002-0701-8540
https://orcid.org/0000-0003-3686-8568
https://orcid.org/0000-0003-1578-5149
https://orcid.org/0000-0003-0942-6289
https://orcid.org/0000-0002-4269-5408
https://doi.org/10.1145/3617651.3622988
https://doi.org/10.1145/3617651.3622988


Table 1. Smallest heap sizes in MB without any allocation stalls for multiple benchmarks across multiple machines. Machines
are listed in ascending order based on the number of cores and memory capacity. The lower half of the table displays
architectural details for each machine. Machine number 3 is listed three times, indicating configurations with 8, 16, and 24
cores, where the core count was controlled using the taskset command. Note that machine #1 could not run Batik without
experiencing stalls due to a combination of insufficient memory and inadequate hardware resources for running GC effectively.

Machines #1 #2 #3a #4 #3b #3c #5 #6

H
ea
p
Si
ze
s Tomcat 256 512 512 1024 1024 2048 2048 4096

Spring 4096 4096 4096 8192 4096 16384 4096 32768
Batik – 32768 65536 16384 32768 32768 16384 16384
Luindex 512 512 512 256 512 512 256 256

H
ar
dw

ar
e
Sp

ec
s Cores 8 8 8 16 16 24 32 44

Hardware threads 8 16 16 24 32 48 64 88
Memory (GB) 16 64 256 128 256 256 16 64
Core freq (GHz) 2.13 2.3 3.7 3.2/2.4 3.7 3.7 2.7 2.2
L1 (bytes) 512 KB 64KB 1MB 1.5MB 1MB 1MB 64KB 64KB
L3 (bytes) 8MB 16MB 128MB 30MB 128MB 128MB 20MB 55MB

A common approach to picking a heap size for an appli-
cation is by trial-and-error: run the program multiple times
with representative load across different JVM instances with
varying maximum heap limits and measure its performance
until a suitable heap size is identified. A heap size may not
be portable across machines and may have to be reevaluated
after changes are made to the software or after a switch
to a new JVM. This approach may be time-consuming and
may not account for variations in the program’s memory
use during execution. If the maximum heap size is invariant
throughout the entire program duration (as in OpenJDK),
the entire heap may be used for allocating objects even when
memory pressure is low(er), which defers GC and may not
be optimal for a program’s performance. In conclusion, de-
termining an appropriate heap size for a given application
is a complex task that necessitates consideration of various
factors. These factors include the hardware configuration
of the machine running the program and software-related
details such as memory usage patterns.
Automatic heap size adjustment aims to free developers

from the need to manually set a heap size, which has proven
to be complicated. Instead, developers will be given a sen-
sible default parameter for effective resource management,
which should also be intuitive to change. In this work, we
explore automatic heap size adjustment in the context of con-
current collectors, where the heap size is controlled by how
often we trigger GC, instead of the other way around. As a
result, developers can launch Java applications (servers, GUI
programs, command line tools, etc.) without having to worry
about estimating their memory requirements or worrying
that Java’s default values might result in these processes bal-
looning to impractical proportions, thereby disrupting other

programs or affecting the application’s performance nega-
tively. Our proposal distinguishes itself from previous pro-
posals for automatically adjusting the heap size (e.g., Bruno
et al. [6], Grzegorczyk et al. [15], Yang et al. [37], and White
et al. [34], cf. §7) by utilising a different “tuning knob” for
concurrent collectors. Instead of letting developers control
performance through an upper bound on the heap size, we
let developers control how much CPU they are willing to
spend on GC, expressed as a proportion of the CPU usage
of the application. Our strategy is thus more directly tied to
performance than heap size, and the heap size becomes a
consequence of the GC CPU overhead budget (we call it GC
target henceforth). As a result of our choice of tuning knob,
the job of picking a reasonable default is easier (or dare we
say possible!) than picking a default maximum heap size.

Our contributions can be summarized as:

• Highlighting heap size variability: We reveal signifi-
cant variability of heap sizes across different benchmarks
and hardware configurations, emphasizing the impracti-
cality of a one-size-fits-all default heap size. This finding
underscores the need for more adaptive approaches. (§2)

• Exploring automatic heap sizing in a concurrent
collector: We target concurrent collectors whose CPU-
intensive activities are not on the critical path of the pro-
gram’s performance. This allows us to dynamically change
the heap size to match the program’s current behavior and
allows developers to trade CPU for memory (and con-
versely) with minimal impact on performance. (§3)

• Application in ZGC: We specifically showcase the im-
plementation and application of our proposed technique
on ZGC, a fully concurrent garbage collector. By doing so,
we demonstrate its feasibility in a real-world example. (§4)

2



• Performance evaluation: We conduct a comprehensive
evaluation demonstrating that adopting our heap size ad-
justment does not compromise performance or introduce
latency issues. Furthermore, we establish that it is possible
to determine a sensible default value for CPU overhead
that can effectively cater to a variety of applications. (§6)

• Energy efficiency considerations: In addition to perfor-
mance optimization, we illustrate how the concept of CPU
overhead can be harnessed as a powerful tool for adjusting
the energy spent by an application. (§6)

2 The Perils of Manual Heap Size Picking
When it comes to finding heap sizes, people use multiple
rules of thumb, for example, setting heap limits to some mul-
tiple of a live set [17]. The challenge becomes even more
intricate when considering multiple applications running
simultaneously. Kirisame et al. [24] introduced a framework
to compare different practices people used for setting up a
heap size and derived an optimal “square-root” heap limit
rule, which minimizes total memory usage for all applica-
tions running together. However, it is still a static heap limit,
which might not be optimal on a machine with another ar-
chitecture, as we demonstrate below.
To study the challenges of manually picking a heap size,

we conducted an experiment across multiple machines to
find heap sizes for a number of benchmarks. Table 1 shows
heap sizes for 4 benchmarks from the DaCapo suite running
with the ZGC collector across a range of different machines.
Following best practices for tuning heap sizes for concurrent
collectors, we tried to find the smallest heap size—expressed
as a power of two— that does not produce an allocation stall,
a relocation stall, or an OOM (Out of Memory) error for each
benchmark on each machine. Ensuring the absence of stalls
is of paramount importance when utilizing fully concurrent
collectors, given their low-latency nature. Stalls not only
lead to performance degradation, as GC becomes critical, but
they also undermine the predictability of GC, thereby posing
a risk to meeting server-level agreements (SLAs) and latency
requirements. Maintaining a consistent and predictable la-
tency profile is essential to uphold performance standards
and guarantee uninterrupted service delivery. The reason
why we limit ourselves to powers of two is twofold: first, de-
velopers have a preference for selecting heap sizes in powers
of two [11], and second, finding a stall-free heap size in a
reasonable time requires increasing the heap in some incre-
ments. In our case, we started at 16MB, doubled the heap
size on a stall, and continued our search at the higher heap
size. Nevertheless, due to Java’s inherited variance, we adopt
a stability-oriented approach in which we consider a heap
size to be a successful candidate only if three consecutive
runs with the same heap size yield no stalls or OOM errors.
If stalls or OOM errors do occur, we increment the heap size
and repeat the evaluation process.

As it is clear from this experiment, heap sizes vary be-
tween the machines without a discernible pattern1, such as
being a function of the number of cores. In addition, we ex-
perimented with the same machine, tagged as #3 in the table,
with different numbers of cores controlled by taskset: 8, 16,
and 24. For Tomcat and Spring, the heap size changes by 4×.
So, even within the same machine, modifying core configu-
rations can often require substantial changes in heap sizes.
Thus, application deployment across different configurations
requires heap sizing to be repeated for each configuration.

3 Heap Size Adjustment with CPU Control
Similar to [34], but in a concurrent setting, we explore an
approach where developers directly control memory by set-
ting a GC target dictating how much CPU should be spent
on GC, expressed as a percentage of the total CPU utiliza-
tion of the program. Our insight is that memory and GC
CPU utilization are inversely correlated. Let’s consider a pro-
gram with a constant allocation rate. When the heap is large,
GC occurs infrequently, resulting in low CPU time spent
doing GC; conversely, when the heap is small, GC occurs
more often, causing a corresponding increase in the CPU
time spent doing GC. In a concurrent garbage collector, this
kind of trading memory for CPU, or the other way around,
should be largely (at least ideally) orthogonal to the pro-
gram’s performance since the program will not block on GC.
Furthermore, the program’s CPU usage can be considered
a proxy for its allocation rate and, by extension, its need
for GC. By expressing the GC target in terms of the pro-
gram’s CPU usage, increased program activity immediately
translates to increased CPU headroom for GC in absolute
numbers. Understanding and controlling the scalability and
CPU utilization of a program is a more direct task compared
to comprehending its live set, which encompasses all objects
contributing to memory pressure.

We define the GC overhead (henceforth denoted 𝐺𝐶𝐶𝑃𝑈 )
as the ratio of time spent doing GC (henceforth 𝑇GC) to time
spent in the entire application (henceforth 𝑇APP):

𝐺𝐶𝐶𝑃𝑈 =
𝑇GC

𝑇APP
. (1)

These time measurements are the main inputs to our al-
gorithm for determining the new heap size. To mitigate fluc-
tuations, 𝑇GC should be calculated using average times for
the last 𝑛 collections (in our implementation, we pick 𝑛 = 3).
For instance, if one GC cycle has high CPU activity when
the previous cycles did not, it might be too hasty to change
the heap size. Thus, the heap size varies “slowly,” preventing
committing memory that is not needed in the long run.

1One anonymous MPLR reviewer suggested that heap sizes might be contin-
gent on both the count of CPU cores and the number of mutators. We sadly
currently lack data on the number of mutators, but this aspect presents an
intriguing avenue for future exploration.

3



0 10 20 30 40 50
Time (in seconds)

0

10000

20000

30000

40000

M
em

or
y 

U
sa

ge
 (M

eg
ab

yt
es

)

Vanilla ZGC (with default heap memory limit)

Before GC After GC Heap Capacity

0 10 20 30 40 50
Time (in seconds)

0

200

400

600

800

M
em

or
y 

U
sa

ge
 (M

eg
ab

yt
es

)

ZGC with 1% GC CPU Overhead Limit

0 10 20 30 40 50
Time (in seconds)

0

200

400

600

M
em

or
y 

U
sa

ge
 (M

eg
ab

yt
es

)

ZGC with 2% GC CPU Overhead Limit

0 10 20 30 40 50
Time (in seconds)

0

100

200

300

400

M
em

or
y 

U
sa

ge
 (M

eg
ab

yt
es

)

ZGC with 5% GC CPU Overhead Limit

Figure 1. Memory usage of vanilla (unmodified, by default uses 25% of the available RAM) ZGC (22 cycles) and ZGC with 1%
(856 cycles), 2% (1506 cycles), and 5% (3182 cycles) GC CPU overhead limits. For this run, we used 12 application threads on a
16-core machine, leaving a 4-core headroom. For each, we measure the following: maximum heap size, memory usage before
GC, and memory usage after GC. Note that the y-axis for vanilla ZGC is two orders of magnitude higher. The differences in
the x-axes demonstrates the impact of GC on throughput. An artifact of the current ZGC design where each GC cycle forces
mutators to take a slow path in the load barrier the first time each reference is loaded. Thus, very frequent GC (i.e., 5%) can
materialize as a throughput regression.

The core idea of our proposal is to iteratively adjust the
heap size until the GC overhead, i.e.,𝐺𝐶𝐶𝑃𝑈 , meets the target
set by the developer, Target_𝐺𝐶𝐶𝑃𝑈 . Note that the value is a
target, not an upper bound. Thus, if𝐺𝐶𝐶𝑃𝑈 > Target_𝐺𝐶𝐶𝑃𝑈 ,
we increase the heap size to lower the GC frequency and
thereby lower the GC CPU overhead. Conversely, when
𝐺𝐶𝐶𝑃𝑈 < Target_𝐺𝐶𝐶𝑃𝑈 , we decrease the heap size to trig-
ger more collections, to increase the GC CPU overhead.
To showcase the impact of target GC CPU overhead, we

run the Xalan benchmark from the DaCapo suite. It was run
four times with vanilla ZGC on machine #3a from Table 1.
Additionally, the benchmark was executed with GC targets:
1%, 2%, and 5%. By default, vanilla ZGC uses a high heap
memory size (25% of RAM) that is significantly reducedwhen
higher GC target values are used. Figure 1 depicts the results
of these runs.

In our approach, during periods of lower CPU activity in
the application, a collector will work less, as it is proportional
to the application’s CPU usage. This results in fewer allo-
cations and overall less pressure on both the allocator and
memory manager. Conversely, spikes in the application’s ac-
tivity translate into a higher CPU budget for the GC threads.
While it may seem logical to run GC during low CPU activity
to utilize available CPU resources, the effectiveness may be
limited if there is less memory to free.

At the end of each GC cycle, we compare the GC CPU
overhead to the user-defined GC target to calculate over-
head_error𝐶𝑃𝑈 which we use to adjust the heap size:

overhead_error𝐶𝑃𝑈 = 𝐺𝐶𝐶𝑃𝑈 − Target_𝐺𝐶𝐶𝑃𝑈

100
(2)

We aim to prevent sudden and sharp heap size changes.
Therefore, in addition to smoothing out fluctuations in the
𝑇GC by considering the average over the last three collections,
we avoid using overhead_error𝐶𝑃𝑈 directly to modify the
heap size, as large error numbers can cause fluctuations in the
heap sizes. To mitigate this, we pass the overhead_error𝐶𝑃𝑈
through the Sigmoid function [16] to smoothen changes in
heap sizes2. The Sigmoid function is a mathematical function
that is commonly used to model non-linear relationships be-
tween variables in statistical models. It maps input values to
a range between 0 and 1. Thus, using the Sigmoid function
prevents aggressive changes in the heap size. We pass the
overhead_error𝐶𝑃𝑈 to the Sigmoid function 𝑆 to calculate

2We explored two variations of a step function as well. The first adjusted
the heap size proportional to the disparities between CPU overhead and
the target. The second involved increasing the soft limit by 50% in either
direction if the CPU overhead was above or below the target. Each function
led to distinct rates of adaptation and total memory usage. We did not
directly compare these three functions against one another; instead, we
somewhat arbitrarily opted for the Sigmoid function in our approach.

4



“Sigmoid overhead error”:

𝑆 (overhead_error) = 1
1 + 𝑒−overhead_errorCPU

. (3)

We use this result to calculate an adjustment factor that limits
the changes to the heap size to within a range of 0.5 to 1.5:

adjustment_factor = 𝑆 (overhead_error) + 0.5 (4)

When overhead_error𝐶𝑃𝑈 is zero, i.e., actual GC CPU over-
head equals GC target, the Sigmoid function returns 0.5.
Therefore, the adjustment_factor becomes 1 and the heap
size remains unchanged.

An 𝑆 (overhead_error) < 0.5 means that the actual𝐺𝐶𝐶𝑃𝑈

has exceeded the Target_𝐺𝐶𝐶𝑃𝑈 , so the adjustment_factor
would be less than 1 and will reduce the heap size, leading
to more GC cycles. When the actual 𝐺𝐶𝐶𝑃𝑈 is below Tar-
get_𝐺𝐶𝐶𝑃𝑈 , 𝑆 (overhead_error) > 0.5, i.e., adjustment_factor
> 1 will increase the heap size. The heap size will never
change more than 50% of the current size (in any direction).
Finally, we compute the new heap size as follows:

new_size = current_size × adjustment_factor (5)

Our approach can be used in combination with an up-
per bound on the heap size—e.g., Xmx—to trigger an OOM
error. However, setting this upper limit may prevent the ap-
plication from reaching the target GC CPU utilization rate
(Target_𝐺𝐶𝐶𝑃𝑈 ). If an upper limit is not specified, the sys-
tem sets it to a default value, which should be close to the
maximum memory available on the machine, but not set to
100% to prevent system instability and swapping. Note, that
previously it was 25% of the machine.

4 Prototype Implementation in ZGC
Adjusting the heap size based on GC CPU overhead is suit-
able for concurrent GCs that do not interfere with the applica-
tion’s critical path. In this section, we implement a prototype
on ZGC, a concurrent collector in OpenJDK, to demonstrate
the effectiveness of this approach. The prototype follows the
ideas presented in the previous section.

4.1 Background on ZGC
The Z Garbage Collector [22] (ZGC) is designed for low
latency, offering sub-millisecond pause times invariant of
the heap size. GC activity in ZGC occurs concurrently with
“mutators” (application threads) by relying on barriers that
trap object accesses and coordinate accesses to objects from
mutators and GC worker threads. A barrier is essentially
some additional logic triggered (in the case of generational
ZGC) when a reference is read from a field and placed on the
stack or when a reference is loaded from a field. The barrier
logic branches on metadata bits embedded in pointers [21].
For example, in the case of a load barrier, if the metadata
shows that the pointer is valid, we enter the fast path in
which the overhead of the barrier is simply shifting off the
metadata bits from the address. Otherwise, we enter the slow

path, where we ensure that the pointer is valid by looking up
the new canonical address of the object from a forwarding
table. This last stepmay involve copying the object elsewhere
and writing to the forwarding table ourselves. ZGC is a multi-
phase collector with separate mark and evacuation phases.
Its overall design was described by Yang and Wrigstad [36].

Single-generation ZGC uses load barriers to synchronize
GC activities with mutators. Generational ZGC [23] instead
uses write barriers in addition to load barriers. It maintains
a remembered set of references from the old generation to
young objects, serving as additional roots during GC in the
young generation only. Such a design favors generational
workloads where objects are more likely to die young (follow-
ing the weak generational hypothesis [25]) by supporting a
more aggressive collection of the young generation without
having to do repeated work on long-living objects. From a
resource perspective, generational ZGC requires less CPU
and memory usage than single-generation ZGC. In this pa-
per, when we refer to ZGC, we are specifically discussing
the generational version of ZGC.

Memory in OpenJDK and ZGC. In addition to Xmx, ZGC
introduced a new JVM option in OpenJDK 13 called “soft
max heap size”, and subsequently adopted by G1. A soft max
heap size is a limit on the size of the heap, beyond which
ZGC strives not to grow. Unlike Xmx, exceeding the soft max
heap size will not result in an OOM error (unless the limit is
equal to Xmx). When approaching the soft max heap, ZGC
triggers GC to bring the heap size below the soft max heap
size. If it fails to do so, it will grow the heap instead of going
into an allocation stall. The soft max heap size value thus
serves as a guiding parameter for GC to balance heap size
and allocation rate and has a direct impact on GC activity
and frequency. If the value is too small, ZGC might end up
doing back-to-back collections. If the value is too large, it
can lead to inflated memory costs, floating garbage, heap
fragmentation, and poor spatial locality; especially under a
low allocation rate.
The relations between different memory parameters in

ZGC are shown in Fig. 2. Used memory refers to the occupied
memory by both live and dead objects (that have not yet been
collected). Maximum capacity or committed memory repre-
sents the amount of memory requested by OpenJDK from the
Operating System, which is always higher than used mem-
ory. In practice, committed memory is often significantly
higher: bursts of allocation immediately drive the commit-
ted memory up, and to avoid requesting memory from the
OS—which may cause delay, or worse, fail—OpenJDK will
not return committed memory unless several minutes have
elapsed since it was needed (lower bounded by Xms, the flag
is used to set the minimum and initial heap sizes).

ZGC Heuristics. Heuristics control when to start a GC
cycle to avoid running OOM and also how many threads to
use for each cycle. In addition, a GC may also be triggered

5



Xmx

Xms

0MB

Used memory

Soft max heap size

Maximum capacity

(Max heap)

(Committed)

(Used as a trigger 
point for GC in 
ZGC and G1)

(Live and dead objects)

(Initially committed)

Physical 
memory 
that 
belongs 
to the 
process

Figure 2. The different heap parameters. Xmx: absolute max-
imum memory for an application. Xms: minimum and ini-
tial heap. Maximum capacity: currently committed memory
(above or equal Xms, below or equal Xmx). Used memory:
memory occupied by all the objects (above or equal Xms,
below or equal Maximum capacity). Soft max heap: point
below Xmx is used to trigger a GC but will not generate a
stall if exceeded, up to Xmx.

due to other reasons such as a high allocation rate, high heap
usage, or if no collection has been triggered for 5 minutes.
Collecting the old generation can also be performed occa-
sionally if not triggered by other reasons. These heuristics
consider the available free memory and the time remaining
before an OOM error occurs based on the average allocation
rate and unforeseen circumstances. To determine the number
of GC workers required to prevent OOM, ZGC analyzes the
duration of previous GC cycles and adjusts the worker count
according to hardware limitations. Finally, ZGC predicts the
duration of the next GC cycle based on the number of GC
workers and calculates the start time for the next cycle.

4.2 Heap Size Adjustment with CPU control in ZGC
We take advantage of the aforementioned soft max heap size
limit as it has the characteristics we require: it triggers GC
but does not stall. To prevent exceeding the machine’s heap
capacity unintentionally (e.g., due to a too low target), we
set Xmx to 80% of the available RAM3 (unless the user has
explicitly set Xmx). This ensures that the adaptive heap size
remains within an upper limit.
Thus, the heap size in our prototype implementation is

ZGC’s soft max heap, and our technique ultimately results
in adjusting the soft heap max up and down at the end of
each GC cycle to meet the GC CPU overhead target set by
3This number reflects a pragmatic choice motivated by wanting to keep
some spare memory for remaining programs running on the machine and
also to leave space for ZGC’s forwarding tables which are allocated off-heap
and may grow very large under certain circumstances [26].

t

CPU time (mutator)

Wall-clock time (GC)

0 1 2 3 4 5 6 7 8 97.5

Cycle n+1

6.5

Cycle n

Figure 3. Concrete measurements of GC and application
time in our implementation. At the end of the GC cycle 𝑛 + 1
(𝑡 = 7.5), we consider the time spent in GC threads (blue)
and the time spent in mutators (green). Gray lines denote
time measured at the end of GC cycle 𝑛. We only include
the time when mutators were scheduled, meaning 𝐶APP =

2.5+2+2.5 = 7. In the case of𝑊GC, we measure from the start
to the finish of the GC cycle. Thus,𝑊GC = 3× 1.5 = 4.5, even
though the 2nd GC thread was not scheduled after 𝑡 = 7.
Thus, 𝐺𝐶𝐶𝑃𝑈 = 4.5

7 ≈ 64%. (This example omits barriers,
read more about them in §4.3)

the programmer. The amount of memory committed from
the OS by OpenJDK is limited (as usual) by Xmx and will
only grow in tandem with the soft max heap.

4.3 Obtaining 𝑇GC
We calculate𝑇GC as the sum of time spent on young (𝑊young)
and old collections (𝑊old) plus an estimate of the time muta-
tors spent in the slow path of barriers (𝐵). For simplicity and
to avoid adding logic contributing to GC overhead, we use ex-
isting telemetry in ZGC. Thus,𝑊young and𝑊old are wall-clock
time measurements. For traceability, we prefix wall-clock
time measurements by𝑊 and CPU time measurements by𝐶
below. Thus, we will henceforth write𝑊GC instead of 𝑇GC to
highlight that the time measurement is a wall-clock time. To
address potential inaccuracies in individual measurements,
we calculate𝑊young and𝑊old using the average times for the
last 3 collections (as we described in §3). For uniformity, we
use a single formula (Eq. (6)) to describe𝑊GC and, in a minor
collection, set𝑊old to 0.

𝑊GC =𝑊young +𝑊old + 𝐵 (6)
As already mentioned, 𝐵 is the mutator time spent in the
slow paths of barriers. When mutators hit slow paths in
barriers, they doGCwork, either remapping an old address to
a forwarding address or performing relocation. We measure
the wall-clock time of barriers using sampling: we record
the time once for every 1024 slow paths taken, calculate the
average time spent in slow paths, and multiply that with the
number of slow paths taken.

ZGC calculates GC time separately for each generation by
adding the times for the serial and parallel work. The serial
time is the wall-clock time spent on non-parallel tasks like
relocation set selection after marking, while the parallel time
is the sum of the wall-clock time spent by worker threads

6



on parallelizable tasks.

𝑊young =𝑊𝑠𝑒𝑟𝑖𝑎𝑙_𝑦𝑜𝑢𝑛𝑔 +𝑊𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑦𝑜𝑢𝑛𝑔 (7)

Similarly, for activity in the old generation:

𝑊old =𝑊𝑠𝑒𝑟𝑖𝑎𝑙_𝑜𝑙𝑑 +𝑊𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑜𝑙𝑑 (8)

4.4 Obtaining 𝑇APP
The application’s average time is the sum of the scheduled
time of all threads spawned by the process (i.e., a CPU time
measurement) between two collections in the same genera-
tion. Thus, we write 𝐶APP henceforth to clarify the nature of
𝑇APP in our implementation:

𝐶APP = 𝐶𝐺𝐶𝑖
−𝐶𝐺𝐶𝑖+1 (9)

Similarly to GC time, we reuse existing GC telemetry to
capture application time to avoid additional measurement
overheads. Application time is obtained by measuring CPU
time (see Figure 3 for an overview). Listing 1 shows the code
for measuring the CPU time of the process.

Listing 1. Code that calculates the process CPU time at
moment of the call.
1 double ZAdaptiveHeap::process_cpu_time() {

2 timespec tp;

3 int status =

4 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tp);

5 if (status != 0) {

6 return -1.0;

7 } else {

8 return double(tp.tv_sec) +

9 double(tp.tv_nsec) / NANOSECS_PER_SEC;

10 }

11 }

The function clock_gettimemeasures the CPU time con-
sumed by a process, meaning that it includes the CPU time
consumed by all threads in the process, including application
threads, GC threads, compiler threads, etc. To measure the
CPU time between two moments in time, we cache the last
result and subtract it from the result of the subsequent call.

4.5 Calculating a Suggested Heap size
Most of our modifications to ZGC are located in its heap
sizing mechanism: class ZAdaptiveHeap. The main logic
is captured in the method ZAdaptiveHeap::adapt (see list-
ing 2), which performs the calculations outlined in Sections 3
to 4. For clarity, we add comments with the labels from the
equations to aid in mapping the C++ code to the descriptions
above. The method is called at the end of each GC activity in
both major (young + old) and minor (only young) collections.

Listing 2. Themodified adaptmethod that recalculates heap
limits in ZGC. (For simplicity, we only show the logic for
major GC and remove one lock to reduce clutter.)
1 void ZAdaptiveHeap::adapt(ZGenerationId generation,

2 ZStatCycleStats stats) {

3 ZGenerationData& generation_data =

4 _generation_data[(int)generation]; // holds the historical
5

6 double time_last = generation_data._last_cpu_time;

7 double time_now = process_cpu_time(); // see listing 1
8 generation_data._last_cpu_time = time_now;

9

10 // calculate C_APP as in (9)
11 double total_time = time_now - time_last;

12 // record C_APP to calculate averages
13 generation_data._process_cpu_time.add(total_time);

14

15 // Obtain the number of barriers triggered
16 size_t barriers =

17 Atomic::xchg(&_barrier_slow_paths, (size_t)0u);

18 // Obtain average barrier time
19 double barrier_slow_path_time=_barrier_cpu_time.davg();

20 // Calculate B in (6)
21 double avg_barrier_time =

22 barriers * barrier_slow_path_time;

23 double avg_gc_time = stats. // (7) or (8)
24 _avg_serial_time + stats._avg_parallelizable_time;

25 // recalculate C_APP using historical data to smoothen the curve
26 double avg_total_time =

27 generation_data._process_cpu_time.davg();

28

29 double avg_generation_cpu_overhead =

30 (avg_gc_time + avg_barrier_time) / avg_total_time;

31 Atomic::store(&generation_data._generation_cpu_overhead

32 , avg_generation_cpu_overhead);

33

34 double young_cpu_overhead =

35 Atomic::load(&young_data()._generation_cpu_overhead);

36 double old_cpu_overhead =

37 Atomic::load(&old_data()._generation_cpu_overhead);

38 double cpu_overhead = // Calculate W_GC as in (6)
39 young_cpu_overhead + old_cpu_ov or noterhead;

40 double cpu_overhead_error =

41 cpu_overhead - (ZCPUOverheadPercent / 100.0); // (2)
42 double cpu_overhead_sigmoid_error =

43 sigmoid_function(cpu_overhead_error); // (3)
44 double correction_factor =

45 cpu_overhead_sigmoid_error + 0.5; // (4)
46

47 if (is_enabled()){

48 // Call into ZGC to resize the heap, c.f. §4.6
49 ZHeap::heap()->resize_heap(correction_factor);

50 }

51 }

4.6 Bounding the Heap Size
After calculating the new suggested heap size, the listing
below depicts howwe ensure that the result of the calculation
falls within a given range. If it does, the function returns
suggested_heap_size. If it is less than lower_bound, then
the function returns lower_bound. Also, if it is greater than
upper_bound, the function returns upper_bound.

7



1 const size_t upper_bound = // select smallest of two
2 MIN2(soft_max_capacity, current_max_capacity);

3 const size_t lower_bound = // select smallest of two
4 MIN2(1.1 * used(), upper_bound); // 10% extra headroom
5

6 const size_t selected_capacity =

7 clamp(suggested_capacity, lower_bound, upper_bound);

We establish a lower bound for the suggested heap by
using the amount of used memory. This is because we aim to
avoid triggering GC more often than necessary. If we set the
suggested heap size below the used value, we risk triggering
GC when there are no objects to clean. Although concurrent
GC does not interfere with the application’s critical path (as
it is running concurrently and does not force the application
to stop) and therefore it might have a negligible impact on
performance or latency, the additional GC work can have a
negative impact on energy consumption.

4.7 Initial and Adapted Heap Sizes
We set the initial heap size to 16 MB, in terms of the soft
limit. This is an unlikely heap size for most programs andwill
trigger GC as the limit is approached or exceeded which will
cause GC to adapt the heap size and (most likely) increase
the soft limit (by at most 50% each time). Fig. 1 shows the
frequent increases of the soft limit in green. (The top-left
sub-figure shows Vanilla ZGC where the soft limit is equal
to Xmx and never exceeded.) If the soft limit is not exceeded,
and the GC overhead is below the target, we will decrease
the soft limit to trigger GC more often. This is clearly visible
in the two bottom subfigures of Fig. 1.

5 Evaluation
In this section, we are going to answer the following question:
How effective is our automated heap sizing strategy, based on
CPU usage as a tuning knob, compared to vanilla ZGC which
relies on setting a maximum heap size? We now explain our
experimental setup and benchmarking methodology.

5.1 Hardware and Software
We evaluate our work by comparing our modified ZGC with
its unmodified base also referred to as vanilla (generational
ZGC in OpenJDK version 21). We used an Intel Xeon Sandy-
Bridge EN/EP server machine (machine #5 in Table 1) run-
ning Oracle Linux Server 8.4. The machine has 32 identical
CPUs, which we configured as a single NUMA-node to avoid
NUMA effects. The CPU model is Intel® Xeon® CPU E5-
2680 with 64KB L1 cache, 256KB L2 cache, a shared 20MB
L3 cache, and 30GB RAM. The configuration allows us to
obtain energy consumption statistics.

5.2 Benchmarks
We use the DaCapo benchmark suite (Chopin branch), which
includes a variety of microbenchmarks and real-world appli-
cations that stress the JVM and the garbage collector. The
suite includes several latency-sensitive applications that re-
quire low-latency response times. These benchmarks mea-
sure metered latency, including request serving time, queu-
ing delays, and interruptions like GC. By using these bench-
marks, GC performance can be evaluated in terms of both
throughput and responsiveness. We excluded the bench-
marks Kafka and JME due to a low CPU utilization issue, as
well as Lusearch due to a high CPU utilization variability,
making it hard to draw any meaningful conclusions (noted
by the benchmark maintainers). We also excluded H2 due
to a reproducible memory leak across multiple machines
and garbage collectors. When referring to DaCapo in this
paper, we specifically mean the DaCapo Chopin benchmark
suite. We included all throughput-oriented benchmarks ex-
cept Cassandra, which is incompatible since OpenJDK 16.

In order to obtain a more comprehensive understanding of
our prototype, we also include the Hazelcast benchmark [13].
Hazelcast was chosen since most of the latency-sensitive
workloads in DaCapo were excluded for the aforementioned
reasons. As low latency is the main goal of a concurrent col-
lector, we wanted to study more such workloads. Hazelcast
is designed to provide distributed and scalable in-memory
data storage and processing, which can help reduce data
access and processing latency.

DaCapo. We use a commit (number 300acaa7) that in-
cludes latency-oriented benchmarks as evaluating latency
is crucial for fully concurrent collectors. We conducted the
benchmarks using the large size for all applicable tests. For
the remaining benchmarks (Fop, Zxing, Xalan), we used the
default size.

Hazelcast. Hazelcast performs real-time stream process-
ing. We used all the suggested configuration parameters [31].
It has a fixed workload, set by its key-set size. We experiment
with multiple key-set sizes: 400 000, 250 000, 100 000. Thus,
we report the results of those 3 different configurations.

5.3 Benchmarking Methodology
We run each benchmark using 5 JVM instances, which lets
us identify performance anomalies and outliers that might
not have been discernible using a single JVM instance. Note
that the variation between JVM instances is within the vari-
ation between the last 5 stable iterations of a single JVM.
Inside each JVM instance, each benchmark repeats multiple
iterations (varies across benchmarks to reach a coefficient of
variation (CV) for the last 5 iterations below 5% with respect
to execution time), which is necessary to avoid impact from
warmup and JIT compilation. Notably, our approach takes

8



time to adjust from the initial heap size before stabilizing
around a GC target.
Once we reached a steady state, we calculated the arith-

metic mean of the last 5 iterations to remove noise from the
environment. However, in cases where a steady state could
not be reached, we used all recorded values for the last 5
iterations per JVM instead of computing the arithmetic mean.
This is because taking a mean could hide outliers, and we do
not know the shape of the data distribution.

In summary, we compute either one arithmetic mean per
JVM instance (resulting in 5 data points in the final set) or all
values from each JVM (resulting in 25 data points in the final
set). We use the same approach for both adaptive ZGC and
vanilla ZGC and to compare them, we perform statistical
analysis on the final data sets. The final results reported in
Table 2 were calculated using an arithmetic mean of the final
set.

5.4 Statistical Analysis
We used different tests to verify the validity and reliability
of the results. We perform statistical analysis on the final
data sets to draw our conclusions. We employed Welch’s
t-test [33], Grubb’s outlier test [14], and Yuen’s t-test [38]
to determine whether the differences between the means
of the compared results from vanilla and adaptive ZGC are
statistically significant. Welch’s t-test and Yuen’s t-test are
particularly useful in cases where we can not make assump-
tions about the shape of data distribution and the variances
of the compared groups are not equal. We believe these tests
are safer to use instead of relying on a non-verifiable assump-
tion about the normality of our data distribution.

We used Grubb’s outlier test to check if the data set has sta-
tistical outliers. If so, we use Yuen’s t-test instead of Welch’s
t-test. Yuen’s test involves trimming a fixed proportion of the
extreme values from each data set, we used 10%, to reduce
the influence of outliers. To determine whether the results
exhibit significant differences, we used the p-value obtained
from Welch’s t-test (with a significance level of 0.05). If the
resulting p-value is greater than 0.05, we conclude that the
data sets do not exhibit significant differences.
To help provide an overview, we color code the results if

statistical significance was found. Red means the adaptive
approach is worse than the vanilla ZGC; green means the
opposite.White indicates the results are statistically the same.
We also highlight a bigger than 5% negative impact of our
approach with a darker shade of red (Table 2, Table 3).

5.5 Energy Measurements
Energy consumption was measured using the Running Av-
erage Power Limit (RAPL) [19] interface available on recent
Intel architectures. This interface allows machine-specific
registers (MSRs) to be read, which contain energy scores. To
calculate the final energy score, we report the sum of the
package and DRAM domains, following the method used by

Shimchenko et al. [30]. Our approach for measuring energy
consumption is similar to that used for measuring through-
put and latency. For DaCapo benchmarks, warmup iterations
were excluded, and statistics were aggregated across 5 JVM
instances for the last 5 iterations in each run. For the Hazel-
cast benchmark, we report energy consumption for the entire
run, as it is a longer-running benchmark where the warmup
period is a small fraction of the total run time.

5.6 Baseline Heap Sizes
If the Xmx option is not specified by the user when starting
the JVM, the JVM will default the maximum heap size to 25%
of the physical memory available on the system.4 Research
papers that involve measurements across multiple garbage
collectors use other collectors like G1 [7] or Serial GC to
pick the minimum heap size [29] and then employ a scaling
factor to provide additional headroom (additional memory
space) for other collectors. However, it is not at all clear if
such an approach reflects the actual heap sizes chosen by
developers for production systems. For example, developers
often tend to choose heap sizes that are powers of two [11].
Proper configuration of a concurrent collector should

avoid allocation stalls as these introduce jitter and hurt la-
tency. Thus, we decided to adopt a manual heap size ad-
justment strategy for our baseline (vanilla ZGC), where we
pick the smallest power-of-two heap size with which the
application runs reliably without stalling. We use this value
for each benchmark as Xmx for a baseline configuration in
vanilla ZGC; also, we explicitly set Xms to 16MB, which is
the same as its default value according to the ZGC codebase.
Finally, we had to manually pick heap sizes as there is no
“best option”. We pick baseline values not in order to “beat”
something but explain the behaviour of our system.

5.7 GC Targets
To investigate the implications of our proposed design, we
studied the impact of GC targets on latency and through-
put using varying percentages of GC CPU target overhead.
Specifically, we examined the following GC targets: 5% (to a
limited extent using 3 JVM instances To assess if the picked
list of GC targets is representative, we found the actual GC
CPU Overheads without the heap size adjustment for mem-
ories picked according to Table 2. Looking at Table 2’s GC
CPU overheads, the actual GC CPU overheads have a big
variation from less than 1% (Sunflow) to 23% (Fop). Given
that having a closer GC target to the actual GC overhead
might better reveal the effect of our adaptive solution, we
only evaluated our strategy with a 5% GC target for the
benchmarks with actual GC overheads below 5%. This re-
quired running additional iterations to reach a steady state,
adding time to benchmarking.

4https://docs.oracle.com/en/java/javase/19/gctuning/ergonomics.html
9



Methodologically, testing very small GC targets on short-
running benchmarks is challenging since it takes time to
grow the heap from the initial 16MB to a size that sustains
the required GC target. If this time exceeds the benchmark’s
run-time, it never reaches a steady state, causing the results
inconclusive. Very high GC targets do not represent a real
deployment. This said we believe that a picked range of GC
targets is sufficient to demonstrate how our system behaves
and showcase main trends.

6 Results
We now compare the performance of running the vanilla
ZGC with manually selected heap sizes against our adap-
tive technique, which leverages different values of GC CPU
overhead. Throughout the experiments, we closely exam-
ined various metrics, including memory usage, execution
time, latency, and energy consumption.We sought to identify
the advantages and drawbacks of each approach. Addition-
ally, we propose an optimal default value for the GC CPU
overhead that strikes a balance between efficient resource
utilization and overall system performance.
Prior to presenting our results, we would like to address

the absence of 3 benchmarks, Batik, Jython, and Pmd, from
our study. These benchmarks have actual GC targets of 80 %,
76 %, and 170%, respectively, using the maximum memory
available on the SandyBridge machine. Therefore, we were
unable to allocate additional memory to lower the GC tar-
gets for these benchmarks. Nevertheless, our methodology
remains valid, and we were able to obtain results for these
benchmarks by running them with the maximum available
memory on the machine. As a result, the GC CPU overhead
of these benchmarks remained similar to their actual values.
Note that failing to attain a CPU target does not result in
the failure of benchmark execution. The observed outcome
is merely a disparity in real CPU overhead when compared
to the requested target. If the target is set lower than the
actual value and insufficient memory is available to elevate
it, the application will persist in running without reaching
the target. This situation remains unchanged unless the en-
tire machine’s memory suffices to prevent OOM issues, a
scenario shared by Vanilla ZGC. Conversely, when the target
surpasses the real CPU overhead and reducing memory fails
to rectify it, this signifies an absence of substantial GC work.
Irrespective of these scenarios, the application continues to
function without interruption.

Memory Usage. Memory usage for different GC targets is
presented in Table 2, normalized to the vanilla ZGC with the
chosen heap size as described in §5.6. Memory represents the
average used memory before a GC for the last 5 stable itera-
tions. Despite comparing memory maximums, normalization
yielded similar results. Results show that overall memory
usage decreases if the tested GC target is higher than the de-
fault GC CPU overhead. For instance, Hazelcast_100 has, by

default, a GC CPU overhead of 21 %. Therefore, the memory
used grows with 5 %, 10 %, and 15 % GC targets but is on par
for a 20 % GC target. The biggest observed reduction is 96 %
for Sunflow with 15 % and 20% GC targets.

Moreover, the reduction in memory usage correlates with
a higher number of minor and major collections, which sim-
ply means that GC works more to keep a tighter heap. As
expected, in terms of reducing memory footprint, 20 % leads
to the smallest heap size across all the benchmarks.

Execution Time. The results show that adjusting the heap
size dynamically with 15 % and 10% GC targets had a mini-
mal negative impact on execution time, except for Xalan and
Sunflow. However, Avrora, Hazelcast_400, and Fop have a re-
duction in execution time. For instance, Avrora showed a 3 %
and 5 % improvement in execution time for 15 % and 20 % GC
targets, respectively. This improvement can be attributed to
the collector compacting live objects close together, improv-
ing cache locality [35], and making memory accesses easier
to prefetch. However, Sunflow experienced a significant 15 %
degradation in execution time. Additional profiling revealed
more stalling in the instruction pipeline backend, which is
often an indication of memory stalls [20]. It is possible that
the 96 % memory reduction resulted in too many GC cycles,
which interfered with the mutator accesses. To improve our
technique in the future, we will consider the cache effects
of too many GC cycles. From prior work, we also know that
Sunflow is very sensitive to keeping allocation order during
relocation and it is possible that this order is kept less well
with so frequent GC cycles.

Energy. As per our initial hypothesis (Table 2), we ex-
pected energy changes to exhibit an opposite trend to mem-
ory. We anticipated that if a benchmark consumedmore CPU
during GC than the baseline, then we would see a decrease
in memory usage and an increase in energy consumption.
This is because CPU usage incurs higher energy costs than
DRAM [18]. As expected, the 20% GC target yields on av-
erage worse energy results compared to 10% and 15% GC
targets. However, it is apparent that the relationship between
reduced memory and increased energy is not always linear.
For instance, the Graphchi benchmark with 20 % GC target
has a 82 % reduction in memory usage but only 1 % increase
in energy consumption. At a single-program granularity,
opting for high GC targets has an increased energy cost.
However, in a cloud setting, where CPU is typically highly
overcommited [27] and memory is the limiting factor for
consolidating virtual machines and containers, significant
memory reductions lead to fewer physical nodes and ulti-
mately lower energy consumption [2].

Latency. In our evaluation, latency results were available
only for a subset of benchmarks, which we report in Table
3. Our adaptive approach has no negative impact on 99th-
percentile latency and can even reduce it. For instance, in

10



Table 2. Execution time, memory, energy (all three normalized), the number of minor and major collections as well as GC
CPU overheads in vanilla ZGC and adaptive ZGC for various benchmarks (BMs). Heap size (MB) (Z) is the minimum stall-free
heap size for each benchmark. CPU Utilised shows the number of CPU cores used by the application (out of 32 cores available
on SandyBridge). White cells show no statistical significance according to the methodology explained in §5.4. Different shades
of red represent highlights where the adaptive approach is worse than the default. Darker red indicated the CV above 5 %. We
write (Z) for vanilla ZGC and (A) for our adaptive approach.

G
C
ta
rg
et
s

A
vr
or
a

B
io
ja
va

G
ra
ph

ch
i

H
az
el
ca
st
_1
00

H
az
el
ca
st
_2
50

H
az
el
ca
st
_4
00

Lu
in
de

x

Sp
ri
ng

Su
nfl

ow

To
m
ac
t

X
al
an

Fo
p

Zx
in
g

5 0.76 0.8 0.22 1.51 1.65 1.9 0.86 0.52 0.09 0.72 0.66 1.41 0.6
10 0.67 0.82 0.2 1.69 1.18 1.73 0.74 0.15 0.05 0.37 0.33 0.93 0.56
15 0.66 0.43 0.19 1.36 0.93 1.15 0.61 0.14 0.04 0.44 0.32 0.92 0.49Memory
20 0.65 0.18 0.18 1.03 0.82 0.9 0.54 0.13 0.04 0.48 0.31 0.86 0.43
5 1.01 1.01 1.04 1.01 0.98 0.96 2.05 1.05 1.17 1.0 1.09 1.04 1.02
10 0.99 1.01 1.02 1 1 0.96 1.02 1.05 1.15 1.02 1.06 0.61 1.01
15 0.97 1.01 1 1 0.99 0.97 1.01 1.05 1.16 1.04 1.15 0.43 1.01Execution Time

20 0.95 1.02 1 1 0.99 1.01 1.02 1.05 1.15 1.06 1.15 0.44 1.02
5 0.99 0.62 1.01 0.95 0.95 0.95 1.84 0.99 1.12 1.0 1.08 1.35 1.02
10 0.98 0.83 1 0.95 0.99 0.96 1.12 1.09 1.14 1.02 1.08 0.74 1.02
15 0.96 0.82 1 0.93 1.01 0.97 1.09 1.13 1.15 1.03 1.15 0.64 1.02Energy
20 0.93 0.8 1.01 0.95 1.02 1.01 1.15 1.19 1.14 1.05 1.17 0.66 1.03

Minor (Z) 0 142 11 1213 443 798 4296 356 38 315 146 41 9
5 82 174 450 151 170 195 12412 1187 38 482 676 51 18
10 84 175 657 136 192 239 16134 6503 1269 3783 949 50 24
15 146 428 1649 202 437 493 18979 9730 1529 6394 1335 62 38Minor (A)

20 221 3338 2790 560 782 885 25941 14239 1661 10308 1649 82 44
Major (Z) 44 20 90 108 49 57 2952 16 7 64 9 7 3

5 86 25 126 38 35 31 3931 36 7 67 89 23 3
10 88 23 240 33 37 34 5987 213 90 350 117 23 7
15 95 27 330 49 55 48 6813 375 157 576 167 26 8Major (A)

20 91 45 383 86 69 68 9804 572 202 932 215 30 11

GC CPU OH (%) (Z) 1 3 1 21 12 17 4 4 0.2 3 3 9 2
5 5 5 3 10 9 10 5 5 5 5 5 5 6
10 11 11 6 11 10 12 10 10 10 11 10 11 10
15 16 13 9 15 15 15 17 15 14 15 15 16 17GC CPU OH (%) (A)

20 21 19 11 20 21 20 22 20 18 21 20 20 18

Heap Size (MB) (Z) 1024 8192 16384 2048 4096 4096 256 4096 16384 2048 1024 256 2048

CPU Utilised/32 0.9 1.07 5.45 15 19.2 27 1.25 12.32 30.22 21.06 21 2.5 21

CPU-intensive workloads such as Tomcat and Hazelcast_400,
where there is high competition for CPU resources between
the collector andmutator threads, lower GC targets (i.e., 10 %)
lead to using more memory and positively affect latency by
allowing GC to run less frequently, thereby reducing the im-
pact on mutator performance. While increasing Xmx could
achieve a similar effect, our approach reduces latency while
also decreasing memory usage. Because, with the fixed mem-
ory level, GC CPU overhead can vary drastically throughout

execution, leading to high numbers. Our technique keeps the
GC CPU overhead more stable, aiming to fluctuate around
a certain GC target. It ensures that GC does not take up a
lot of space, allowing mutators to deliver stable low latency
without frequent drops. With a 20 % GC target and the small-
est heap size, Spring showed a notable increase in latency.
However, it is important to note that this benchmark has
less than half of the capacity of the machine’s average CPU
utilization, but at times it spikes quite high, becoming CPU

11



Table 3. The 99th-percentile metered latency from the adap-
tive approach normalized to vanilla ZGC. The color coding
is the same as in Table 2. H is for Hazelcast.

Target Tomcat Spring H_100 H_250 H_400
10 0.68 1 0.4 0.91 0.69
15 0.84 1.06 0.47 0.96 0.74latency
20 0.96 1.18 0.73 1.14 1.16

intensive. Higher GC targets in CPU-intensive workloads
can reduce latency by mitigating contention between GC
and mutator threads, as explained above. However, due to
the limited number of latency-oriented workloads tested and
the high variance in DaCapo benchmarks, we cannot make
definitive conclusions about the positive impact of our tech-
nique on latency. Nonetheless, our findings suggest that it
does not have a statistically significant negative effect.

Picking the Default GC Target. Different GC targets
can yield opposite trends for different optimization goals.
While the highest GC target of 20 % provided the best re-
sults for memory, energy optimization requires the lowest
GC target. Meanwhile, too many or too few GC cycles can
harm performance. Thus, choosing the best GC target for
each program may require manual selection. However, upon
examining the benchmarks as a whole, we found that a 15 %
GC target achieved a 51% memory reduction, with only a
3 % execution time degradation and a 3 % increase in energy
(calculated as the geometric mean across all benchmarks,
following [12]). Therefore, a 15 % GC target may be a good
default choice for optimizing the trade-off between memory
usage, execution time, and energy consumption.

7 Related Work
Language runtimes that host managed languages—such as
Java, Python, and JavaScript—maintain a garbage collected
heap to manage live application objects (unreachable ob-
jects are collected by the garbage collector). Determining
the heap size is challenging as it involves a tradeoff between
application pause time, GC CPU, and memory utilization.
Various heuristics have been proposed to achieve this goal by
minimizing pause time, GC utilization, and memory usage.

7.1 Heap Size Adjustment Algorithms
A number of studies have been conducted for STW collectors,
aiming to improve execution time [5], avoid paging [15] or
both [37]. Brecht et al. [5] propose an adaptive technique to
increase the heap size aiming to reduce execution time in
the STW Boehm-Demers-Weiser GC [4]. The authors sug-
gest increasing the heap size aggressively without collecting
garbage if sufficient memory is available. Only when mem-
ory is scarce GC becomes more frequent, and the heap size

stabilizes. This approach prioritizes reducing the GC target
overhead to improve the application throughput.

Yang et al. [2004] introduced an analytical model to adjust
the heap size in the multi-program environment. In their
approach, an operating system’s virtual memory manager
monitors an application’s memory allocation and footprint.
Then, it periodically changes the heap size to closely match
the real amount of memory used by the application. A model
is used to minimize GC overhead by giving it enough heap
size but also to minimize paging by avoiding large heaps.
The model is offered for Appel and semi-space collectors [1].
Zhang et al. [39] propose a novel approach to memory man-
agement called Program-level Adaptive Memory Manage-
ment (PAMM). PAMM uses the program’s repetitive patterns
(phases) information to manage memory adaptively. The
authors believe the behavior of the phase instances is quite
similar and repetitive, so they can represent the memory us-
age cycle in the application. PAMM monitors the program’s
current heap usage and the number of page faults to adjust a
softbound as a GC threshold. When the threshold is reached,
PAMM triggers GC to collect and free unused memory. They
evaluate PAMM with three STW and generational collec-
tors (Mark-Sweep, CopyMS, and GenCopy). PAMM relies
on a specific phase detection algorithm, which may not be
applicable to all types of programs.

Grzegorczyk et al. [15] propose the Isla Vista heap size ad-
justment strategy to avoid GC-induced paging. Their strategy
is to grow the heap when more physical memory is available
and shrink it by triggering GC when there is not enough
physical memory. Thus, it trades more GC for less paging
by communicating between OS and VM and triggering the
heap size adjustment logic on relocation stalls.

Controlling the ratio of GC time to overall execution time
also has been addressed within HotSpot’s collectors, using
-XX:GCTimeLimit5. However, this strategy may not be suit-
able for concurrent collectors, as they are designed to operate
concurrently with the mutator and outside of the program’s
critical path.

In a closely aligned study, White et al. [34] propose a PID
(Proportional-Integral-Derivative) controller that monitors
GC overhead (the percentage of total execution time spent
on GC) and adjusts the heap resize ratio to maintain a tar-
get GC overhead level set by the user. They utilize the Jikes
Research Virtual Machine (RVM), the Memory Management
Toolkit (MMTk) as the experimental platform, and the Fas-
tAdaptiveMarkSweep collector.
More recently, Bruno et al. [6] propose a vertical mem-

ory scalability approach to scale JVM heap sizes dynami-
cally. To do this, the authors introduce a new parameter:
CurrentMaxMemory. Contrary to the static memory limit de-
fined at launch time, CurrentMaxMemory can be re-defined

5https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gc-
ergonomics.html

12



at run-time, similar to our soft max capacity. In addition to
the new dynamic limit, this work also proposed an automatic
trigger to start heap compaction whenever the amount of
unused memory is large. This technique allows returning
memory to the Operating System as soon as possible.

7.2 Heap Size Adjustment in State-of-the-Art GC
Immix [3] is a collector suitable for high-performance com-
puting. Immix does not require the maximum heap size to
be known in advance. It continuously monitors the amount
of free memory available in the heap and adjusts memory
allocation accordingly. When the amount of free memory
falls below a certain threshold (which may vary between im-
plementations), Immix triggers a GC cycle to reclaim unused
memory. If the free space is still insufficient after collection,
Immix may allocate additional memory blocks to meet the
application’s memory needs. Immix also considers the rate
of object allocation as a metric. If the allocation rate exceeds
a certain threshold, it indicates a high memory consumption
and the potential need for more memory to avoid out-of-
memory errors. Immix also uses heuristics to estimate the
size of the working set or the set of objects that are actively
being used by the application. Since Immix is a STW collec-
tor, this dynamic heap resizing brings many disadvantages.
For example, the application may experience brief pauses
or slowdowns during the resizing process, which in turn
makes it more difficult to reason about the memory usage
and performance characteristics of an application.

Cheng et al.[8] introduce a parallel, concurrent, real-time
garbage collector for multi-processors. GC work is propor-
tional to the allocation rate, so it indirectly scales up and
downwith programCPUutilisation. It aims to provide bounds
on pause times for GC while also scaling well across multiple
processors. Using the concept of Minimum Mutator Utilisa-
tion (MMU), they capture the percentage of time in a given
time window the mutators have access to the CPU. They
showed that their proposed collector keeps higher MMU
results compared to non-incremental GC. However, they do
not assess GC CPU or utilize MMU-based actions.
Degenbaev et al. [9] propose scheduling GC during de-

tected idle periods in the application to reduce GC latency.
It uses knowledge of idle times from Chrome’s scheduler
to opportunistically schedule different GC tasks like minor
collections and incremental marking. This allows adapting
GC based on real-time application behavior and available
idle cycles. While not directly adjusting heap size, scheduling
GC during idle periods allows for reducing memory usage
and footprint when the application becomes inactive and
based on the real-time needs of the application.
The G1 [10] (Garbage First) garbage collector requires

knowledge of the maximum memory needed for an appli-
cation in advance. If it is not explicitly provided, it uses a
default value. G1 uses a dynamic heap size adjustment strat-
egy to adjust the memory usage during runtime based on

the current usage pattern of the application [28]. G1 divides
the heap into regions of equal size and groups them into two
generations: young and old. When the young generation
fills up, G1 performs a young collection, during which live
objects are copied to a new region while unused regions are
reclaimed. G1 also performs periodic concurrent marking of
live objects in the old generation. When the old generation
fills up, G1 performs a mixed collection, which collects both
young and old regions that have been marked as garbage.
During a mixed collection, G1 dynamically sizes the heap by
using the occupancy of the old generation as a target and
adjusts the heap size to meet that target.
Heap size adjustment in .NET is difficult because of the

prevalence of object pinning which can make it impossible to
uncommitmemory. .NET offers a ConserveMemory interface
to the garbage collector that allows “conserving memory
at the expense of more frequent garbage collections and
possibly longer pause times” [32]. This setting works by
controlling the fragmentation tolerance in old generations,
before triggering a full, compacting GC cycle.

7.3 Discussion
Previous works, adjust the amount of heap size by estimating
the amount of memory that is necessary to keep the appli-
cation running without incurring high latency and CPU
overheads. Instead of estimating the amount of memory
needed by the application, we adjust the heap size to meet
a specific GC target. Our CPU-driven heap size adjustment
is particularly important for concurrent collectors like ZGC,
which compete with the mutator for CPU resources to col-
lect memory, unlike the STW collectors used in prior studies.
Dissimilar to fixed-size heap headroom used in STW collec-
tors, a concurrent GC requires variable headroom depending
on the available CPU for collection. If the mutator consumes
most of the CPU, a large headroom is necessary for a concur-
rent collector, while a small headroom suffices for collection
when the mutator has minimal CPU usage. In sum, rather
than directly controlling the heap headroom as in previous
works for STW collectors, we specify the desired GC target
and adjust the heap headroom accordingly.

8 Conclusion
This paper explores an adaptive approach for automatically
adjusting heap size based on CPU overhead for GC work as
a tuning knob. Our evaluation demonstrates that this tech-
nique does not negatively impact latency, which is the main
goal of fully concurrent collectors. In addition, we offer in-
sights into optimizing energy and performance by tuning GC
targets. Our ongoing work focuses on seamlessly integrating
and refining this approach within the ZGC framework to
unlock its full potential in real-world applications.

13



References
[1] A. W. Appel. 1989. Simple Generational Garbage Collection and Fast

Allocation. Softw. Pract. Exper. 19, 2 (feb 1989), 171–183.
[2] Noman Bashir, Nan Deng, Krzysztof Rzadca, David Irwin, Sree Kodak,

and Rohit Jnagal. 2021. Take It to the Limit: Peak Prediction-Driven
Resource Overcommitment in Datacenters. In Proceedings of the Six-
teenth European Conference on Computer Systems (Online Event, United
Kingdom) (EuroSys ’21). Association for Computing Machinery, New
York, NY, USA, 556–573. https://doi.org/10.1145/3447786.3456259

[3] Stephen M Blackburn and Kathryn S McKinley. 2008. Immix: a mark-
region garbage collector with space efficiency, fast collection, and
mutator performance. ACM SIGPLAN Notices 43, 6 (2008), 22–32.

[4] Hans-Juergen Boehm and Mark Weiser. 1988. Garbage collection in
an uncooperative environment. Software: Practice and Experience 18, 9
(1988), 807–820.

[5] Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. 2001. Con-
trolling garbage collection and heap growth to reduce the execution
time of Java applications. ACM Sigplan Notices 36, 11 (2001), 353–366.

[6] Rodrigo Bruno, Paulo Ferreira, Ruslan Synytsky, Tetiana Fydorenchyk,
Jia Rao, Hang Huang, and Song Wu. 2018. Dynamic vertical memory
scalability for OpenJDK cloud applications. In Proceedings of the 2018
ACM SIGPLAN International Symposium on Memory Management. 59–
70.

[7] Zixian Cai, Stephen M Blackburn, Michael D Bond, and Martin Maas.
2022. Distilling the real cost of production garbage collectors. In 2022
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 46–57.

[8] Perry Cheng and Guy E Blelloch. 2001. A parallel, real-time garbage
collector. In Proceedings of the ACM SIGPLAN 2001 conference on Pro-
gramming language design and implementation. 125–136.

[9] Ulan Degenbaev, Jochen Eisinger, Manfred Ernst, Ross McIlroy, and
Hannes Payer. 2016. Idle time garbage collection scheduling. ACM
SIGPLAN Notices 51, 6 (2016), 570–583.

[10] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. 2004.
Garbage-First Garbage Collection. In Proceedings of the 4th Interna-
tional Symposium on Memory Management (Vancouver, BC, Canada)
(ISMM ’04). Association for Computing Machinery, New York, NY,
USA, 37–48. https://doi.org/10.1145/1029873.1029879

[11] Ben Evans. 2020. What Tens of Millions of VMs Reveal about the State of
Java. Retrieved Feb 28, 2023 from https://thenewstack.io/what-tens-
of-millions-of-vms-reveal-about-the-state-of-java/

[12] Philip J. Fleming and John J. Wallace. 1986. How not to lie with
statistics: the correct way to summarize benchmark results. Commun.
ACM 29 (1986), 218–221.

[13] Can Gencer, Marko Topolnik, Viliam Ďurina, Emin Demirci, Ensar B
Kahveci, Ali Gürbüz Ondřej Lukáš, József Bartók, Grzegorz Gierlach,
František Hartman, Ufuk Yılmaz, et al. 2021. Hazelcast jet: Low-latency
stream processing at the 99.99th percentile. 14, 12 (2021), 3110–3121.
https://doi.org/10.14778/3476311.3476387

[14] Frank E Grubbs. 1969. Procedures for detecting outlying observations
in samples. Technometrics 11, 1 (1969), 1–21.

[15] Chris Grzegorczyk, Sunil Soman, Chandra Krintz, and Rich Wolski.
2007. Isla vista heap sizing: Using feedback to avoid paging. In Inter-
national Symposium on Code Generation and Optimization (CGO’07).
IEEE, 325–340.

[16] Jun Han and Claudio Moraga. 1995. The influence of the sigmoid
function parameters on the speed of backpropagation learning. In
From Natural to Artificial Neural Computation, José Mira and Francisco
Sandoval (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 195–
201.

[17] Matthew Hertz and Emery D. Berger. 2005. Quantifying the Perfor-
mance of Garbage Collection vs. Explicit Memory Management. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (San

Diego, CA, USA) (OOPSLA ’05). Association for Computing Machinery,
New York, NY, USA, 313–326. https://doi.org/10.1145/1094811.1094836

[18] Mark Horowitz. 2014. 1.1 Computing’s energy problem (and what
we can do about it). In 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC). 10–14. https://doi.org/
10.1109/ISSCC.2014.6757323

[19] Intel. 2009. Intel Architecture Software Developer’s Manual. Vol. Volume
3: System Programming Guide.

[20] Intel. 2020. Intel VTune Profiler Performance Analysis Cookbook:
Top-down Microarchitecture Analysis Method. Retrieved April 25,
2023 from https://www.intel.com/content/www/us/en/docs/vtune-
profiler/cookbook/2023-0/top-down-microarchitecture-analysis-
method.html

[21] Richard Jones, Antony Hosking, and Eliot Moss. 2012. The Garbage
Collection Handbook: The Art of Automatic Memory Management. Chap-
man & Hall.

[22] Stefan Karlsson. 2022. Z Garbage Collector. Retrieved Feb 28, 2023
from https://wiki.openjdk.org/display/zgc/Main

[23] Stefan Karlsson. 2023. JEP draft: Generational ZGC. Retrieved Feb 28,
2023 from https://openjdk.org/jeps/8272979

[24] Marisa Kirisame, Pranav Shenoy, and Pavel Panchekha. 2022. Optimal
Heap Limits for Reducing Browser Memory Use. Proc. ACM Program.
Lang. 6, OOPSLA2, Article 160 (oct 2022), 21 pages. https://doi.org/10.
1145/3563323

[25] Henry Lieberman and Carl Hewitt. 1983. A real-time garbage collector
based on the lifetimes of objects. Commun. ACM 26, 6 (1983), 419–429.

[26] Jonas Norlinder, Erik Österlund, and Tobias Wrigstad. 2022. Com-
pressed Forwarding Tables Reconsidered. In Proceedings of the 19th
International Conference on Managed Programming Languages and
Runtimes (Brussels, Belgium) (MPLR ’22). Association for Comput-
ing Machinery, New York, NY, USA, 45–63. https://doi.org/10.1145/
3546918.3546928

[27] OpenStack. 2022. Overcommitting CPU and RAM. Retrieved April 28,
2023 from https://docs.openstack.org/arch-design/design-compute/
design-compute-overcommit.html

[28] Oracle. 2021. Garbage-First Garbage Collector Tuning. Retrieved April
23, 2023 from https://docs.oracle.com/en/java/javase/17/gctuning/
garbage-first-garbage-collector-tuning.html#GUID-3D3E4662-
1E89-42EE-96FA-836C0E7C97AA

[29] Semih Sahin, Wenqi Cao, Qi Zhang, and Ling Liu. 2016. Jvm configura-
tion management and its performance impact for big data applications.
In 2016 IEEE International Congress on Big Data (BigData Congress).
IEEE, 410–417.

[30] Marina Shimchenko, Mihail Popov, and Tobias Wrigstad. 2022.
Analysing and Predicting Energy Consumption of Garbage Collectors
in OpenJDK. In Proceedings of the 19th International Conference on
Managed Programming Languages and Runtimes (Brussels, Belgium)
(MPLR ’22). Association for Computing Machinery, New York, NY,
USA, 3–15. https://doi.org/10.1145/3546918.3546925

[31] Marko Topolnik. 2020. Performance of Modern Java on Data-Heavy
Workloads: The Low-Latency Rematch. Retrieved May 10, 2022 from
https://jet-start.sh/blog/2020/06/23/jdk-gc-benchmarks-rematch

[32] Genevieve Warren, Maoni Stephens, Sébastien Ros, GitHubPang,
Andrew Au, and Peter Sollich. 2023. Runtime configuration
options for garbage collection. Retrieved April 28, 2023
from https://learn.microsoft.com/en-us/dotnet/core/runtime-config/
garbage-collector#conserve-memory

[33] Bernard L Welch. 1938. The significance of the difference between
two means when the population variances are unequal. Biometrika 29,
3/4 (1938), 350–362.

[34] David R White, Jeremy Singer, Jonathan M Aitken, and Richard E
Jones. 2013. Control theory for principled heap sizing. ACM SIGPLAN
Notices 48, 11 (2013), 27–38.

14

https://doi.org/10.1145/3447786.3456259
https://doi.org/10.1145/1029873.1029879
https://thenewstack.io/what-tens-of-millions-of-vms-reveal-about-the-state-of-java/
https://thenewstack.io/what-tens-of-millions-of-vms-reveal-about-the-state-of-java/
https://doi.org/10.14778/3476311.3476387
https://doi.org/10.1145/1094811.1094836
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC.2014.6757323
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysis-method.html
https://wiki.openjdk.org/display/zgc/Main
https://openjdk.org/jeps/8272979
https://doi.org/10.1145/3563323
https://doi.org/10.1145/3563323
https://doi.org/10.1145/3546918.3546928
https://doi.org/10.1145/3546918.3546928
https://docs.openstack.org/arch-design/design-compute/design-compute-overcommit.html
https://docs.openstack.org/arch-design/design-compute/design-compute-overcommit.html
https://docs.oracle.com/en/java/javase/17/gctuning/garbage-first-garbage-collector-tuning.html#GUID-3D3E4662-1E89-42EE-96FA-836C0E7C97AA
https://docs.oracle.com/en/java/javase/17/gctuning/garbage-first-garbage-collector-tuning.html#GUID-3D3E4662-1E89-42EE-96FA-836C0E7C97AA
https://docs.oracle.com/en/java/javase/17/gctuning/garbage-first-garbage-collector-tuning.html#GUID-3D3E4662-1E89-42EE-96FA-836C0E7C97AA
https://doi.org/10.1145/3546918.3546925
https://jet-start.sh/blog/2020/06/23/jdk-gc-benchmarks-rematch
https://learn.microsoft.com/en-us/dotnet/core/runtime-config/garbage-collector#conserve-memory
https://learn.microsoft.com/en-us/dotnet/core/runtime-config/garbage-collector#conserve-memory


[35] Albert Mingkun Yang, Erik Österlund, and Tobias Wrigstad. 2020.
Improving Program Locality in the GC Using Hotness. In Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (London, UK) (PLDI 2020). Asso-
ciation for Computing Machinery, New York, NY, USA, 301–313.
https://doi.org/10.1145/3385412.3385977

[36] Albert Mingkun Yang and Tobias Wrigstad. 2022. Deep Dive into ZGC:
A Modern Garbage Collector in OpenJDK. ACM Trans. Program. Lang.
Syst. 44, 4, Article 22 (sep 2022), 34 pages. https://doi.org/10.1145/
3538532

[37] Ting Yang, Matthew Hertz, Emery D Berger, Scott F Kaplan, and
J Eliot B Moss. 2004. Automatic heap sizing: Taking real memory
into account. In Proceedings of the 4th international symposium on
Memory management. 61–72.

[38] Karen K Yuen. 1974. The two-sample trimmed t for unequal population
variances. Biometrika 61, 1 (1974), 165–170.

[39] Chengliang Zhang, Kirk Kelsey, Xipeng Shen, Chen Ding, Matthew
Hertz, and Mitsunori Ogihara. 2006. Program-level adaptive memory
management. In Proceedings of the 5th international symposium on
Memory management. 174–183.

15

https://doi.org/10.1145/3385412.3385977
https://doi.org/10.1145/3538532
https://doi.org/10.1145/3538532

	Abstract
	1 Introduction
	2 The Perils of Manual Heap Size Picking
	3 Heap Size Adjustment with CPU Control
	4 Prototype Implementation in ZGC
	4.1 Background on ZGC
	4.2 Heap Size Adjustment with CPU control in ZGC
	4.3 Obtaining TGC
	4.4 Obtaining TAPP
	4.5 Calculating a Suggested Heap size
	4.6 Bounding the Heap Size
	4.7 Initial and Adapted Heap Sizes

	5 Evaluation
	5.1 Hardware and Software
	5.2 Benchmarks
	5.3 Benchmarking Methodology
	5.4 Statistical Analysis
	5.5 Energy Measurements
	5.6 Baseline Heap Sizes
	5.7 GC Targets

	6 Results
	7 Related Work
	7.1 Heap Size Adjustment Algorithms
	7.2 Heap Size Adjustment in State-of-the-Art GC
	7.3 Discussion

	8 Conclusion
	References

