
Photons: Lambdas on a diet
Vojislav Dukic, Rodrigo Bruno, Ankit Singla, Gustavo Alonso

Systems Group

Dept. of Computer Science

ETH Zürich

Abstract
Serverless computing allows users to create short, state-

less functions and invoke hundreds of them concurrently to

tackle massively parallel workloads. We observe that even

though most of the footprint of a serverless function is fixed

across its invocations — language runtime, libraries, and

other application state — today’s serverless platforms do

not exploit this redundancy. Such an inefficiency has cascad-

ing negative impacts: longer startup times, lower through-

put, higher latency, and higher cost. To mitigate these prob-

lems, we have built Photons, a framework leveraging work-

load parallelism to co-locate multiple instances of the same
function within the same runtime. Concurrent invocations

can then share the runtime and application state transpar-

ently, without compromising execution safety. Photons re-
duce function’s memory consumption by 25% to 98% per

invocation, with no performance degradation compared to

today’s serverless platforms.We also show that our approach

can reduce the overall memory utilization by 30%, and the

total number of cold starts by 52%.

CCS Concepts
• Computer systems organization → Cloud comput-
ing; • Software and its engineering→ Virtual machines.

Keywords
serverless computing, shared runtime, workload collocation

ACM Reference Format:
Vojislav Dukic, Rodrigo Bruno, Ankit Singla, Gustavo Alonso. 2020.

Photons: Lambdas on a diet. InACM Symposium on Cloud Computing
(SoCC ’20), October 19–21, 2020, Virtual Event, USA. ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3419111.3421297

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SoCC ’20, October 19–21, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8137-6/20/10.

https://doi.org/10.1145/3419111.3421297

1 Introduction
Serverless computing promises massive parallelism at low

cost by executing functions (tasks) in lightweight containers

instead of conventional, longer-term resource allocationwith

virtual machines. Serverless functions are short-lived, state-

less operations programmed in easy-to-deploy, high-level

languages such as JavaScript, Python, or Java.

Despite the name, serverless functions do use a server.

When a function is invoked by an event, e.g., an HTTP re-

quest arrival or a timer trigger, the cloud provider allocates

a container with a predefined amount of CPU and memory

resources. After resource allocation, the container initializes

a runtime (e.g., a Python runtime or a Java Virtual Machine)

with all the necessary application-specific libraries, code, and

data needed to process the event.

By avoiding static resource allocation in large chunks (like

VMs) and being able to scale quickly, serverless platforms

achieve high performance and low overall cost for bursty

event-driven applications, like Web workloads, or those that

exploit massive parallelism, like data analytics. The nature

of these workloads often results in numerous concurrent

executions of the same function [54]. Although serverless

computing provides a significant efficiency leap forward com-

pared to more traditional platforms, there is still substantial

room for improvement.

Today’s serverless platforms initialize and schedule each

invocation separately [18, 22], even when numerous invoca-

tions execute the same code and need the same environment.

This strict isolation causes two major inefficiencies: (a) there

is no memory sharing across invocations, which increases

the overall memory utilization; and (b) each invocation has

to initialize its own runtime and application state, which

prolongs the execution time.

We argue that this strict isolation is not essential for the

safe concurrent execution of the same function. Since parallel
invocations of the same function can trust each other, they

can be collocated and share an execution context, if we

can: (a) ensure safe execution by separating their state / data

from each other; and (b) scale resources appropriately such

that different concurrent invocations suffer minimal or no

resource contention.

https://doi.org/10.1145/3419111.3421297
https://doi.org/10.1145/3419111.3421297

SoCC ’20, October 19–21, 2020, Virtual Event, USA Vojislav Dukic, Rodrigo Bruno, Ankit Singla, Gustavo Alonso

Leveraging this observation, we present Photons: an ultra-

lightweight execution context based on runtime and app-

state virtualization for serverless functions.
1 Photons provide

the same serverless abstractions as today’s platforms while

allowing safe runtime sharing for applications that use the

large scale parallelism of serverless to concurrently runmany

instances of the same operation. Photons leverage runtime-

level isolation to provide automatic data separation for col-

located invocations of the same function, while still enforc-

ing strict memory isolation across different functions using

existing virtualization technology like Docker [48] or Fire-

cracker [22]. For a Java Virtual Machine (JVM) target
2
, we

present an implementation that automatically separates the

private state of collocated invocations and allows transparent

sharing of the shareable application state. We discuss how

the same approach could be easily implemented for other

popular runtimes, such as those of Python and JavaScript.

We also show how, by determining the invocation-specific

resource footprint of a function, resources can be appropri-

ately provisioned such that concurrent executions sharing

an environment do not suffer from resource contention.

We implement photons in OpenWhisk, an open-source

serverless platform, and demonstrate their benefits.
3
Our ex-

periments (§5) show that photons reduce memory consump-

tion by 25% to 98% per invocation for common serverless

workloads. Using simulations with traces from the Microsoft

Azure serverless infrastructure [54], we demonstrate that

photons can reduce the overall cluster memory utilization by

30%, while reducing the total number of (slow) cold starts by

52%. All of our results account for the small overheads we

incur to enforce data separation for collocated invocations.

2 Motivation
We identify the inefficiencies in today’s serverless platforms

when invoking the same function concurrently. We then

quantify the extent to which sharing the execution context

across such invocations can overcome these inefficiencies.

Finally, we provide evidence of the widespread use of work-

loads that can benefit from context sharing.

2.1 Inefficiencies in today’s platforms
The first generation of serverless computing currently de-

ployed by major cloud providers came with many ineffi-

ciencies [39]. Recognizing the potential of these platforms,

many proposals extend serverless computing by addressing

questions such as how to communicate among serverless

functions [19, 43], how to deploy data analytics workloads

1
A photon is a mass-less, light-speed particle, hence the name.

2
We chose the JVM because it is a complex target that supports multiple

languages — Java, Scala, Kotlin, and Groovy, among others.

3
To support future work, we release our source code: https://github.com/

rodrigo-bruno/openwhisk-runtime-java.

on serverless platforms [50, 53], and even how to build new

serverless platforms [2, 14, 16]. Our work complements these

efforts and the other related work in this exciting area (§3)

by focusing on the following inefficiencies of serverless in-

frastructures:

Runtime memory overhead: For a serverless function

with a small amount of invocation-specific state, e.g., a REST
API call, an entire runtime of tens of MB is loaded to process

a few KB of invocation data. Each concurrent invocation

uses its own copy of the entire execution context and incurs

a large overhead loading the runtime.

Redundant data: Consider a machine learning inference

application processing multiple inputs in parallel. Each infer-

ence request requires the pre-trained model, often hundreds

of MB, to be fetched from storage. A lack of model sharing

across concurrent invocations introduces substantial over-

head in terms of function execution time, memory use, and

network traffic for the necessary I/O.

Startup delay: Loading a fresh runtime for each invocation

introduces a startup delay. This “cold start” can last from

100 ms to a couple of seconds on today’s platforms [34, 55].

Even the fastest function startup solutions prevent many

low-latency workloads from being deployed atop serverless

infrastructure because the startup overhead is significantly

larger compared to useful work (< 10 ms) per invocation.

Poor multiplexing: Although serverless platforms present

a significant leap forward compared to VMs in terms of re-

source utilization, they still suffer from a similar problem —

each invocation’s allocation of CPU and memory resources

is fixed during its execution. For functions performing sig-

nificant I/O, being able to interleave concurrent invocations

across shared resources would improve resource utilization

even further and reduce cost.

2.2 Context sharing opportunity
We illustrate the value of context sharing by analyzing an im-

age classification task
4
running on top of Amazon’s Lambdas.

Each function fetches an image from Amazon S3 cloud stor-

age and uses TensorFlow running in either Java or Python

to classify it (details in §5). Figure 1 shows the memory con-

sumption of each invocation. The runtime, libraries, and

application state (the machine learning model) use most of

the memory, with only 6% and 29% of the memory being

specific to the invocation for Java and Python, respectively.

In this application, everything can be shared apart from the

invocation-specific state.

4
There is broad interest in running such workloads on serverless platforms:

image classification is the “hello world” task of serverless machine learn-

ing, used in serverless tutorials by each of Amazon AWS [10], Microsoft

Azure [3], and Google GCP [11].

https://github.com/rodrigo-bruno/openwhisk-runtime-java
https://github.com/rodrigo-bruno/openwhisk-runtime-java

Photons: Lambdas on a diet SoCC ’20, October 19–21, 2020, Virtual Event, USA

 0

 50

 100

 150

 200

 250

 300

Runtime Libraries Shared Local

M
e
m

o
ry

 (
M

B
)

Java
Python

Figure 1: The breakdown of memory use for a serverless image
classification task: most of the memory is used for the runtime,
libraries, and the machine learning model, which remain the
same for all invocations.

This further means that if concurrent executions are collo-

cated on the same machine, they have to allocate the share-

able context only once. To avoid resource contention, only a

limited number of invocations, 𝐶 , should share an execution

context. The concurrency parameter 𝐶 is defined as

⌊
𝑐𝑎𝑣

𝑐𝑖𝑛𝑣𝑜

⌋
,

𝑐𝑎𝑣 is the amount of resources available on a particular ma-

chine, and where 𝑐𝑖𝑛𝑣𝑜 is the resource requirements per invo-

cation. Collocating more than 𝐶 invocations require a new

execution context to be allocated on another machine. Note

that𝐶 depends on the amount of resources available and can

change over time. Such sharing would provide substantial

memory savings, as in Figure 2, where we show results for

the increasing number of concurrent image classification

invocations 𝑛, with 𝐶 = 4. The results are normalized to the

memory usage of one AWS Lambda invocation. Ideally, every

set of 𝐶 concurrent invocations would share all shareable

state, using new memory only for private invocation state.

Asymptotically, today’s serverless frameworks use 3.3× and

2.1× more memory than necessary for the Java and Python

implementations, respectively.

Besides the memory footprint reduction, collocated invo-

cations would see an improvement in execution time as well,

since the shared context has to be created only for the first

invocation, and is available immediately to the other 𝐶 − 1
invocations, avoiding the cold start.

2.3 The limits of context sharing
The degree to which a particular function can benefit from

context sharing depends on what fraction of its memory use

is invocation specific. If a function’smemory use consists of 𝑃

units of invocation-specific memory and 𝑆 units of shareable

memory (
𝑃
𝑆
= 6

94
for the Java classifier in Fig. 1), then the

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

AWS Lambda

Java ideal

Python idealN
o
rm

a
liz

e
d
 m

e
m

o
ry

u
ti

liz
a
ti

o
n

Functions co-executed

Figure 2: Today’s platforms (AWS Lambda here) allocate each
instance of a function in its own container. If we were to exploit
the redundancy shown in Figure 1 by sharing the execution
context across a number of concurrent functions (𝐶 = 4 here),
memory utilization would be lower.
memory-use efficiency (𝛿) is defined as:

𝛿 =
𝑀𝑒𝑚𝑜𝑟𝑦 (𝐴𝑊𝑆 𝐿𝑎𝑚𝑏𝑑𝑎)

𝑀𝑒𝑚𝑜𝑟𝑦 (𝐼𝑑𝑒𝑎𝑙) =
𝑃 + 𝑆

𝑃 + 𝑆/𝐶
Note here the obvious similarities to Amdahl’s law [24] — in

essence, we are doing for memory-use what partially-parallel

processing does for compute. We make three observations

from the above expression:

• 𝛿 does not depend on system load, but only on the propor-

tion of private and shareable memory, and the maximum

number of invocations per shared context, 𝐶 .

• If private memory dominates the memory consumption,

𝛿 → 1, implying no benefit from shared context.

• If shared memory dominates, 𝛿 → 𝐶 , implying a large,

𝐶× memory efficiency improvement.

2.4 Concurrent invocations are common
Context sharing is only possible if there are multiple invo-

cations of the same function executing at the same time.

However, this is the case for many serverless workloads.

Due to its use of short, ephemeral functions, and the possi-

bility of invoking a large number of these in parallel, server-

less computing is being used for both event-driven work-

loads, where a VM would be idle most of the time, and for

massively parallel, short-term compute, like in data analyt-

ics. Example use cases include Internet of Things and edge

computing [33], parallel data processing [41], video process-

ing [35], and Web backend APIs [6]. A common property of

these workloads is that they are bursty — they make a large

number of invocations of a few functions to either tackle

bursts in event-driven workloads or exploit data parallelism

for analytics.

The ubiquity of invocation concurrency is concretely cap-

tured in a recent study of serverless workloads on the Mi-

crosoft Azure production serverless platform [54]. The study

SoCC ’20, October 19–21, 2020, Virtual Event, USA Vojislav Dukic, Rodrigo Bruno, Ankit Singla, Gustavo Alonso

shows that 1% of all functions is responsible for more than

90% of all invocations, and as we show later (§5), the ob-

served invocation arrival frequency, execution time distribu-

tion, and overall cluster load, give sufficient opportunity for

highly effective context sharing.

3 Design space and related work
Today’s serverless platforms use specialized container sys-

tems [9, 13, 22] to cut startup times to around 100 ms. While

this is a substantial improvement over traditional virtualiza-

tion using, e.g., KVM or QEMU, this long startup time is still

prohibitive for latency-sensitive functions. Further, even the

new container technologies do not ameliorate the drawbacks

discussed in §2.1. We discuss several proposed solutions to

such issues.

Warm containers: On today’s platforms, after an invoca-

tion finishes, its container is not immediately destroyed, but

rather kept in memory until a timeout occurs, or the memory

is needed for another container [1, 20, 56]. This enables a

future invocation of the same function to reuse the runtime,

and application-specific resources like code cache, libraries,

and files. Thus, an invocation that arrives when a warm

container is still in memory experiences a fast startup, with

minimal initialization overhead. Note, however, that run-

time and data reuse does not imply sharing — invocations

that are active at the same time do not share the runtime or

application data.

Photons are an extension of reusable warm containers.

They allow safe sharing of the same container among mul-

tiple concurrent invocations of the same function. While

current reusable containers can handle one invocation at a

time, which causes unnecessary memory duplication, pho-
tons allow sharing runtimes, libraries, and application data

across concurrent collocated invocations.

Checkpointing and process forking: One could fork a

warm runtime to execute an invocation when it arrives. In-

spired by Android’s Zygote processes [17], this strategy has

been explored in prior work [15, 23, 30, 34, 51], and can

cut startup time to 2 ms as well as share the runtime mem-

ory using the copy-on-write mechanism. However, forking

processes that are not designed with the fork operation in

mind, like many runtimes and binaries, is also challenging

from a correctness and consistency perspective. Thus, these

proposals are restricted to a limited set of environments

and runtimes, and as a consequence, reduce compatibility

compared to general-purpose approaches [22]. Additionally,

like warm containers, checkpointing and process forking ap-

proach does not address the sharing of application-specific

data. Lastly, unless the serverless functions and runtimes are

carefully customized, the copy-on-write mechanism used in

this approach incurs significant memory overheads (§5.6).

Trading isolation for performance:One could obtain per-
fect resource and data sharing by executing multiple invo-

cations within one container and providing runtime-level

isolation. Similar ideas have been explored in prior work [27,

28, 45]. However, this requires either forgoing isolation be-

tween functions or severely restricting applications. For in-

stance, CloudFlare, which uses this approach [7], relies on

the Javascript V8 engine’s isolation, and thus restricts appli-

cations to be purely Javascript, eschewing external libraries

or binaries. This is obviously limiting – many such libraries

are extremely popular for serverless use cases, e.g., ffmpeg
for media encoding.

Our design philosophy: We observe that serverless work-

loads often feature concurrent executions of the same func-

tion by the same tenant. These invocations are benign to-

wards each other. Today’s warm containers take limited ad-

vantage of this trust. We thus present Photons, a framework

for enabling resource sharing safely and without sacrificing

generality in terms of runtimes and types of functions. Our

approach involves separating private and shareable data for

a function and carefully enforcing the separation of only the

private data across invocations. This simple design does not

preclude further enhancement with orthogonal techniques

for reducing memory use and decreasing startup time, such

as prioritizing the loading of critical parts of the environment

on function initialization [38], pre-initializing and caching

network end-points used by containers [49], and minimizing

function memory footprint using Unikernels [44, 46, 47, 57].

4 Photons
In our framework, a Photon is a lightweight function execu-

tor that contains only the private state of a single invocation,
while benefiting from sharing a runtime and common appli-

cation state with other photons. For multiple invocations of

the same function, photons effectively push the data isolation

upwards through the stack, as shown in Figure 3, and the iso-

lation across different functions is achieved using any of cur-

rently used serverless virtualization techniques [9, 13, 22, 48].

While this yields large performance, efficiency, and cost ben-

efits (§5), it is non-trivial to achieve: we must ensure that

in sharing the execution environment, photons do not in-

terfere with either the correctness or performance of other

photons’ execution. In the following, we describe how a pho-
ton-enabled serverless platform works (§4.1), how we ensure

correct execution of photons sharing an environment (§4.2),

how shared state is identified (§4.3), and howwe avoid perfor-

mance interference (§4.4). Finally, we discuss what changes

are required on the tenant-side and the provider-side to de-

ploy Photons in the cloud (§4.5).

Photons: Lambdas on a diet SoCC ’20, October 19–21, 2020, Virtual Event, USA

Hardware

Operating System

Application Runtime

Shared State Private
State

Hardware

Operating System

Application Runtime

Container Photon

Application State

Invocation Handler Invocation Handler

Figure 3: While today’s serverless platforms use containers,
virtualizing only up to the OS layer in the stack, Photons extend
virtualization into the application runtime.

4.1 A Photon-enabled Serverless Platform
Photons are a generic primitive implementable on any server-

less platform and for arbitrary language runtimes. However,

for clarity, we describe them here in the context of our JVM

implementation running atop a modified version of Open-

Whisk [2]. OpenWhisk is a popular opensource serverless

platform, with components that control, e.g., the submission

of function invocations, the creation of containers to host in-

vocations, or the storing of results. It also provides automatic

scaling features to accommodate increasing function invoca-

tion load. Functions are registered by uploading the function

source code (for Java functions, a compiled Jar archive) and

are executed in language-specific container images that con-

tain an Invocation Handler (see Figure 3), the component

responsible for receiving requests to register and execute

functions.

Photons are designed to have a small footprint and startup

fast. To that end, we re-utilize already existing threads from

previous photons to execute by keeping an active thread

pool. During the execution, a photon can spawn multiple

threads, as well as subprocesses, similar to today’s serverless

platforms. Further, all photons within the same execution

environment share the same object heap, saving the overhead

of allocating private memory for each photon, and making it

possible for photons to easily share application state. Finally,

all photons also share the application runtime code cache,

meaning that all the optimized code produced during the

code warmup phase (including code interpretation, profiling,

and compilation to native code) benefits all photons, resulting
in faster execution.

4.2 Data isolation
Photons maintain the semantics of existing serverless run-

times: invocations are isolated, even if they share the runtime.

To provide data separation among multiple function execu-

tions within the same runtime, a write to a static field of a

program must be performed on a local, invocation-specific

copy of the field. Further, static initializers must be run in-

dependently for every new function execution, and finally,

upon the termination of function execution, its local field

copies must be deleted to avoid memory leaks.

Function loader: To support data separation, preserve the

current serverless abstraction, and allow users a smooth tran-

sition to Photons, we implement a function loader that inter-

cepts and instruments the user bytecode. The function loader

automatically inserts appropriate operations and modifies

access to global static program elements. The bytecode trans-

formation is performed at class loading time by installing

a class loader based on Javassist [32]. This class loader will

load all application classes and ensure that all static fields are

properly isolated. Note that our approach does not modify

the runtime – the function loader is a just wrapper around

JVM and is responsible for: (1) bytecode transformation; (2)

initialize static elements; and (3) cleanup private state.

1. Code transformation: Private state (local copies of static
fields) is built by replacing all static fields in the application

code by static tables that return a local field copy given a

unique function execution identifier (the generation of this

identifier is discussed in §4.3). In addition to replacing all

static field declarations, all reads and writes are also mod-

ified to use the local version of the field that is accessible

through the table. Final static fields are ignored as no further

modifications are possible, making it impossible to violate

data separation through these.

Algorithm 1 is a simplified version of the transformations

used to isolate private state. First, static tables are introduced,

one for each static field (line 15). Then, for the class static

initializer (line 16), constructors (line 18), and methods (line

20), all static field accesses are forwarded through the static

table (line 7 and 9). We omit the full implementations of

the two Convert_Map_* functions, but these convert a field

write, o.f = v, into o.f.put(photon_id, v), and a field read, v
= o.f, into v = o.f.get(photon_id), respectively. Finally, static
fields are removed (line 22).

2. Running private initializers: A class static initializer is

composed of a sequence of instructions that is guaranteed by

the JVM to be executed before an instance of the respective

class is created, a static field is accessed, or a static method

is invoked. By design, a static initializer is only run once

for the entire lifetime of the application execution. Thus, to

ensure data separation across multiple function invocations

within the same runtime, static initializers need to be exe-

cuted independently for each. This is necessary to ensure

that all local versions of static fields have been declared in

the respective tables and have been properly initialized.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Vojislav Dukic, Rodrigo Bruno, Ankit Singla, Gustavo Alonso

Algorithm 1 Data Separation at Class Loading Time

1: static_initializers← []
2: procedure Isolate_Field_Accesses(code_block)
3: for field_access in code_block do
4: field← field_access.𝑓 𝑖𝑒𝑙𝑑
5: if isStatic(field) and notFinal(field) then
6: if isWrite(field_access) then
7: 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑀𝑎𝑝_𝑊𝑟𝑖𝑡𝑒 (field_access)
8: else
9: 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑀𝑎𝑝_𝑅𝑒𝑎𝑑 (field_access)
10: procedure Load_Class(class)
11: fields_to_remove← []
12: for field in class do
13: if isStatic(field) and notFinal(field) then
14: fields_to_remove.𝑎𝑑𝑑 (field)
15: class.𝑎𝑑𝑑𝐹𝑖𝑒𝑙𝑑 (𝑀𝑎𝑝.𝑐𝑙𝑎𝑠𝑠, field.𝑛𝑎𝑚𝑒 ())
16: 𝐼𝑠𝑜𝑙𝑎𝑡𝑒_𝐹𝑖𝑒𝑙𝑑_𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠 (class.𝑠𝑡𝑎𝑡𝑖𝑐_𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑟)
17: for constructor in class do
18: 𝐼𝑠𝑜𝑙𝑎𝑡𝑒_𝐹𝑖𝑒𝑙𝑑_𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠 (constructor)
19: for method in class do
20: 𝐼𝑠𝑜𝑙𝑎𝑡𝑒_𝐹𝑖𝑒𝑙𝑑_𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑠 (method)
21: for field in fields_to_remove do
22: class.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑓 𝑖𝑒𝑙𝑑))
23: initializer← 𝐶𝑙𝑜𝑛𝑒 (class.𝑠𝑡𝑎𝑡𝑖𝑐_𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑟)
24: for field_access in initializer do
25: field← field_access.𝑓 𝑖𝑒𝑙𝑑
26: if isFinal(field) and isWrite(field_access) then
27: initializer.𝑟𝑒𝑚𝑜𝑣𝑒 (field_access)
28: static_initializers.𝑎𝑑𝑑 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑟)

To this end, we clone the class static initializer into a

method that can be invoked every time a new photon is

created (line 23). Also, we remove the initialization of static

final fields from the cloned static initializer as these should

only be initialized once across function invocations (line 27).

3. Cleaning up private state: When sharing the applica-

tion runtime, we must clean up each function execution’s

private state to avoid memory leaks (i.e., keeping reachable
but unused memory alive). In particular, all local versions of

static fields need to be removed from the respective tables in

order to clean the state of an already finished function exe-

cution. To achieve that automatically, we make use of weak

tables. A weak table is a common programming language

abstraction that keeps a value reachable as long as there is

a strong reference to the corresponding key. By relying on

weak tables to store local static fields, we rely on garbage

collection to automatically clean up unreachable local fields

whenever a function execution context becomes unreach-

able (which occurs upon the termination of the function

execution).

Limitations: Class loaders and bytecode are usually sub-

ject to order and assumptions, which might be invalidated

if the application itself installs yet another class loader, or

uses reflection. In these situations, users must modify the

code manually and change access to static fields. From our

experience, such changes are needed only infrequently and

entail only small, localized code edits. In our test workloads,

manual changes were required for only one library, where

fewer than 10 lines of code across two classes in the MinIO

library needed to change, as they used reflection to access

static fields.

4.3 Sharing the Application State
Together with data isolation, it is also important to allow

collocated invocations to efficiently share state. Since the

shareable state will be visible (for both reads and writes) to

multiple photons at the same time, we provide a set of abstrac-

tions to help developers manage the shared state. Besides

allowing developers to share application state, these primi-

tives can also be used to coordinate access to shared resources,
like the file system. We keep these abstractions deliberately

simple, such that they are sufficient to enable photons to share
application state; more advanced and developer-friendly ab-

stractions may, of course, be built atop these.

Shared object store: This is a key-value map for shared

objects. This map resides in the same address space as all

concurrent function invocations and can be used to share

data with a small performance overhead.

Exclusive access: This is a locking primitive that can be

used to coordinate accesses to the shared object store. For

example, when a specific object needs to be inserted into the

shared object store, a lock on the store can be acquired to

ensure no data races. In addition, it is also possible, using

the locking primitive, to easily build fine-grained read/write

locks to further reduce contention when accessing specific

objects in the shared object store.

Unique identifier: This unique photon identifier can be

used to create a private temporary state. For example, if the

function needs to use a temporary file in the local file system,

the photon identifier could be used to identify a private file

or folder.

Listing 1 presents a simple example of a Java photon func-

tion class. The main method contains three arguments: (a) a

JSON map with function arguments, (b) an object store used

to share state with other photons, and (c) an identifier. Line

14 shows how the photon identifier can be used to create

a private temporary file and lines 16 to 23 show an exam-

ple of how a shared resource can be initialized or fetched

Photons: Lambdas on a diet SoCC ’20, October 19–21, 2020, Virtual Event, USA

from the shared object store. For simplicity, we make use

of synchronized blocks available in Java but more complex

locking schemes could also be used (fine-grained locking,

for example). Other languages also provide similar locking

primitives.

1 class MyServerlessFunction {
2 private static String run(
3 MyModel model,
4 String input,
5 File pvtfile) { ... }
6

7 public static JsonObject main(
8 JsonObject args,
9 Map<String, Object> store,
10 String photonId)
11 {
12 MyModel model;
13 String input = args.getString("input");
14 File pvtfile = new File("/tmp/" + photonId);
15

16 synchronized (store) {
17 if (!store.containsKey("model")) {
18 model = new MyModel(...);
19 store.put("model", model);
20 } else {
21 model = store.get("mode");
22 }
23 }
24

25 String result = run(model, input, pvtfile);
26 JsonObject response = new JsonObject();
27 response.addProperty("predicted", result);
28 return response;
29 }}

Listing 1: Example of a Photon function.

External isolation: Photons provide data isolation only

within the runtime, while collocated invocations can still

share the same file system without restrictions. This ap-

proach eases the data sharing across invocations, but at the

same time creates a compatibility issue with today’s plat-

forms. For instance, if a function changes a global Linux

environment variable, that creates a race condition across

invocations and causes correctness issues.

To avoid external conflicts and inconsistencies, users can

leverage exclusive access primitives and unique identifiers

provided by Photonswithin the runtime to coordinate changes

to the external system elements.

4.4 Vertical and horizontal scaling
Since photons remove the strict performance isolation across

collocated invocations that is present on major serverless

platforms, it is necessary to address potential resource bot-

tlenecks and performance interference.

Vertical scaling: Using photons, we concentrate more func-

tion invocations in the same application runtime. While 𝑛

invocations do not require 𝑛 times the resources, as would

be the case with separate containers, some scale-up is nec-

essary. To scale automatically, Photons require two input

parameters:

• Initial container size: Amount of CPU and memory

required for every fresh container that hosts the first

invocation with the entire runtime.

• Container increment: Additional CPU and memory re-

quired for every future collocated invocation.

As we show experimentally in §5.4, the maximum number

of collocated invocations depends on the resources required

per invocation and the current resource availability on a

particular physical machine. Our experimental results align

with the straightforward analysis in §2.3.

It is also important to allow users to specify requirements

for CPU and memory separately because many workloads

require little private state (memory) with significant demand

for CPU cycles, e.g., media conversion, or machine learning

inference.

Increasing the resource provisioning of a running con-

tainer is widely supported by mainstream container technol-

ogy, but these resource updates must also be propagated to

the application runtime. Such vertical scalability of applica-

tion runtimes is still an active research topic, but recent work

has shown how JVM memory can be scaled up and down

in such contexts [29]
5
. Some runtimes, such as JavaScript’s,

already support vertical memory scaling.

Horizontal scaling: Photons support a scale-outmechanism

similar to today’s serverless functions. For an incoming invo-

cation, if a warm container exists, but the physical machine

underneath does not have sufficient resources for a new pho-
ton, the invocation will be scheduled on another machine

where a new container will be created.

Limitations: If a particular invocation requires more CPU

or memory than initially estimated, in today’s serverless plat-

forms, that would degrade only its own performance. How-

ever, while using Photons, such an outlier can have a negative
impact on other collocated invocations. This emphasizes the

importance of correct resource requirement estimation and

puts more responsibility on the users. However, note that

cloud users already resolve similar provisioning challenges

in systems like traditional Web servers, databases, and other

5
This proposal has already been partially integrated into JDK and is now

a feature in the mainstream Oracle JVM 9, and can be enabled by simply

using a flag [12]. A fully patched JVM can be found here: https://github.

com/jelastic/openjdk

https://github.com/jelastic/openjdk
https://github.com/jelastic/openjdk

SoCC ’20, October 19–21, 2020, Virtual Event, USA Vojislav Dukic, Rodrigo Bruno, Ankit Singla, Gustavo Alonso

applications that process multiple requests within the same

memory space and without explicit performance isolation.

4.5 Photon deployment in the cloud
Deploying Photons in the cloud requires various changes

both at the tenant as well as provider side.

Tenant side: Soft memory isolation provided by Photons
does not suit all serverless workloads, e.g., when sensitive

data is processed in each invocation or a function executes

untrusted code. We thus depend on the cloud tenants to mark

their functions as Photons-friendly, the default being other-

wise. Besides providing a Photon-friendly flag, tenants have

to benchmark their workload to estimate CPU and memory

requirements and provide them to the cloud provider, simi-

lar to today’s serverless platforms. Also, when deploying a

Photon function to the cloud, it is the user’s responsibility to

compile the function using the function loader we provide,

to isolate global program elements as described in §4.2.

Provider side: Cloud providers have to modify their server-

less scheduling policy to support Photons. They have to track
active containers for every invocation that is currently run-

ning and collocate new invocations within active containers

if the physical machine underneath has enough resources

for CPU and memory increments. Cloud providers already

implement a similar policy for tracking warm containers,

so extending existing schedulers with Photon should be a

minimal overhead.

4.6 Putting it all together
We summarize the end-to-end integration of a photon into

serverless platforms as follows:

• The developer uses the abstractions provided (§4.3) to

specify and manage state that is shared across photons.
• Photons automatically ensure data separation (§4.2).

• The developer profiles the application and identifies its

resource requirements for the first invocation, and for

successive invocations in the same execution context. We

show how this can be done experimentally (§5.4).

• The service provider uses containers that haven’t reached

the concurrency limit to run additional invocations of the

same function.

• The service provider vertically scales up container and

runtime resources as more concurrent invocations execute

within a shared container/runtime.

4.7 Other Application Runtimes
Besides Java, other languages such as Python and JavaScript

are also very popular for developing serverless applications.

We thus discuss how photons could be implemented for lan-

guages other than Java.

Implementing support for photons requires only two ele-

ments: (a) data separation, transparent to developers; and (b)

abstractions to allow developers to share application state.

JavaScript is single-threaded, and therefore, data separation

is provided by design. Consider, for instance, the V8 runtime,

one of the most popular JavaScript engines, developed by

Google. In V8, JavaScript threads run inside an Isolate, a sepa-

rate memory region owned by a specific thread. Photons are

conceptually similar to V8 isolates with several differences:

Photons share the garbage collector and code cache, and also

allow for sharing program components between collocated

invocations.

To support Photons atop V8, one would need to extend

V8 with a shared data store to share operational data across

invocations. Further, loading each invocation in a separate

Isolate eliminates the need for code transformation because

data separation is provided by the Isolates themselves. How-

ever, Isolates and separatedmemory heaps complicate library

sharing. Thus, either we trade library sharing for no code

transformation, or we apply similar techniques as for JVM

and host multiple invocations within the same isolate using

code transformation.

Python does not support memory isolates and is similar to

Java, i.e., data separation must be enforced so that the access

to global variables and fields is restricted to the respective

photon. Creating the shared object storage is also very similar

to what we proposed.

Thus, there are no major roadblocks to implementing pho-
tons for other application runtimes. Photons rely on simple

abstractions that can be easily found in most application

runtimes. Besides, the design and implementation of photons
did not require any modification to the underlying applica-

tion runtime (JVM in this case) further demonstrating that

photons can be implemented as a framework portable across

different runtime implementations.

5 Evaluation
We evaluate several aspects of photons across five test work-
loads (§5.1) on a small testbed. In addition, we use large-scale

simulations with production traces to evaluate the cluster-

wide impact of photons. Our evaluation addresses the follow-

ing questions:

§5.2: By how much do photons cut memory consumption

compared to today’s serverless platforms? By testing

photons using production traces, we show 30% reduc-

tion in cluster-wide memory utilization.

§5.3: What benefits do photons offer in terms of reducing the

number of cold starts? Photons achieve 52-75% reduc-

tion in the number of cold starts. This is particularly

useful for latency-critical workloads that observe 3-

100× improvement in average completion time when

using photons.

Photons: Lambdas on a diet SoCC ’20, October 19–21, 2020, Virtual Event, USA

§5.4: Howdo photons scale andwhat is the impact on through-

put, response time, and cost? Photons save memory

without performance degradation. Further, if desired,

Photons also allow sacrificing the latency by 5% to

decrease the overall cost by 35%.

§5.5: What overheads does the instrumentation required

for data separation incur? On a micro-benchmark exe-

cuting only one function per container, photons cause
under 5% reduction in average throughput compared

to unmodified OpenWhisk. This small overhead is

more than compensated by the efficiencies of concur-

rent executions — all the above results already account

for this.

§5.6: What is the overhead of systems that implement mem-

ory sharing by leveraging the copy-on-write mecha-

nism? Compared to these approaches, we show that

even for relatively simple functions, photons require
7× less memory.

5.1 Experimental setup
We evaluated a mix of five diverse workloads:

Sleep(1s): We use a function that sleeps for one second as the

base case, one which largely measures the overheads of the

infrastructure where the functions are invoked.

REST API (HTTP request): We implement representative API

calls from a microservice benchmark [36]. These calls usu-

ally have a very short execution time and require minimal

resources. This function simply passes a query to a backend

database, after a small data transformation.

Hash(file): We fetch a 2 MB file from MinIO storage and

hash its content. This function represents data processing

pipelines that leverage massive parallelism by partitioning

large data sets into multiple smaller chunks and invoking

one function per chunk [26, 42].

Classify(image): We run an image classification workload

given the current active research [31, 37, 40, 52] and indus-

try [4, 21] focus on analyzing and running machine learning

inference on serverless. The function loads an Inception v3

model (50 MB) from MinIO storage using the TensorFlow

library. The model is pre-trained for ImageNet classifica-

tion. After the model is loaded, each function loads an image

(4̃ KB) from storage and performs classification. Note that the

ML model can be shared across function executions because

inference does not modify it.

Transform(video): Recent work proposed using serverless

functions for implementing video transformations [25]. The

idea is to split a video file into multiple small chunks and

process each chunk in parallel. We mimic this workload by

dividing a large video file into 10 second chunks. Each func-

tion execution fetches a single chunk from MinIO storage.

We use the ffmpeg external binary to reduce the resolution

of the chunk from 1280x720 to 640x480. The ffmpeg library is
63 MB in size and can be shared across function executions.

However, this is a CPU intensive workload that creates a

large private state of 120MB by processing an input video

file of 3.4MB, and produces an output file of 1.8MB.

We evaluate two aspects of Photons: (1) the performance

of individual Photons; and (2) effects that Photons have at

the cluster scale.

Machine-local evaluation: Using a single large machine,

we show that Photons reduce the memory footprint for var-

ious workloads and scale-up without performance degra-

dation. These effects are machine-local and more machines

will not change the results as the functions are stateless, and

machines do not communicate. We deployed the five above

workloads on Apache OpenWhisk 0.9 with Photons being
executed atop JVM 8. Our setup has one OpenWhisk node

equipped with Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

with 2 sockets (8 cores each) and 252 GB of RAM. Another

node with the same configuration mimics cloud block stor-

age by running MinIO 6.0.8. The two machines communicate

over a 10 Gbps dedicated link. Each of them runs Debian 9,

with all containers being Docker 19.03.2 instances.

Cluster-wide evaluation: Since cluster-wide behavior de-
pends on the distribution of job types and sizes, their arrival

rate, etc., we use production traces published by Microsoft

Azure from their serverless platform [54] and use them in a

large scale cluster simulator we developed for this purpose.

The overall cluster utilization oscillates around 60%. Each

invocation lasts between 1 ms and 10 min with memory

requirements between 100 MB and 1800 MB. The distribu-

tion of function invocation frequency is skewed, with 1% of

the functions being responsible for 90% of all invocations.

Unfortunately, since the Microsoft study publishes only ag-

gregated data without information on individual functions,

there are two important parameters missing for fully re-

alistic simulation. First, we assume the cold start time for

each function follows a Normal distribution with a mean of

300 ms and a variance of 60 ms, based on a recent study [55].

Second, we need the amount of shareable memory across

invocations. Since the smallest serverless functions are often

simple API calls that implement simple logic atop a share-

able runtime and the size of the smallest functions in Azure

traces is around 100MB, we assume that the shareable mem-

ory for each function is also normally distributed (mean =

100 MB, variance = 20 MB). This assumption can be seen as

pessimistic given the amount of shareable memory in our

test workloads.

We simulate a cluster of 100machines with 40 GB of mem-

ory for 15 min. Using the parameters drawn from the Mi-

crosoft study, we generate 10,000 unique functions, and exe-

cute a total of 1.8 million function invocations.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Vojislav Dukic, Rodrigo Bruno, Ankit Singla, Gustavo Alonso

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

N
o
rm

.
m

e
m

o
ry

 u
ti

liz
a
ti

o
n

Concurrency factor

Baseline
Video

Image
File hashing

REST
Sleep

Figure 4: Total memory consumption of 5 types of functions
for multiple concurrent requests on our testbed. The numbers
are normalized to the case with one invocation per container
with no data sharing (baseline). The baseline performance cor-
responds to OpenWhisk default performance as well as today’s
serverless platforms.

5.2 Memory consumption
Sharing runtime and app-state across functions translates

to a reduction in per-function memory use. As discussed in

§2.3, this reduction is bounded by: (a) the maximum number

of concurrent functions executed per single container; and

(b) the fraction of shareable vs. private memory in a function.

Figure 4 shows memory utilization with and without pho-
tons. All numbers are normalized to their respective base-

lines, i.e., OpenWhisk, without photons for each workload.

The “Baseline” increases one-to-one with concurrent func-

tion executions, irrespective of the workload because the

normalization is with respect to each workload separately. In

the absence of shared contexts with photons, each execution

uses its own container. This is the behavior observed in all

major serverless platforms [18].

The limiting factor that determines the memory footprint

reduction is the concurrency factor — howmany invocations

are scheduled within the same container. As we show in §5.4,

the runtime itself is not a bottleneck and can scale up to

hundreds of concurrent invocations. However, the memory

reduction is heavily affected by the function invocation ar-

rival and the probability of two or more invocations of the

same functions being created concurrently.

For evaluating the benefits of using Photons on the cluster

memory utilization, we simulate cluster behavior using the

previously described Microsoft Azure traces. While the over-

all memory utilization oscillates around 60% using default

serverless platforms, Photons reduce the utilization by 30%
6
,

as shown in Figure 5.

This reduction does not directly reduce the used machines

by 30% because Photons does not reduce CPU consumption

6
We count the memory occupied by warm containers as free since it can be

reclaimed at any time for other functions.

0%

20%

40%

60%

80%

100%

 0 100 200 300 400 500 600 700 800 900

regular

photons

C
lu

st
e
r

u
ti

liz
a
ti

o
n

Time (s)

Figure 5: Total cluster memory utilization with and without
photon-enabled sharing of execution contexts.

significantly. However, the memory savings allow keeping

more warm containers and reduce the total number of slow

starts, as we show next.

5.3 Cold starts
Besides memory utilization benefits, photons also reduce cold
starts in two ways: (a) if an invocation is scheduled in an

already active container, the cold start is skipped; and (b)

lower memory utilization means that more containers can

be kept warm in memory.

The reduction in cold starts depends on the invocation dis-

tribution. We thus evaluate two models: (a) the invocations

are independent of each other, i.e., an invocation of a function
𝐹 does not increase the probability of another invocation of

𝐹 arriving (Poisson arrival of invocations of each function);

and (b) invocations of the same function are correlated in

a Markovian manner, as indicated in the Microsoft traces

for some functions [54]. The Markov model features more

concurrent invocations of each function, and thus obviously

allows greater opportunity for concurrent execution within

a shared context.

We couple these models with the same simulation param-

eters as in §5.2. We find that photons reduce the total number

of cold start events across all invocations by 52% compared

to regular serverless platforms
7
for the Poisson model, and

by 75% for the Markov model.

Avoiding cold start is essential for latency-critical work-

loads (< 100ms). Thus, we measure execution time improve-

ment (speedup) for a particular function invocation as the

ratio of its execution time for a regular deployment and in

a photon deployment. For every function, we then compute

the average speedup across all of its invocations and show

the results in Fig. 6. The execution time improvement de-

pends on a function invocation’s execution time. For long

7
Regular serverless platforms reuse containers when possible, thus avoiding

some cold starts. However, they do not support concurrent invocations

within the same container, and incur cold starts for invocations that arrive

when no warm container is available.

Photons: Lambdas on a diet SoCC ’20, October 19–21, 2020, Virtual Event, USA

1x

10x

100x

1000x

1 10 100 103 104 105 106

A
v
g
.
sp

e
e
d
u
p

Execution time(ms)

Figure 6: Photons reduce the total number of cold starts, even
with independent invocation arrival (Poisson), as shown here.
This leads to significant speedup, especially for short invoca-
tions. Although large invocations also avoid the cold start using
photons, relative improvement is small. The Markov model re-
sults are strictly better.

invocations, the startup time is less material, while for short

invocations, it is a substantial fraction of the total execution

time. Thus avoiding cold start leads to more than 3× speedup
on average for workloads shorter than 100 ms. For work-

loads shorter than 10ms, we see an average speedup of more

than 20×. Given that short invocations are likely to be more

latency sensitive, this large speedup is of substantial value

to such invocations. Furthermore, no invocation observes

performance degradation by using photons. In the worst case,

photons match the performance of today’s serverless plat-

forms (minus the < 5% overhead described in § 5.5).

The Azure traces used in our experiments are collected on

a busy cluster, with a wide range of workloads. If the clus-

ter utilization reduces, or the workload is suddenly skewed

toward large functions with little shareable memory, the ben-

efit of using Photons will shrink, but the performance will

never be worse compared to today’s platforms. However, if

the workload consists of a large number of tiny functions

or functions with large shareable memory, Photons should
provide substantially higher benefits in terms of memory

utilization and the number of cold start events compared to

results based the Azure workload that we report here.

5.4 Scaling
To prevent performance from deteriorating as we collocate

more invocations within the same runtime, we have to un-

derstand the resource requirements of each invocation and

scale the CPU and memory allocation accordingly.

The first step in this process is to determine the resources

needed for one isolated invocation. Note that this step is

needed on today’s platforms as well. Memory requirements

are relatively simple to determine by running the workload

without memory restrictions and detecting the peak memory

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.25 0.5 0.75 1 1.25 1.5 1.75 2

 0

 1x10-6

 2x10-6

Execution time

Cost

E
xe

cu
ti

o
n
 t

im
e
 (

m
s)

C
o
st

 (
$

)

CPU allocation

Figure 7: Container CPU allocation should be a result of the
performance cost tradeoff. For the file hashing workload shown
here, a configuration that provides minimal cost with decent
performance is 0.2 CPU cores.

utilization throughout the execution. On the other hand, CPU

requirements are more challenging to determine, since they

usually present a trade-off between workload execution time

and the cost — small CPU allocation leads to long execution

time, but potentially, in some cases, lower total cost.

Fig. 7 illustrates our exploration of this trade-off for the

file hashing workload. As we increase the CPU allocation,

the execution time reduces as well as the cost
8
. However,

this positive cost trend changes around 0.2 CPU. This hap-

pens due to the fact that a large portion of the file hashing
workload is I/O operations (fetch/store a file) and more CPU

just increases the cost with marginal execution time bene-

fits. Thus, we pick 0.2 CPU as an operational point for this

workload. By measuring the peak memory utilization, we

see that one isolated invocation requires 127 MB in total for

the runtime, libraries, and the private state.

Next, we have to determine resource requirements for ev-

ery following invocation that will be collocated. To estimate

the memory increment (private state), atop a warm run-

time, we start adding concurrent invocations one by one and

measure the increase in memory utilization. After several

invocations, we use the peak increase as the private memory

size. In the case of file hashing, we run 100 invocations and

detect the private state as 3.5 MB.

Scaling the CPU allocation for collocated invocations is

also simple. For avoiding any increase in execution time, we

can just allocate additional 𝑐𝑖𝑛𝑖𝑡 CPU cycles per additional

invocation, where 𝑐𝑖𝑛𝑖𝑡 is the amount of CPU allocated for

the initial container. The intuition behind this approach is

that the amount of work per invocation does not change,

regardless of the number of invocations collocated. In the

case of file hashing, we increase CPU by 0.2 CPU cores per

invocation and memory by 3.5MB.

8
In this experiment we use the same pricing as on AWS Lambda [5].

SoCC ’20, October 19–21, 2020, Virtual Event, USA Vojislav Dukic, Rodrigo Bruno, Ankit Singla, Gustavo Alonso

1x
5x

10x

15x

20x

25x

30x

35x

 0 20 40 60 80 100 120 140 160

Execution time (regular/photons)

Memory(regular/photons)

R
a
ti

o

Concurrent invocations

Figure 8: With 32 cores, our testbed can host 160 (160 × 0.2

CPU cores) concurrent file hashing invocations. As we increase
the number of invocations, the performance (execution time)
of photons remains the same as on today’s platforms with
isolated containers. However, the memory saving grows with
more invocations collocated.

Workload CPU Mem. initial Mem. increment

Sleep 0.1 49 MB 1 MB

REST 0.1 56 MB 1.5 MB

Hash 0.2 127 MB 3.5 MB

Classify 0.7 248 MB 29 MB

Video 1 160 MB 120 MB

Table 1: CPU and memory resources required for each of the
workloads to scale without increased execution time.

The proposed scaling approach provides the same perfor-

mance as running each invocation is a separate container

with dedicated resources. This is illustrated in Fig. 8. We

gradually increase the number of concurrent invocations of

the same function (in this case file hashing), and measure av-

erage throughput and latency of OpenWhisk in two settings

— regular and photons, and report the ratio between these

two configurations. The ratio of 1 means that the execution

time does not change with more concurrent requests, but

the memory utilization obviously does because photons use
significantly less memory.

We observe similar behavior across other workloads we

tested. The results are summarized in Table 1. No workload

observes performance degradation due to CPU contention

as the number of collocated invocation increases, similarly

to the experiment shown in Fig. 8.

Performance vs. cost: So far we analyzed photons that

match the performance of today’s platforms while using less

memory. It is also possible to trade performance in terms

of slightly longer execution time for a significantly lower

cost by not scaling CPU proportionally to the number of

collocated invocations. Namely, instead of adding 𝑐𝑖𝑛𝑖𝑡 CPU

cycles per new invocation, we could assign less. This is es-

pecially useful for workloads where CPU cycles are spent

primarily on warming up the runtime, with the rest of the

function executing I/O operations.

To illustrate this, we demonstrate how our target work-

loads scale with 0.5× 𝑐𝑖𝑛𝑖𝑡 CPU increments and show results

in Fig. 9. Although all workloads observe a reduction in cost,

as expected, CPU intensive tasks like image classification

observe significant performance degradation. On the other

hand, I/O dependant tasks like REST continue scaling with

a marginal overhead. Note that workloads that utilize the

entire CPU like video cannot benefit from such optimization

because a lack of CPU cycles would reflect proportionally in

the execution time, making the total cost unchanged.

Although this cost-performance tradeoff is typical for sys-

tems in general and not specific to photons, it is important

to expose the tradeoff to users, especially for tiny workloads

hosted on heavy runtimes, like for instance REST on JVM.

Namely, REST requires relatively high CPU allocation (10%)

for handling the first invocation and spawning the runtime

during the cold start phase. However, further invocations

mostly do I/O intensive operations and require much less

CPU time. This way photons decouple runtime overhead

from the useful work and allow allocating resources needed

for the runtime only once per container, both in terms of

memory and CPU.

5.5 Data separation overhead
Virtualizing the runtime comes at the cost of enforcing data

separation. As described in §4.2, data separation is provided

by creating execution-local fields and by modifying all static

field accesses to access the local copy instead. Local field

copies are stored in a static table indexed by the photon
identifier. This section shows the overhead introduced by ac-

cessing static fields through a static table instead of accessing

them directly.

Each of our workloads except Sleep uses between 32 (Hash)
to 38 (Video) static fields with 70 to 99 accesses to these

fields respectively, showing that data separation is, in fact,

necessary to provide the execution environment with the

correct application semantics. ForHash, the static fields come

from the MinIO communication library; for Classify, from
the Java TensorFlow implementation; and for Video, from
the ffmpeg wrapper for Java [8].

Data isolation incurs a small throughput overhead. Hash
incurs a slightly higher overhead (4.8%) compared to Classify
(1.7%), REST (1%) and Video (2.5%). This is due to Classify and

Transform spending a large percentage of the execution in

using the native libraries, which are unaffected by static field

accesses. All our results already account for these overheads.

Photons: Lambdas on a diet SoCC ’20, October 19–21, 2020, Virtual Event, USA

1x

1.1x

1.2x

1.3x

1.4x

1.5x

 1 2 3 4 5

Image class.

File hashing

REST

A
v
g

.
JC

T
 i
n
fl
a
ti

o
n

Concurrent invocations

(a) Execution time

1x

1.2x

1.4x

1.6x

1.8x

2x

 1 2 3 4 5

C
o
st

 r
e
d

u
ct

io
n

Concurrent invocations

(b) Cost

Figure 9: Instead of scaling allocated CPU for 𝑐𝑖𝑛𝑖𝑡 per invocation, we assign 𝑐𝑖𝑛𝑖𝑡 and every further invocation receives 0.5× 𝑐𝑖𝑛𝑖𝑡 . In
I/O intensive workloads like REST and file hashing, for marginal performance degradation in terms of job execution time (left), we
can achieve a significant reduction in cost (right). However, for CPU intensive workloads like image classification, the cost-benefit
does not justify the performance loss.

Lastly, we note that in terms of achieving data separation

automatically (instead of needing manual changes), across

our workloads, we found only two classes which required

manual intervention: in these two cases, Java reflection was

being used to access a static field, something our implemen-

tation doesn’t yet handle automatically.

5.6 Copy-on-write overhead
Copy-on-write is a powerful operating system mechanism

for sharing memory while forking processes. A forked pro-

cess will utilize the samememory pages as the parent process

for read operations. However, for every write operation, a

copy of a particular memory page has to be made and as-

signed to the forked process exclusively. This mechanism

has been used in the context of serverless computing to share

memory efficiently [23, 30, 34, 51].

We test the difference in memory consumption between

copy-on-write systems and photons on the file hashing work-

load running with JVM. First, we warm up a container with

1000 consecutive invocations to give enough time to the

runtime to populate code cache and other operational data

structures. This creates a zygote runtime. Next, we fork the

zygote runtime to handle one invocation and measure the

total memory that has been changed in the process. A file

hashing invocation pollutes 33 MB which is for 7× more

than what is needed with photons. Although copy-on-write

presents a significant improvement over today’s platforms

(3×), the overhead is still significant compared to photons.

6 Conclusion
To take advantage of massive cloud parallelism, many server-

less computing workloads involve large numbers of concur-

rent invocations of the same function code. We observe that

in many cases, these invocations replicate large amounts of

state, including the language runtime, libraries, and shared

state like machine learning models.

Photons exploit this redundancy by sharing the execution

context across multiple invocations of the same function.

While superficially simple, achieving this requires ensuring

execution correctness and preventing performance inference

across invocations. Addressing these challenges, photons re-
ducememory consumption (by 25-98% across ourworkloads).

Photons also reduce the number of cold starts (by 52%), as

well as the overall cluster memory use (by 30%) compared to

today’s platforms.

While we implemented photons for JVM, the ideas extend

easily to other runtimes and languages. Our work also sets up

several opportunities for future research: (a) co-executing dif-
ferent functions from the same tenant could unleash greater

benefits, but would also require work on scheduling a mix

of functions in a runtime, and resource sharing across them;

(b) allowing the use of the shared object store as a cache

across phases of serverless data processing pipelines; and (c)

how to leverage the CPU-memory imbalance in serverless

workloads for cloud scheduling.

Acknowledgments
We thank our shepherd Trevor Carlson and the reviewers

for their feedback. Vojislav Dukic was supported, in part, by

Google and the ETH Zürich Foundation. Rodrigo Bruno was

supported in part by a grant from Oracle Labs.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Vojislav Dukic, Rodrigo Bruno, Ankit Singla, Gustavo Alonso

References
[1] 2009 (Accessed May 25, 2020). Understanding Container Reuse in AWS

Lambda. https://aws.amazon.com/blogs/compute/container-reuse-in-

lambda/.

[2] (AccessedMay 25, 2020). Apache OpenWhisk. http://openwhisk.apache.
org/.

[3] (Accessed May 25, 2020). Apply machine learning models in Azure
Functions with Python and TensorFlow. https://docs.microsoft.com/en-

us/azure/azure-functions/functions-machine-learning-tensorflow.

[4] (Accessed May 25, 2020). Architecture of a Serverless Machine Learn-
ing Model. https://cloud.google.com/solutions/architecture-of-a-

serverless-ml-model.

[5] (Accessed May 25, 2020). AWS Lambda pricing. https://aws.amazon.

com/lambda/pricing/.

[6] (Accessed May 25, 2020). AWS Lambda web tutorial.
https://aws.amazon.com/getting-started/hands-on/build-serverless-

web-app-lambda-apigateway-s3-dynamodb-cognito/.

[7] (Accessed May 25, 2020). Cloud Computing without Containers. https:
//blog.cloudflare.com/cloud-computing-without-containers/.

[8] (Accessed May 25, 2020). FFMPEG for Java. https://github.com/bramp/

ffmpeg-cli-wrapper.

[9] (Accessed May 25, 2020). gVisor. https://gvisor.dev/.
[10] (Accessed May 25, 2020). How to Deploy Deep Learning Models with

AWS Lambda and Tensorflow. https://aws.amazon.com/blogs/machine-

learning/how-to-deploy-deep-learning-models-with-aws-lambda-

and-tensorflow/.

[11] (Accessed May 25, 2020). How to serve deep learning models using
TensorFlow 2.0 with Cloud Functions. https://cloud.google.com/blog/

products/ai-machine-learning/how-to-serve-deep-learning-models-

using-tensorflow-2-0-with-cloud-functions.

[12] (Accessed May 25, 2020). JEP 346: Promptly Return Unused Committed
Memory from G1. http://openjdk.java.net/jeps/346.

[13] (Accessed May 25, 2020). Kata Containers. https://katacontainers.io/.
[14] (Accessed May 25, 2020). Knative serverless framework. https://knative.

dev/.

[15] (Accessed May 25, 2020). KNIX Microfunctions. https://github.com/

knix-microfunctions/knix/.

[16] (Accessed May 25, 2020). OpenFaaS serverless framework. https:

//www.openfaas.com/.

[17] (Accessed May 25, 2020). Overview of memory management. https:

//developer.android.com/topic/performance/memory-overview.

[18] (Accessed May 25, 2020). Security Overview of AWSLambda. https://d1.
awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf.

[19] (Accessed May 25, 2020). Serverless Networking. https://github.com/

serverlessunicorn/ServerlessNetworkingClients.

[20] (Accessed May 25, 2020). Understanding serverless cold start.
https://azure.microsoft.com/en-us/blog/understanding-serverless-

cold-start/.

[21] (Accessed May 25, 2020). Use AWS DeepLens to give Ama-
zon Alexa the power to detect objects via Alexa skills. https:

//aws.amazon.com/blogs/machine-learning/use-aws-deeplens-to-

give-amazon-alexa-the-power-to-detect-objects-via-alexa-skills/.

[22] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.

Firecracker: Lightweight Virtualization for Serverless Applications. In

USENIX NSDI.
[23] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus

Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:

Towards High-performance Serverless Computing. In USENIX ATC.
[24] Gene M. Amdahl. 1967. Validity of the Single Processor Approach to

Achieving Large Scale Computing Capabilities. In AFIPS.

[25] Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and George Porter.

2018. Sprocket: A serverless video processing framework. In ACM
SoCC.

[26] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,

Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah,

Aleksander Slominski, and Philippe Suter. 2017. Serverless Computing:
Current Trends and Open Problems.

[27] Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky.

2018. Putting the" Micro" back in microservice. In USENIX ATC.
[28] Stefan Brenner and Rüdiger Kapitza. 2019. Trust more, serverless. In

SYSTOR.
[29] Rodrigo Bruno, Paulo Ferreira, Ruslan Synytsky, Tetiana Fydorenchyk,

Jia Rao, Hang Huang, and Song Wu. 2018. Dynamic Vertical Memory

Scalability for OpenJDK Cloud Applications. In ISMM.

[30] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,

and Jonathan Appavoo. 2020. SEUSS: skip redundant paths to make

serverless fast. In EuroSys.
[31] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and

Randy Katz. 2018. A Case for Serverless Machine Learning. In NeurIPS.
[32] Shigeru Chiba and Muga Nishizawa. 2003. An easy-to-use toolkit

for efficient Java bytecode translators. In International Conference on
Generative Programming and Component Engineering.

[33] Eyal de Lara, Carolina S Gomes, Steve Langridge, S Hossein Mortazavi,

and Meysam Roodi. 2016. Hierarchical serverless computing for the

mobile edge. In IEEE/ACM Symposium on Edge Computing (SEC).
[34] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang

Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond

Startup for Serverless Computing with Initialization-less Booting. In

ASPLOS.
[35] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki

Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,

George Porter, and Keith Winstein. 2017. Encoding, Fast and Slow:

Low-latency Video Processing Using Thousands of Tiny Threads. In

USENIX NSDI.
[36] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,

Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon

Jackson, et al. 2019. An open-source benchmark suite for microservices

and their hardware-software implications for cloud & edge systems.

In ASPLOS.
[37] J. R. Gunasekaran, P. Thinakaran, M. T. Kandemir, B. Urgaonkar, G.

Kesidis, and C. Das. 2019. Spock: Exploiting Serverless Functions for

SLO and Cost Aware Resource Procurement in Public Cloud. In IEEE
CLOUD.

[38] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. 2016. Slacker: Fast Distribution with

Lazy Docker Containers. In FAST.
[39] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-

Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018.

Serverless computing: One step forward, two steps back. arXiv preprint
arXiv:1812.03651 (2018).

[40] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2018.

Serving deep learning models in a serverless platform. In IEEE Inter-
national Conference on Cloud Engineering (IC2E).

[41] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-

jamin Recht. 2017. Occupy the cloud: Distributed computing for the

99%. In ACM SoCC.
[42] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai,

Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl

Krauth, Neeraja Jayant Yadwadkar, Joseph E. Gonzalez, Raluca Ada

Popa, Ion Stoica, and David A. Patterson. 2019. Cloud Programming

Simplified: A Berkeley View on Serverless Computing. CoRR (2019).

arXiv:1902.03383

https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
http://openwhisk.apache.org/
http://openwhisk.apache.org/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-machine-learning-tensorflow
https://docs.microsoft.com/en-us/azure/azure-functions/functions-machine-learning-tensorflow
https://cloud.google.com/solutions/architecture-of-a-serverless-ml-model
https://cloud.google.com/solutions/architecture-of-a-serverless-ml-model
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://github.com/bramp/ffmpeg-cli-wrapper
https://github.com/bramp/ffmpeg-cli-wrapper
https://gvisor.dev/
https://aws.amazon.com/blogs/machine-learning/how-to-deploy-deep-learning-models-with-aws-lambda-and-tensorflow/
https://aws.amazon.com/blogs/machine-learning/how-to-deploy-deep-learning-models-with-aws-lambda-and-tensorflow/
https://aws.amazon.com/blogs/machine-learning/how-to-deploy-deep-learning-models-with-aws-lambda-and-tensorflow/
https://cloud.google.com/blog/products/ai-machine-learning/how-to-serve-deep-learning-models-using-tensorflow-2-0-with-cloud-functions
https://cloud.google.com/blog/products/ai-machine-learning/how-to-serve-deep-learning-models-using-tensorflow-2-0-with-cloud-functions
https://cloud.google.com/blog/products/ai-machine-learning/how-to-serve-deep-learning-models-using-tensorflow-2-0-with-cloud-functions
http://openjdk.java.net/jeps/346
https://katacontainers.io/
https://knative.dev/
https://knative.dev/
https://github.com/knix-microfunctions/knix/
https://github.com/knix-microfunctions/knix/
https://www.openfaas.com/
https://www.openfaas.com/
https://developer.android.com/topic/performance/memory-overview
https://developer.android.com/topic/performance/memory-overview
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://github.com/serverlessunicorn/ServerlessNetworkingClients
https://github.com/serverlessunicorn/ServerlessNetworkingClients
https://azure.microsoft.com/en-us/blog/understanding-serverless-cold-start/
https://azure.microsoft.com/en-us/blog/understanding-serverless-cold-start/
https://aws.amazon.com/blogs/machine-learning/use-aws-deeplens-to-give-amazon-alexa-the-power-to-detect-objects-via-alexa-skills/
https://aws.amazon.com/blogs/machine-learning/use-aws-deeplens-to-give-amazon-alexa-the-power-to-detect-objects-via-alexa-skills/
https://aws.amazon.com/blogs/machine-learning/use-aws-deeplens-to-give-amazon-alexa-the-power-to-detect-objects-via-alexa-skills/
https://arxiv.org/abs/1902.03383

Photons: Lambdas on a diet SoCC ’20, October 19–21, 2020, Virtual Event, USA

[43] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas

Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic ephemeral

storage for serverless analytics. In USENIX OSDI.
[44] Ricardo Koller and Dan Williams. 2017. Will Serverless End the Domi-

nance of Linux in the Cloud?. In HotOS.
[45] James Larisch, James Mickens, and Eddie Kohler. 2018. Alto: light-

weight vms using virtualization-aware managed runtimes. In MPLR.
[46] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David

Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,

and Jon Crowcroft. 2013. Unikernels: Library operating systems for

the cloud. In ACM SIGARCH Computer Architecture News.
[47] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-

zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.

My VM is Lighter (and Safer) Than Your Container. In SOSP.
[48] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent

development and deployment. In Linux journal.
[49] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,

Naren Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for

Scalable Serverless. In HotCloud.
[50] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada:

Interactive Data Analytics on Cold Data Using Serverless Cloud In-

frastructure. In ACM SIGMOD.
[51] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018. SOCK:

Rapid Task Provisioning with Serverless-optimized Containers. In

USENIX ATC.
[52] Alfonso Pérez, GermánMoltó, Miguel Caballer, and Amanda Calatrava.

2018. Serverless computing for container-based architectures. In Future
Generation Computer Systems.

[53] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel

Madden. 2019. Starling: A Scalable Query Engine on Cloud Function

Services. arXiv preprint arXiv:1911.11727 (2019).

[54] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark

Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:

Characterizing and Optimizing the Serverless Workload at a Large

Cloud Provider. In USENIX ATC.
[55] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and

Michael Swift. 2018. Peeking behind the curtains of serverless plat-

forms. In USENIX ATC.
[56] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and

Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-

forms. USENIX ATC.
[57] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba

Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018.

KylinX: a dynamic library operating system for simplified and efficient

cloud virtualization. In USENIX ATC.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Inefficiencies in today's platforms
	2.2 Context sharing opportunity
	2.3 The limits of context sharing
	2.4 Concurrent invocations are common

	3 Design space and related work
	4 Photons
	4.1 A Photon-enabled Serverless Platform
	4.2 Data isolation
	4.3 Sharing the Application State
	4.4 Vertical and horizontal scaling
	4.5 Photon deployment in the cloud
	4.6 Putting it all together
	4.7 Other Application Runtimes

	5 Evaluation
	5.1 Experimental setup
	5.2 Memory consumption
	5.3 Cold starts
	5.4 Scaling
	5.5 Data separation overhead
	5.6 Copy-on-write overhead

	6 Conclusion
	References

