
Selecting a GC for Java Applications ?

Sanaz Tavakolisomeh1, Rodrigo Bruno2, and Paulo Ferreira3

1 University of Oslo, Oslo, Norway sanazt@ifi.uio.no
2 INESC-ID / Técnico, ULisboa Lisbon, Portugal

rodrigo.bruno@tecnico.ulisboa.pt
3 University of Oslo, Oslo, Norway paulofe@ifi.uio.no

Abstract. Nowadays, there are several Garbage Collector (GC) solu-
tions that can be used in an application. Such GCs behave differently
regarding several performance metrics, in particular throughput, pause
time, and memory usage. Thus, choosing the correct GC is far from triv-
ial due to the impact that different GCs have on several performance
metrics. This problem is particularly evident in applications that pro-
cess high volumes of data/transactions especially, potentially leading to
missed Service Level Agreements (SLAs) or high cloud hosting costs.
In this paper, we present: i) thorough evaluation of several of the most
widely known and available GCs for Java in OpenJDK HotSpot using dif-
ferent applications, and ii) a method to easily pick the best one. Choosing
the best GC is done while taking into account the kind of application that
is being considered (CPU or I/O intensive) and the performance met-
rics that one may want to consider: throughput, pause time, or memory
usage.

Keywords: Garbage collector · Automatic memory management.

1 Introduction
In object-oriented programming languages, e. g. Java, automatic memory man-
agement regulates all the objects’ allocations and deallocations in memory using
Garbage Collection algorithms. A Garbage Collector (GC) in Java, which is re-
sponsible to free objects that are no longer referenced by any part of running
applications and processes, is even more important when applications are dealing
with high volumes of data (i.e., Big Data and/or Cloud Services [5]).

Fig. 1. Throughput, 90th percentile of pause times, and memory usage before GC, in
Luindex benchmark.

Existing garbage collection solutions apply a trade-off between different perfor-
mance metrics based on how the GC algorithm is designed. Taking Luindex

? Rodrigo Bruno’s research was supported by national funds through FCT, Fundação
para a Ciência e a Tecnologia, under project UIDB/50021/2020.

2 S. Tavakolisomeh et al.

benchmark (included in DaCapo benchmark suites [2]) as an example, 90th per-
centile of pause times along with execution time and memory usage for four
different GCs is depicted in Figure 1. We can conclude that ZGC [28] has almost
12x and 57x less pause time compared to Shenandoah [8] and G1 [7] GCs, respec-
tively. regarding pause time, CMS [12] would be the last choice when compared
to the other GCs.

As Figure 1 shows, the minimum execution time for Luindex is obtained when
CMS is running; also, there is a slight difference between the execution time in
CMS and G1 (we consider an application’s execution time as the throughput; for
more detail see Sections 3.3 and 4). Furthermore, Shenandoah followed by the G1
use the heap memory better than the two other GCs before garbage collection.
Based on the results, ZGC uses about 3x more memory than Shenandoah. For
this particular benchmark, although ZGC is the best option regarding pause
time, in terms of memory usage before GC it is the worst choice.

The existence of several GCs with diverse functionality and purposes makes
it hard for a developer to choose the most suitable GC solution for a given
application. This happens especially when the application deals with a large
amount of data and demands a significant amount of resources like CPU or I/O.
To select the most suitable GC, a user must know whether a given application
is CPU-intensive or I/O-intensive; then, the user only requires to decide what
GC performance metric (throughput, pause time, and memory usage) he wants
to prioritize. In this paper, we evaluate how several widely known GCs behave
regarding the above mentioned performance metrics, then we propose a method-
ology to choose the best GC for a given Java application running on the most
widely used Java Virtual Machine (JVM) implementation, OpenJDK HotSpot
JVM.

Several relevant works studied and compared various performance metrics in
different GC solutions using existing benchmarks or real applications. However,
to the best of our knowledge, selecting the best GC solution for a given Java
application, given its characteristics (CPU or I/O intensive), and regarding some
GC performance metrics, is not covered in previous studies.

In this work, we use both Renaissance [21] and DaCapo [2] benchmark suites
that represent a large set of applications. We also developed an application,
called BufferBench (B2), that does read/write operations in memory to better
study the GCs’ behavior and the cost associated with the read and write barriers
that some GCs use. Furthermore, we use Spring Boot based PetClinic applica-
tion [16] to investigate our methodology using a real-world application. Using
these applications, while applications are classified as being CPU-intensive or
I/O-intensive, we investigate four well-known GCs available in the JVM. G1,
which is the default GC since JDK 9, ZGC, Shenandoah, and CMS to eval-
uate their performance metrics. According to the results, we recommend the
best GC solution for a specific application to fulfill its requirements: maximize
throughput, minimize pause-time, or minimize memory usage.

In the following section, we present related work, while providing some ba-
sic information about the key concepts of GCs. In Section 3, we describe the
architecture of our solution with a focus on its most relevant technical aspects.
In Section 4, we give some implementation details, and in Section 5 we describe
the experiments and the results obtained. We conclude this paper with the con-
clusions in Section 6.

2 Related Work
This section starts with a summary of background work regarding basics aspects
of garbage collection, with a focus on some relevant characteristics of GCs that
are addressed in the remaining of this article. Then, it addresses some existing
work that can be compared to ours.

Selecting a GC for Java Applications 3

2.1 Background
Garbage collection is an essential part of automatic memory management and
aims at allowing the reuse of the memory occupied by unused objects. This leads
to organizing objects in two main groups: i) dead objects, i.e., those that are
not being referenced by any running application, and ii) live objects, i.e., those
which are still referred from an application.

In Java run-time systems, several GC solutions were developed to automat-
ically manage heap memory that stores objects created by applications on the
JVM. Although GCs employ different approaches to optimize their target per-
formance metrics, they tend to make a trade-off between: throughput (number
of operations done by an application), pause time (time that an application
is forced to stop to let the GC execute), and memory usage(the amount of
memory used in a process).

There are several designs and implementations for GC solutions [11]. Some
GCs partition the heap into multiple partitions or sub-heaps [26]. This is the
case of generational GCs in which the partitioned heap holds objects that are
segregated based on their lifetime. In this case, a newly created object is placed
in the young generation partition; should it survive several GC cycles, it will be
transferred to the old generation partition. In serial GCs [23] garbage collection
is done serially using just one single thread in both generations, or multiple
threads can be used by GC in the young generation (parallel GC) or in both
young and old generations (Parallel Old GC) [23]. In the GCs to organize the free
spaces in the heap, compaction and copying algorithms may be used. Through
the compaction, GC moves all the live objects to the beginning of the memory
segment, whilst through copying, a GC groups the live objects by moving them
from multiple memory segments into a single one [3].

Moreover, several GCs are designed to work concurrently with a running
application; multiple threads are responsible for running the application and the
GC simultaneously. In contrast, some GCs employ the stop-the-world (STW)
technique, in which the GC stops an application while running.

Also, GC algorithms use read and/or write barriers. Read barrier (also known
as load barrier) code is run whenever an application thread loads a reference
from the heap. A write barrier is also called by the compiler just before any
write operation to some object occurs.

There are multiple GC algorithms available for the JVM. Concurrent Mark/
Sweep collector (CMS) [6] is a tracing collector (i. e. attempts to identify all
the reachable objects in the heap by tracing the root objects) and generational
GC including young and old generations. CMS employs an STW mark and copy
technique in the young generation while there is a concurrent mark and sweep
collector in the old generation to collect the marked unreachable objects. Also,
It uses a write barrier that is run every time a reference in an object is up-
dated. Since CMS does not have the compacting step; this may lead to heap
fragmentation [27].

Garbage first (G1) [7] is the default GC since JDK9. G1 is a generational
GC with fixed-size regions in the heap that uses a compacting algorithm. In
STW young generation GC phase, G1 starts to traverse the object graph to
find the live objects and copies them to the old regions. The old generation
GC employs write barriers to mark live objects concurrently with the running
application [29]. In fact, the main strategy in G1 is to reclaim regions with the
least live objects, i.e., most garbage first (as its name suggests).

The main goal in Shenandoah [8] GC is having short pause times regard-
less of the heap size. It maintains the heap as a collection of regions and uses
both concurrent copy and compaction techniques. To achieve object relocation
concurrently with the application threads, Shenandoah uses a data structure

4 S. Tavakolisomeh et al.

that needs an additional field per object which points back to the object itself,
when initializing the object and, with using the write barriers, to the object’s
new location once it is moved. It also uses read barriers to read objects from the
exact current location in the heap memory.

ZGC [28] is a non-generational GC that divides the heap into regions of
different sizes (small, medium, and huge) to hold the objects based on their
size. To relocate the live objects concurrently, it uses read barriers and colored
pointers, and stores some important metadata to hold information about an
object itself and marking and relocation-related information [22]. ZGC applies
STW pauses to mark live objects and mark the regions for compaction.

2.2 Existing Work
Several studies have been conducted over the past few years regarding GC de-
signs, methodology, and performance in Java.

Ossia et el. [15] designed an incremental, and concurrent collector, with
threads running in parallel, to ensure low pause time; Also, Pizlo et al. [17] pro-
pose a GC, STOPLESS, that uses a mark and sweep collector and a compactor
to avoid fragmentation, for multi-processors running multithreaded applications.
Pizlo et al. [18], also propose two other solutions for concurrent real-time GCs,
CLOVER and CHICKEN, to improve the complexity of STOPLESS. Detlefs et
el. [7] propose a GC that attempts to achieve high throughput for the applica-
tions running on multi-processor systems while they have a high allocation rate
and need large heaps. Printezis et al. [19], propose a GC algorithm that works
mostly concurrent with the application and attempts to reduce the worst-case
pause time in generational memory systems.

Zhao et el. [29] decompose G1 into several key components and reimplement
it. Also, they produce six collectors to evaluate different algorithmic elements
of G1 using benchmarks including the DaCapo benchmark suite (also used by
us as shown in Section 5). They developed a concurrent, region-based moving
collector to find the shared elements in G1, ZGC, C4 [25], and Shenandoah.
Pufek et al. [22] used selected benchmarks of the DaCapo suite and compared
the results of G1, Parallel, Serial, and CMS GCs regarding the time spent in the
garbage collection process as well as the number of collections in JDK versions
8, 11, and 12. Grgic et al. [10] analyzed the same GCs as Pufek’s also using
DaCapo benchmarks. They concluded that G1 performed better than CMS and
Parallel GC regarding the total number of garbage collections and CPU utiliza-
tion in multi-threaded applications. Prokopec et al. [20] describe Renaissance
benchmark suite and explain the focus of each benchmarks. They also provide
information about different metrics, including average CPU utilization, during
a single steady-state execution of Renaissance and DaCapo benchmark suites.

Lengauer et al. [13] provides a description of commonly used benchmarks,
including DaCapo, DaCapo Scala [24], and SPECjvm2008,4 in terms of memory
and garbage collection behavior. They compared G1 and Parallel Old (parallel
old generation) regarding GC counts, the GC time relative to total run time, and
the total pause time. They concluded that G1 performs better than the Parallel
Old regarding pause time as it can select which regions to collect.

There are several works that studied GCs in Big Data systems. Bruno et al. [3]
describes existing GC solutions for Big Data environments and the scalability of
some memory management algorithms in terms of throughput and pause time.
Nguyen et al. [14] propose a GC for Big Data systems with low pause time and
high throughput To reduce the objects managed by the GC, the GC divides the
heap into data space and control space and uses generation-based and region-
based algorithms in the spaces respectively. However, the developer has to mark

4 https://www.spec.org/jvm2008/

Selecting a GC for Java Applications 5

the beginning and end points of the data path in the program. Broom [9] and
NG2C [4] propose two GCs for Big Data systems. In Broom the regions in
the heap are explicitly created by the programmer; in NG2C, the programmer
identifies the generation where a new object should be allocated

To the best of our knowledge, there are no studies that compare all the GCs
we consider (G1, CMS, ZGC, and Shenandoah) regarding throughput, pause
time, and memory usage. Also, none of the previous work proposes a methodol-
ogy to pick the best GC both for CPU-intensive and I/O-intensive applications.

3 Architecture
We start this section by first describing how a user can pick the best GC for his
application; then, we describe if a certain application (see Section 5) is CPU or
I/O intensive; finally, we present some main aspects of the system.

3.1 User Level Overview
When a user wants to choose the best GC solution for a given application, he
must: i) characterize the application as being CPU-intensive or I/O-intensive;
and ii) decide what GC metric he wants to prioritize among the following three:
throughput, pause time, or memory usage.

The first item mentioned above is simply done (by the user) by running the
application and using the Linux command atop (more details are given in see
Section 4) to categorize an application as being CPU-intensive or I/O-intensive.

Then, based on the GC metrics that the user wants to make better, the best
GC regarding throughput is CMS in both CPU and I/O-intensive applications.
Also, ZGC minimizes the pause time in almost all the CPU and I/O-intensive
applications; and CMS has acceptable results regarding using memory before
garbage collection, especially in CPU-intensive applications, while CMS can be
replaced with Shenandoah in I/O-intensive applications; G1 is a good choice in
reducing memory usage after GC in CPU-intensive applications, CMS works as
well as G1 regarding this metric in I/O-intensive applications (see Section 5).

3.2 Application Classification
In this section, we focus on classifying applications based on their CPU and I/O
usage. As described in Section 4, all the process mentioned above is done with
G1 activated as a default GC in the OpenJDK and by employing representative
applications available in well-known benchmark suites: Renaissance [21] and Da-
Capo [2]. These two Java-based benchmark suites allow us to disable/enable mul-
tiple features (e.g., disabling garbage collection before each iteration in bench-
marks, or change input parameters like input size), and are representative of
most existing applications.

We also developed B2 to test and evaluate the aforementioned GCs so that
we can broaden our study experiments. In particular, B2 makes read and write
operations from/to the heap while the percentage of the read and write oper-
ations can be changed. This leads to triggering GC, affects the GC’s behavior
and indeed the performance metrics.

Table 1 shows the relative average CPU consumption per core and average
I/O usage of each application used in the evaluation (for more details, see Sec-
tion 5). We tag an application as CPU-intensive if the percentage of average
CPU usage is bigger than the average I/O usage; otherwise, we consider the
application to be I/O-intensive.

Among Renaissance benchmarks, as shown in Table 1.a, only ALS and Movie
Lens benchmarks have a greater percentage of I/O usage than the percentage of
CPU consumption; thus, these applications are considered to be I/O-intensive.
All the other applications in the Renaissance benchmark suite are considered to
be CPU-Intensive.

6 S. Tavakolisomeh et al.

Table 1. Categorizing benchmarks as CPU or I/O intensive based on average CPU
usage per core (%) and average I/O usage (%)

a) Renaissance benchmark suite

BenchmarkAvg CPU Avg I/O Category

Akka Uct 89.25 58 CPU-intensive
Als 82.25 93 I/O-intensive
Chi Square 102 39 CPU-intensive
Dec Tree 88.66 60 CPU-intensive
Fj Kmeans 86.28 21 CPU-intensive
Future
Genetic

88 12 CPU-intensive

Gauss Mix 99.5 29 CPU-intensive
Mnemonics 104 12 CPU-intensive
Movie Lens 96.33 98 I/O-intensive
Naive Bayes 79.62 79 CPU-intensive
Neo4j Ana-
lytics

87.33 38 CPU-intensive

Page Rank 72.37 56 CPU-intensive
Par
Mnemonics

129 13 CPU-intensive

Philosophers 92.14 12 CPU-intensive
Reactors 77 17 CPU-intensive
Rx Scrabble 95 32 CPU-intensive
Scala Doku 109 14 CPU-intensive
Scala
Kmeans

106 27 CPU-intensive

Scrabble 80.66 14 CPU-intensive

b) DaCapo benchmark suite

BenchmarkAvg CPU Avg I/O Category

Avrora 66.24 92 I/O-intensive
Fop 58.81 80 I/O-intensive
H2 76.15 10 CPU-intensive
Jython 122.24 15 CPU-intensive
Luindex 62.09 99 I/O-intensive
Lusearch-fix 88.84 99 I/O-intensive
PMD 76.71 43 CPU-intensive
Sunflow 92.65 23 CPU-intensive
Xalan 96.01 100 I/O-intensive

c) B2

BenchmarkAvg CPU Avg I/O Category

1M-25 66.00 46.34 CPU-intensive
1M-50 69.73 27.18 CPU-intensive
1M-75 83.87 21.07 CPU-intensive
1M-100 101.03 11.32 CPU-intensive
2M-25 58.19 49.68 CPU-intensive
2M-50 56.16 49.85 CPU-intensive
2M-75 53.75 40.30 CPU-intensive
2M-100 66.87 14.58 CPU-intensive

d) PetClinic Application

BenchmarkAvg CPU Avg I/O Category

PetClinic 88.25 17 CPU-intensive

In the DaCapo benchmark suite (Table 1.b) more than 50% of the benchmarks
are I/O-intensive; H2, Jython, PMD, and Sunflow are the only CPU-intensive
applications.

In B2 (Table 1.c) all running cases are as CPU-intensive (in fact, the CPU
is the resource that is most used). And, finally, Table 1.d shows that there is a
significant difference between average CPU usage and average I/O usage in the
PetClinic application; thus, we conclude that PetClinic is CPU-intensive.

3.3 Main Aspects
The GC solution especially when there are huge amounts of objects like in Big
Data and Cloud environments, has a great impact on different performance
metrics. Therefore, by knowing a given application’s requirements regarding
throughput, pause time, or memory usage, while identifying the resources an
application needs mostly (CPU or I/O), we can find the most suitable GC.

On one hand, using Renaissance and DaCapo benchmarks allows us to evalu-
ate throughput, pause time, and memory usage and examine how they change by
employing different GC solutions. On the other hand, using the two benchmarks
suites while knowing if the benchmarks included are CPU or I/O-intensive, aids
to figure out which GC solution is the best to a specific application.

We consider an application’s execution time as a measure of its throughput,
rather than the (most usual) number of operations in a time interval. The reason
is to make the different benchmarks comparable since they are in different con-
texts and software designs; thus, it is impossible to define a common definition
of what an operation is. The execution time includes all the time that is needed
for the GC process, and the time for the execution of the application itself. Since
the amount of work is the same for each benchmark, and this is the GC that is
changed, the less execution time means a better throughput.

Moreover, recording the logs generated by the GCs, about heap usage changes
during GC’s phases, provides useful information regarding GC’s pause times and
memory usage. We extract the records related to pause times to calculate the
desired percentile of such metric. The average amount of memory usage before
and after a garbage collection process indicates how a GC is successful to reduce

Selecting a GC for Java Applications 7

memory usage, deplete the dead objects from the heap, and prepare the heap to
host new objects. An ideal GC manages memory usage properly before garbage
collection and frees up significant memory by performing garbage collection.

Knowing how each GC performs regarding throughput, pause time, and mem-
ory usage in different applications, while an application is CPU or I/O intensive,
leads to picking the best GC solution. The user who knows the application’s
requirements can then decide on the best GC that fulfills them more accurately.

4 Implementation
We developed B2 on a server running GNU/Linux, Ubuntu 16.04.4 LTS, with
four Intel(R) Xeon(R) E5506 @ 2.13GHz CPU cores and 16 GB of RAM mem-
ory. We employed OpenJDK 13 and set the heap memory size to 4 GB.

Moreover, we create a configuration file for each garbage collector. The file
consists of JAVA HOME, JAVA EXE, and JAVA OPTS that indicate the ad-
dress of the Java folder on the machine, Java execution file location, and the
desired options to run the Java run-time with them, respectively. We added
the relevant Java options for each GC in the related configuration file to re-
place the default GC. For G1, we added –XX:+UseG1GC, for CMS –XX:+Use
ConcMarkSweepGC, for Shenandoah –XX:+UseShenandoahGC, and for ZGC –
XX:+UseZGC. Also, we set the maximum heap to 4 gigabytes, using –Xmx4g
and added the -Xlog:gc* to enable the printing of each GC’s detailed messages.

B2 is a simple application written in Java with a focus on evaluating the
impact of read and write barriers on the garbage collection performance metrics.
This application needs three input values: data size, number of operations, and
read percentage. Based on the data size, a hash map is created to keep the
objects. In our study, data size is either 1 or 2 million objects. The number of
operations indicates the total number of both read and write operations; this
is set to 100 million in our study. The results showed that this amount is big
enough to trigger several GC cycles to measure the GC’s performance metrics.
Finally, the read percentage indicates how much of the operations are reading
objects from the heap; the remaining percentage refer to write operations that
create new objects in the heap. We chose 25%, 50%, 75%, and 100% as read
percentages in our study. We change the percentage of read (write) operations
to analyze GC’s behaviour regarding their performance metrics. Also, we wrote
a simple script that evaluates the GCs with the defined data size, the number of
operations, and read percentage using B2 JAR file. So, there is a triple nested
loop; each iteration is executed with one of the four evaluated GCs at a time. To
run the B2 application using each configuration file, the B2 JAR file is executed
with the three inputs using the configuration file of each GC as the selected Java
executor. At the end of each iteration, the log file of the running GC is copied
to the desired file. We also record the exact time of the start and the end of the
B2 application to calculate the execution time (i.e., its throughput).

We also wrote a script to execute each of the benchmarks. For DaCapo, the
script runs each benchmark 10 times using each GC configuration file and the
DaCapo JAR file. The DaCapo JAR file, needs three input variables: benchmark
name, number of iterations (using switch -n), and the input size (using switch
-s). The input size is set to large for all benchmarks, except for fop and luindex
that were set to default, since large was not available for them. We recorded the
DaCapo output log that shows the execution time for each iteration.

We followed the same process to write an executable script for the Renais-
sance. The difference is that there is no input size for the benchmarks in Re-
naissance. We used –repetitions to set the number of iterations to 10. Also, we
used –no-forced-gc , to disable the garbage collection that would be forced by
the original Renaissance benchmark suite before each iteration.

8 S. Tavakolisomeh et al.

As we mentioned in Section 3.1, to categorize an application into CPU-
intensive or I/O-intensive, we use atop command to obtain useful information
regarding CPU and disk usage of any application. A user should activate the
storage accounting feature in the OS (using the command sudo /usr/sbin/accton
on) as it shows the accumulated read and write throughput percentage on disk.
Then, a user just has to log the disk column values per second and calculate
the average percentage of disk utilization. In addition, with the hyperthreading
feature deactivated, a user collects the values in the CPU column for the Java
process; this indicates the CPU consumption per second. The hyperthreading
feature specifies the number of threads per core and can be deactivated both in
BIOS or by changing the simultaneous multithreading (SMT) state to off. Then,
it is just a matter of calculating the average amount of CPU consumption and
divide it by the number of cores that are being used by the running Java process.
We just do this in our study to analyze the CPU usage of the benchmarks and
to categorize them as CPU or I/O intensive.

There are 8 cores available on our server, and to obtain the number of cores
engaged for each application, a user simply determines the average number of
running threads of the corresponding Java process by executing the Linux com-
mand htop. Then, a user uses this number and divides the average CPU utiliza-
tion by it to obtain a relative average CPU usage per core. There may be results
bigger than 100% because of the relative numbers of engaged cores.

We capture the atop data ever second during the execution of an application
using a script. At the same time, we extract the values for running threads from
htop and store them in a file. Then, the script executes the applications, as
explained before, just with the G1 configuration file since we just need to check
the CPU and disk utilization of applications. In the end, we just read the atop
output file and extract the data related to disk and CPU utilization and print
them into separate files.

All the software and the related scripts are open source and are available on
https://anonymous.4open.science/r/BestGC-6A71.

5 Evaluation
In this section we start by presenting the methodology used to obtain the results
concerning the GC metrics, i.e., throughput, pause time, and memory usage for
each one of the GCs evaluated (CMS, G1, ZGC, and Shenandoah).

5.1 Methodology
All the experiments were done on a server running GNU/Linux, Ubuntu 16.04.4
LTS, with four Intel(R) Xeon(R) E5506 @ 2.13GHz CPU cores and 16 GB
of RAM memory. We employ OpenJDK 13 and set the heap memory size in
JVM to 4 GB to exercise Java-based applications (it was large enough to run all
workloads for most of the applications). To run the applications with the desired
GCs, we made a separate configuration file for each GC containing different JVM
options for each one of them.

To evaluate CMS, G1, ZGC, and Shenandoah in JVM, we use Renaissance
(version 0.11.0) and DaCapo (version 9.12) benchmark suites that include several
applications (see Section 3.2).

When using these benchmark suites, after several experimental evaluations,
we set the number of iterations for each benchmark to 10 (as we obtained sta-
ble results from then on and adequate data to study). Also, during the study,
we excluded particular benchmarks (e.g., Batik, Tradebeans, and Tradesoap in
Dacapo benchmark suite, and Db-shootout, Dotty, and Finagle-chirper in Re-
naissance benchmark suite) from the experiments if one of the GCs was not able
to do garbage collection and takes an excessively large amount of time while the
application stops doing any progress waiting for more memory.

Selecting a GC for Java Applications 9

Fig. 2. Average execution time in applications using different GCs.

In B2, which is developed with a focus on the performance of GC read and write
barriers, we consider 100 million read/write operations. We change the read
percentage to 25 (i. e. 25% of 100 million operations are allocated to read the
objects from the memory, and 75% of them are related to generate new objects
in the heap), 50, 75, or 100, while there are 1 or 2 million objects created in the
heap.

Moreover, to evaluate the GC performance metrics with a real-world appli-
cation we examine the GCs using the PetClinic Spring Boot application. First,
we investigate if the application is CPU or I/O intensive, then we evaluate for
each GC, the throughput, pause time, and memory usage. To test the PetClinic
application we use Apache JMeter [1] (version 5.4). Using JMeter, the APIs in
the Petclinic application were called using 100 threads and data files containing
records as input values for different entities in the application. We also set the
number of iterations to 10 for each thread group. Choosing these numbers after
several evaluations, revealed a typical usage of the application, reduced the er-
rors resulting from using simultaneous threads, triggered several GC cycles and
used resources significantly in the server.

For all the applications, to evaluate throughput, pause time, and memory us-
age we mainly use the log files obtained from their execution. Regarding through-
put, we used the average execution time of the application. Then, using the JVM
log files, we find all the records related to pause times and calculate the 90th per-
centile. We also calculate the average heap memory usage before and after GC ,
and then evaluate the percentage of memory reduction achieved by the GC (see
Section 3.3). In the following section, we present the results of the evaluations.

5.2 Results

In this section, we present results of the experiments regarding throughput,
pause time, and memory usage, while different CPU-intensive or I/O-intensive
applications are being executed. Then, we present a discussion of the results.

Throughput Figure 2 shows the results regarding average throughput (execu-
tion time) for both the Renaissance and DaCapo benchmark suites as well as
for B2 and PetClinic.

10 S. Tavakolisomeh et al.

Figure 2.a reveals that, in 16 out of 19 benchmarks, on average, CMS per-
forms better. G1 comes after CMS with around a 16% difference in average
execution time (the lower the execution time the better the throughput). ZGC
is the worst option in all of the Renaissance benchmarks.

Figure 2.b shows the average execution time for DaCapo benchmarks. In 7
out of 9 benchmarks, CMS has the minimum execution time. While for H2 and
Sunflow, G1 is the preferred GC. On average, there is less than 1% difference
between CMS and G1 execution times in the benchmarks included in DaCapo.
Shenandoah and ZGC, with an average difference of about 5% and 3% compared
to CMS, are the last option for all benchmarks in DaCapo.

In Figure 2.c, unlike the previous applications, ZGC has the lowest execution
time in 75% of the cases. CMS, with around 3% difference when compared to
ZGC in the average value of all the execution times, is the second choice for B2.

Table 2. 90th Percentile of pause times (ms).
a) Renaissance benchmark suite

Benchmark CMS G1 Shenandoah ZGC

Akka Uct 139.14 102.03 24.00 1.07
als 36.08 70.11 2.89 1.18
Chi Square 17.22 27.65 2.81 0.63
Dec Tree 28.94 27.34 2.99 0.69
Fj Kmeans 15.95 7.84 1.50 0.47
Future Genetic 19.22 9.70 1.50 0.33
Gauss Mix 17.20 15.41 2.35 0.92
mnemonics 53.50 19.62 1.68 0.53
Movie Lens 21.00 60.10 7.21 0.80
Naive Bayes 59.74 18.97 2.50 0.45
Neo4j Analytics 102.21 120.34 3.05 0.57
Page Rank 156.24 128.73 2.90 0.62
Par Mnemonics 52.05 22.53 1.74 0.55
philosophers 17.58 6.72 1.17 0.32
Reactors 346.11 185.85 2.22 0.44
Rx Scrabble 20.23 38.89 2.22 0.61
Scala Doku 53.92 55.48 1.73 0.53
Scala Kmeans 110.39 41.36 1.94 0.41
Scrabble 33.60 26.62 2.48 0.41

d) PetClinic Application

Benchmark CMS G1 Shenandoah ZGC

PetClinic 124.20 116.67 129.23 120.68

b) DaCapo benchmark suite

Benchmark CMS G1 Shenandoah ZGC

Avrora 229.61 12.32 2.02 0.31
Fop 107.25 22.61 2.61 0.34
H2 942.84 313.25 2.41 0.46
Jython 17.36 79.21 2.51 0.67
Luindex 59.50 20.02 4.06 0.35
Lusearch-fix 53.09 32.19 2.94 0.34
Pmd 131.17 20.95 3.47 0.48
Sunflow 17.39 19.52 1.58 0.49
Xalan 15.08 24.08 1.42 0.41

c) B2

Benchmark CMS G1 Shenandoah ZGC

1M-25% read 298.66 111.14 2.48 0.40
1M-50% read 204.92 106.42 2.48 0.39
1M-75% read 123.46 104.25 2.50 0.37
1M-100% read 34.50 7.99 1.57 0.35
2M-25% read 283.94 127.15 2.35 0.33
2M-50% read 244.49 115.75 2.29 0.36
2M-75% read 144.32 97.54 2.32 0.36
2M-100% read 33.62 4.92 1.59 0.35

In the PetClinic, the lowest average execution time (the best throughput) is
obtained when using CMS. After CMS, Shenandoah can be selected; however,
there is a very small difference between GCs’ execution times in PetClinic.

Pause Time Table 2 shows the 90th percentile of all the pause times obtained
from all the executions for each application (because of the very small values
obtained using ZGC and a huge difference between the CMS and ZGC results,
we preferred to show the results in a table). ZGC has a pause time of less than
1 millisecond in most of the applications, and has the minimum pause time in
comparison with other GCs. Although Shenandoah has on average a pause time
about 6x more than ZGC, it performs significantly better than CMS and G1.
Based on the values in Tables 2.a, 2.b , and 2.c, CMS is not able to manage
the pause time as well as other GCs. In addition, in both DaCapo benchmarks
and B2, CMS has a pause time of about 400x more than ZGC; in Renaissance
benchmarks, CMS has a pause time around 100x more than ZGC on average.
Also, Table 2.d shows that G1 performed slightly better than other three GCs
regarding pause time in PetClinic.

Selecting a GC for Java Applications 11

Fig. 3. Average memory usage before garbage collection.

Memory Usage There are two mains aspects to consider regarding memory
usage: i) the size of the heap space occupied by objects before a garbage col-
lection, and ii) the size of the heap space occupied by objects after a garbage
collection has been done.

Average memory utilization before garbage collection As Figure 3.a
shows, in 15 out of 19 benchmarks of Renaissance benchmark suite, CMS uses
less memory than the other three GCs. For Akka Uct, ALS, Page Rank, and
Reactors, G1 is the superior GC. G1, ZGC, and Shenandoah use respectively,
on average, around 27%, 43%, and 46% more memory than CMS.

In the DaCapo benchmark suite, as shown in Figure 3.b, although Shenan-
doah beats CMS in Avrora, Fop, and Luindex, CMS is the GC that manages
heap memory before garbage collection the best for the rest of the benchmarks.
Figure 3.c reveals that in B2, G1 works better just for two cases (with 1M and
2M objects) with the lowest read percentage; otherwise, CMS is the preferred
choice. G1, ZGC, and then Shenandoah use on average around 20%, 34%, and
46% more memory than CMS before garbage collection, respectively. Based on
the Figure 3.d, although there is a small difference between the memory usage in
the four GCs, we can see that G1 uses the minimum amount of memory. After
G1, CMS performs the best followed by Shenandoah and ZGC.

Average memory utilization after garbage collection As shown in Fig-
ure 4.a, in the Renaissance benchmark suite, G1 can reduce the average memory
consumption the best after garbage collection in most of the benchmarks. More-
over, ZGC and Shenandoah have a very similar average memory usage reduction
percentage and much smaller when compared to CMS.

In DaCapo benchmarks (Figure 4.b) the results of CMS and G1 are close
(they differ in the average reduction of memory consumption by 1.1%). Although
CMS has the best memory usage reduction in Avrora, Fop, and Luindex, for the
rest of the benchmarks, G1 works better. Shenandoah reduces the memory usage
by an average of about 35% less than G1; this value is 11% for ZGC.

In B2, memory reduced not more than 65% after garbage collection by the
GCs (since most of the objects, held in a hashmap data structure, are still
alive). However, ZGC is the preferred solution in almost 90% of experiments in

12 S. Tavakolisomeh et al.

Fig. 4. Memory usage reduction (%) after GC.

B2. Finally, in the PetClinic application (Figure 4.d), all the GCs reduced the
memory usage by around 24%. However, G1 is the GC that performed better.

5.3 Discussion

We use the data of previous experiments regarding GC performance metrics to
find the best GC solution for applications categorized as being CPU-intensive
or I/O-intensive.

Throughput In about 57% of CPU-intensive applications, CMS is the pre-
ferred GC regarding throughput. ZGC, G1, and Shenandoah have an acceptable
throughput in about 20%, 13%, and 10% of the applications, respectively. For
I/O-intensive applications, CMS has the best performance regarding throughput
in almost 86% of applications; the remaining 14% are best served with ZGC.

Pause-time In about 97% of CPU-intensive and in all I/O-intensive applica-
tions, ZGC achieves the minimum pause time.

Memory Usage We evaluate memory usage before and after garbage collection.
In 24 out of 30 CPU-intensive applications, CMS is the best GC, and for I/O-
intensive category, CMS and Shenandoah are equally selected as the leading GCs
regarding average memory utilization before garbage collection.

Regarding the heap usage reduction after garbage collection, in the CPU-
intensive category, G1 is the leading GC in both DaCapo and Renaissance bench-
mark suites. However, ZGC is the GC that reduces most the amount of heap
usage in B2. Also, as shown in Figure 4, for the PetClinic application, G1 re-
duced the heap utilization the best. According to the results, G1 is the best
solution regarding average memory reduction for about 57% of applications in
CPU-intensive category. In the I/O-intensive category, G1 and CMS could re-
duce the heap usage in around 43% of benchmarks. The results match one of
the main design principles in G1. G1 attempts to reclaim the heap spaces with
the most garbage [7].

Best GC Table 3 shows the best GC solution selected based on the all evaluation
results regarding each GC performance metric both for CPU-intensive and I/O-
intensive applications.

Selecting a GC for Java Applications 13
Table 3. Summary: The best GC solutions regarding performance metrics for CPU-
intensive and I/O-intensive categories.
Category Throughput Pause Time Heap Usage Before GC Heap Usage Reduction (after GC)

CPU-intensive CMS ZGC CMS G1
I/O-intensive CMS ZGC CMS / Shenandoah G1 / CMS

6 Conclusion
Big data and Cloud services require a high amount of memory. A GC is re-
sponsible for allocating and releasing the memory used by such applications
automatically. Although there is a default GC available in the Java run-time
system, changing the default GC based on the application’s requirements leads
to better performance.
In this work, we perform a study on CMS, G1, Shenandoah, and ZGC GCs
using: i) the Renaissance and DaCapo benchmark suites, ii) an application that
we developed (called B2) that examines GCs cost with a focus on read and write
barriers, and iv) a real-world Spring Boot based application called PetClinic.

Having the results of GCs’ behavior regarding the performance metrics we
considered (throughput, pause time, and memory usage), while taking into ac-
count an application category (CPU-intensive or I/O-intensive), we indicate the
best GC solution as well as a methodology for any user to maximize throughput,
minimize pause time, or minimize memory usage in any application.

References
1. Apache jmeter, https://jmeter.apache.org/
2. Blackburn, S.M., et al.: The dacapo benchmarks: Java benchmarking development

and analysis. In: Proceedings of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications. pp. 169–190
(2006)

3. Bruno, R., Ferreira, P.: A study on garbage collection algorithms for big data
environments. ACM Computing Surveys (CSUR) 51(1), 1–35 (2018)

4. Bruno, R., Oliveira, L.P., Ferreira, P.: Ng2c: pretenuring garbage collection with
dynamic generations for hotspot big data applications. In: Proceedings of the 2017
ACM SIGPLAN International Symposium on Memory Management. pp. 2–13
(2017)

5. Chen, M., Mao, S., Liu, Y.: Big data: A survey. Mobile networks and applications
19(2), 171–209 (2014)

6. Concurrent mark sweep (cms) collector, https://docs.oracle.com/en/java/javase/11/
gctuning/concurrent-mark-sweep-cms-collector.html

7. Detlefs, D., Flood, C., Heller, S., Printezis, T.: Garbage-first garbage collection.
In: Proceedings of the 4th international symposium on Memory management. pp.
37–48 (2004)

8. Flood, C.H., Kennke, R., Dinn, A., Haley, A., Westrelin, R.: Shenandoah: An open-
source concurrent compacting garbage collector for openjdk. In: Proceedings of the
13th International Conference on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools. pp. 1–9. ACM, New York,
NY, USA (2016)

9. Gog, I., Giceva, J., et al.: Broom: Sweeping out garbage collection from big data
systems. In: 15th Workshop on Hot Topics in Operating Systems (HotOS {XV})
(2015)

10. Grgic, H., Mihaljević, B., Radovan, A.: Comparison of garbage collectors in java
programming language. In: 2018 41st International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO). pp.
1539–1544 (2018)

11. Jones, R., Hosking, A., Moss, E.: The Garbage Collection Handbook: The Art of
Automatic Memory Management. Chapman & Hall/CRC, 1st edn. (2011)

14 S. Tavakolisomeh et al.

12. Jones, R.E.: Garbage collection: algorithms for automatic dynamic memory man-
agement. John Wiley and Sons (1996)

13. Lengauer, P., Bitto, V., Mössenböck, H., Weninger, M.: A comprehensive java
benchmark study on memory and garbage collection behavior of dacapo, dacapo
scala, and specjvm2008. In: Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering. pp. 3–14 (2017)

14. Nguyen, K., Fang, L., Xu, G., Demsky, B., Lu, S., Alamian, S., Mutlu, O.: Yak: A
high-performance big-data-friendly garbage collector. In: 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementation. pp. 349–365 (2016)

15. Ossia, Y., Ben-Yitzhak, O., Goft, I., Kolodner, E.K., Leikehman, V., Owshanko, A.:
A parallel, incremental and concurrent gc for servers. In: Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language design and implementation.
pp. 129–140 (2002)

16. Petclinik application (2007), https://projects.spring.io/spring-petclinic/
17. Pizlo, F., Frampton, D., Petrank, E., Steensgaard, B.: Stopless: A real-time garbage

collector for multiprocessors. In: Proceedings of the 6th International Symposium
on Memory Management. p. 159–172 (2007)

18. Pizlo, F., Petrank, E., Steensgaard, B.: A study of concurrent real-time garbage
collectors. ACM SIGPLAN Notices 43(6), 33–44 (2008)

19. Printezis, T., Detlefs, D.: A generational mostly-concurrent garbage collector. In:
Proceedings of the 2nd international symposium on Memory management. pp.
143–154 (2000)

20. Prokopec, A., et al.: On evaluating the renaissance benchmarking suite: Variety,
performance, and complexity. arXiv preprint arXiv:1903.10267 (2019)

21. Prokopec, A., et al.: Renaissance: benchmarking suite for parallel applications on
the jvm. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 31–47. ACM (2019)

22. Pufek, P., Grgić, H., Mihaljević, B.: Analysis of garbage collection algorithms and
memory management in java. In: 2019 42nd International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics (MIPRO).
pp. 1677–1682 (2019)

23. Java garbage collection basics, https://www.oracle.com/webfolder/technetwork
/tutorials/obe/java/gc01/index.html

24. Sewe, A., Mezini, M., Sarimbekov, A., Binder, W.: Da capo con scala: Design and
analysis of a scala benchmark suite for the java virtual machine. In: Proceedings of
the 26th Conference on Object-Oriented Programming, Systems, Languages and
Applications. pp. 657–676. OOPSLA ’11, ACM, New York, NY, USA (2011)

25. Tene, G., Iyengar, B., Wolf, M.: C4: The continuously concurrent compacting col-
lector. In: Proceedings of the international symposium on Memory management.
pp. 79–88 (2011)

26. Ungar, D., Jackson, F.: Tenuring policies for generation-based storage reclamation.
ACM SIGPLAN Notices 23(11), 1–17 (1988)

27. Xu, L., Guo, T., Dou, W., Wang, W., Wei, J.: An experimental evaluation of
garbage collectors on big data applications. Proc. VLDB Endow. 12(5), 570–583
(2019)

28. Zgc: A scalable low-latency garbage collector (2018),
https://openjdk.java.net/jeps/333

29. Zhao, W., Blackburn, S.M.: Deconstructing the garbage-first collector. In: Proceed-
ings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments. pp. 15–29 (2020)

